Kimura, T. Systemic alopecia resulting from hyperadrenocorticism in a Japanese monkey. Lab. Primate Newsl. 47, 5–9 (2008).
Novak, M. A. et al. Assessing significant (> 30%) alopecia as a possible biomarker for stress in captive rhesus monkeys (Macaca mulatta). Am. J. Primatol. 79, e22547 (2017).
Google Scholar
Lutz, C. K., Menard, M. T., Rosenberg, K., Meyer, J. S. & Novak, M. A. Alopecia in rhesus macaques (Macaca mulatta): Association with pregnancy and chronic stress. J. Med. Primatol. 48, 251–256. https://doi.org/10.1111/jmp.12419 (2019).
Google Scholar
Steinmetz, H. W., Kaumanns, W., Dix, I., Neimeier, K.-A. & Kaup, F.-J. Dermatologic investigation of alopecia in rhesus macaques (Macaca mulatta). J. Zoo. Wildl. Med. 36, 229–239 (2005).
Google Scholar
Lynch, M., Kirkwood, R., Mitchell, A., Duignan, P. & Arnould, J. P. Y. Prevalence and significance of an alopecia syndrome in Australian fur seals (Arctocephalus pusillus doriferus). J. Mammal. 92, 342–351 (2011).
Google Scholar
Atwood, T. et al. Prevalence and spatio-temporal variation of an alopecia syndrome in polar bears (Ursus maritimus) of the southern Beaufort Sea. J. Wildl. Dis. 51, 48–59 (2015).
Google Scholar
McCoy, R. H., Murphie, S. L., Szykman Gunther, M. & Murphie, B. L. Influence of hair loss syndrome on black-tailed deer fawn survival. J. Wildl. Manag. 78, 1177–1188. https://doi.org/10.1002/jwmg.772 (2014).
Google Scholar
Novak, M. A. et al. Hair loss and hypothalamic–pituitary–adrenocortical axis activity in captive rhesus macaques (Macaca mulatta). J. Am. Assoc. Lab. Anim. Sci. 53, 261–266 (2014).
Google Scholar
Lutz, C. K., Coleman, K., Worlein, J. & Novak, M. A. Hair loss and hair-pulling in rhesus macaques (Macaca mulatta). J. Am. Assoc. Lab. Anim. Sci. 52, 454–457 (2013).
Google Scholar
Swenerton, H. & Hurley, L. S. Zinc deficiency in rhesus and bonnet monkeys, including effects on reproduction. J. Nutr. 110, 575–583 (1980).
Google Scholar
Lair, S., Crawshaw, G. J., Mehren, K. G. & Perrone, M. A. Diagnosis of hypothyroidism in a western lowland gorilla (Gorilla gorilla gorilla) using human thyroid-stimulating hormone assay. J. Zoo. Wildl. Med. 30, 537–540 (1999).
Google Scholar
Beardi, B. et al. Alopecia areata in a rhesus monkey (Macaca mulatta). J. Med. Primatol. 36, 124–130. https://doi.org/10.1111/j.1600-0684.2007.00212.x (2007).
Google Scholar
Ovadia, S., Wilson, S. R. & Zeiss, C. J. Successful cyclosporine treatment for atopic dermatitis in a rhesus macaque (Macaca mulatta). Comp. Med. 55, 192–196 (2005).
Google Scholar
Novak, M. A. & Meyer, J. S. Alopecia: Possible causes and treatments, particularly in captive nonhuman primates. Comp. Med. 59, 18–26 (2009).
Google Scholar
Hadshiew, I. M., Foitzik, K., Arck, P. C. & Paus, R. Burden of hair loss: Stress and the underestimated psychosocial impact of telogen effluvium and androgenetic alopecia. J. Investig. Dermatol. 123, 455–457 (2004).
Google Scholar
Charmandari, E., Tsigos, C. & Chrousos, G. Endocrinology of the stress response. Annu. Rev. Physiol. 67, 259–284 (2005).
Google Scholar
Moberg, G. P. Biological response to stress: implications for animal welfare in The Biology of Animal Stress: Basic Principles and Implications for Animal Welfare (eds Moberg, G. P. & Mench, J. A.) 1–21 (CABI Publishing, 2000).
Romero, M. L. & Butler, L. K. Endocrinology of stress. Int. J. Comp. Psychol. 20, 89–95 (2007).
Shutt, K., Setchell, J. M. & Heistermann, M. Non-invasive monitoring of physiological stress in the Western lowland gorilla (Gorilla gorilla gorilla): Validation of a fecal glucocorticoid assay and methods for practical application in the field. Gen. Comp. Endocrinol. 179, 167–177 (2012).
Google Scholar
Heistermann, M. Non-invasive monitoring of endocrine status in laboratory primates: Methods, guidelines and applications. Adv. Sci. Res. 5, 1–9 (2010).
Google Scholar
Murray, C. M., Heintz, M. R., Lonsdorf, E. V., Parr, L. A. & Santymire, R. M. Validation of a field technique and characterization of fecal glucocorticoid metabolite analysis in wild chimpanzees (Pan troglodytes). Am. J. Primatol. 75, 57–64 (2013).
Google Scholar
Schwarzenberger, F. The many uses of non-invasive faecal steroid monitoring in zoo and wildlife species. Int. Zoo. Yearb. 41, 52–74. https://doi.org/10.1111/j.1748-1090.2007.00017.x (2007).
Google Scholar
Touma, C. & Palme, R. Measuring fecal glucocorticoid metabolites in mammals and birds: The importance of validation. Ann. N. Y. Acad. Sci. 1046, 54–74. https://doi.org/10.1196/annals.1343.006 (2005).
Google Scholar
Kersey, D. C. & Dehnhard, M. The use of noninvasive and minimally invasive methods in endocrinology for threatened mammalian species conservation. Gen. Comp. Endocrinol. 203, 296–306. https://doi.org/10.1016/j.ygcen.2014.04.022 (2014).
Google Scholar
Palme, R., Rettenbacher, S., Touma, C., El-Bahr, S. M. & Möstl, E. Stress hormones in mammals and birds: Comparative aspects regarding metabolism, excretion, and noninvasive measurement in fecal samples. Ann. N. Y. Acad. Sci. 1040, 162–171 (2005).
Google Scholar
Teskey-Gerstl, A., Bamberg, E., Steineck, T. & Palme, R. Excretion of corticosteroids in urine and faeces of hares (Lepus europaeus). J. Comp. Physiol. B. 170, 163–168 (2000).
Google Scholar
Millspaugh, J. J. & Washburn, B. E. Use of fecal glucocorticoid metabolite measures in conservation biology research: Considerations for application and interpretation. Gen. Comp. Endocrinol. 138, 189–199 (2004).
Google Scholar
Bahr, N. I., Palme, R., Möhle, U., Hodges, J. K. & Heistermann, M. Comparative aspects of the metabolism and excretion of cortisol in three individual nonhuman primates. Gen. Comp. Endocrinol. 117, 427–438. https://doi.org/10.1006/gcen.1999.7431 (2000).
Google Scholar
Whitten, P. L., Brockman, D. K. & Stavisky, R. C. Recent advances in noninvasive techniques to monitor hormone-behavior interactions. Am. J. Phys. Anthropol. 107, 1–23 (1998).
Google Scholar
Heistermann, M., Palme, R. & Ganswindt, A. Comparison of different enzymeimmunoassays for assessment of adrenocortical activity in primates based on fecal analysis. Am. J. Primatol. 68, 257–273 (2006).
Google Scholar
Wheeler, B. C., Tiddi, B., Kalbitzer, U., Visalberghi, E. & Heistermann, M. Methodological considerations in the analysis of fecal glucocorticoid metabolites in tufted capuchins (Cebus apella). Int. J. Primatol. 34, 879–898 (2013).
Google Scholar
Pei, J.-C. et al. Disease surveillance, conservation, and management strategies for Taiwanese macaque (Macaca cyclopis) at Shoushan National Nature Park. 136 (Construction and Planning Agency. Ministry of the Interior, 2015).
Hsu, M. J., Kao, C. C. & Agoramoorthy, G. Interactions between visitors and Formosan macaques (Macaca cyclopis) at Shou-Shan Nature Park, Taiwan. Am. J. Primatol. 71, 214–222 (2009).
Google Scholar
Lee, L. L., Wu, H. Y., Chang, S. W., Minna, J. H. & Chakraborty, C. Survey of Current Status of Taiwan Macaques 1–27 (Council of Agriculture, Executive Yuan, 2001).
Pei, K. C. J., Chen, C. C., Lin, C. N. & Ju, Y. T. The study of population dynamic and health status of Taiwanese macaques in Shanshan National Nature Park., 175 (Shoushan National Nature Park, Construction and Planning Agency, Ministry of the Interior, 2016).
Bellanca, R. U. et al. A simple alopecia scoring system for use in colony management of laboratory-housed primates. J. Med. Primatol. 43, 153–161 (2014).
Google Scholar
Whiting, D. A. Histology of the human hair follicle in Hair Growth and Disorders (eds Blume-Peytavi, U. et al.) 107–123 (Springer, 2008).
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
Google Scholar
Horenstein, M. G. & Bacheler, C. J. Follicular density and ratios in scarring and nonscarring alopecia. Am. J. Dermatopathol. 35, 818–826 (2013).
Google Scholar
Rangel-Negrín, A., Flores-Escobar, E., Chavira, R., Canales-Espinosa, D. & Dias, P. A. D. Physiological and analytical validations of fecal steroid hormone measures in black howler monkeys. Primates 55, 459–465 (2014).
Google Scholar
Pineda-Galindo, E., Cerda-Molina, A. L., Mayagoitia-Novales, L. & Matamoros-Trejo, G. Biological validations of fecal glucocorticoid, testosterone, and progesterone metabolite measurements in captive stumptail macaques (Macaca arctoides). Int. J. Primatol. 38, 985–1001 (2017).
Google Scholar
Palme, R. & Möstl, E. Measurement of cortisol metabolites in faeces of sheep as a parameter of cortisol concentration in blood. Int. J. Mammal. Biol. 62, 192–197 (1997).
Braga Goncalves, I. et al. Validation of a fecal glucocorticoid assay to assess adrenocortical activity in meerkats using physiological and biological stimuli. PLoS ONE 11, e0153161. https://doi.org/10.1371/journal.pone.0153161 (2016).
Google Scholar
Pei, K. J.-C., Lin, C. N. & Chen, C. C. Disease surveillance, conservation, and management strategies for Taiwanese macaque (Macaca cyclopis) at Shoushan National Nature Park. 133 (Construction and Planning Agency, Ministry of the Interior, R2015).
Hsu, M. J. & Lin, J.-F. Troop size and structure in free-ranging Formosan macaques (Macaca cyclopis) at Mt. Longevity, Taiwan. Zool. Stud. Taipei 40, 49–60 (2001).
Graham, M. H. Confronting multicollinearity in ecological multiple regression. Ecology 84, 2809–2815 (2003).
Google Scholar
Allison, P. D. Multiple Regression: A Primer (Pine Forge Press, 1999).
Dohoo, I., Martin, W. & Stryhn, H. Model-building strategies in Veterinary Epidemiologic Research 553–578 (VER Inc, 2009).
Bolker, B. et al. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).
Google Scholar
Ganswindt, A., Palme, R., Heistermann, M., Borragan, S. & Hodges, J. Non-invasive assessment of adrenocortical function in the male African elephant (Loxodonta africana) and its relation to musth. Gen. Comp. Endocrinol. 134, 156–166 (2003).
Google Scholar
Rimbach, R., Heymann, E. W., Link, A. & Heistermann, M. Validation of an enzyme immunoassay for assessing adrenocortical activity and evaluation of factors that affect levels of fecal glucocorticoid metabolites in two New World primates. Gen. Comp. Endocrinol. 191, 13–23 (2013).
Google Scholar
Novak, M. A. et al. Assessing significant (> 30%) alopecia as a possible biomarker for stress in captive rhesus monkeys (Macaca mulatta). Am. J. Primatol. 79, 1–8. https://doi.org/10.1002/ajp.22547 (2017).
Google Scholar
Bernardez, C., Molina-Ruiz, A. & Requena, L. Histologic features of alopecias–part I: Nonscarring alopecias. Actas Dermosifiliogr. 106, 158–167. https://doi.org/10.1016/j.adengl.2015.01.001 (2015).
Google Scholar
Luchins, K. R. et al. Application of the diagnostic evaluation for alopecia in traditional veterinary species to laboratory rhesus macaques (Macaca mulatta). J. Am. Assoc. Lab. Anim. Sci. 50, 926–938 (2011).
Google Scholar
Werner, B. & Mulinari-Brenner, F. Clinical and histological challenge in the differential diagnosis of diffuse alopecia: Female androgenetic alopecia, telogen effluvium and alopecia areata-part II. An. Bras. Dermatol. 87, 884–890 (2012).
Google Scholar
Liyanage, D. & Sinclair, R. Telogen effluvium. Cosmetics 3, 13 (2016).
Google Scholar
Alotaibi, M. K. Telogen effluvium: A review. Int. J. Med. Dev. Cties. 3, 797–801. https://doi.org/10.7759/cureus.8320 (2019).
Google Scholar
Arck, P. C. et al. Stress inhibits hair growth in mice by induction of premature catagen development and deleterious perifollicular inflammatory events via neuropeptide substance P-dependent pathways. Am. J. Pathol. 162, 803–814. https://doi.org/10.1016/S0002-9440(10)63877-1athology (2003).
Google Scholar
Horenstein, V.D.-P., Williams, L. E., Brady, A. R., Abee, C. R. & Horenstein, M. G. Age-related diffuse chronic telogen effluvium-type alopecia in female squirrel monkeys (Saimiri boliviensis boliviensis). Comp. Med. 55, 169–174 (2005).
Google Scholar
Coleman, K. et al. The correlation between alopecia and temperament in rhesus macaques (Macaca mulatta) at four primate facilities. Am. J. Primatol. 79, e22504. https://doi.org/10.1002/ajp.22504 (2017).
Google Scholar
Lutz, C. K. et al. Factors influencing alopecia and hair cortisol in rhesus macaques (Macaca mulatta). J. Med. Primatol. 45, 180–188. https://doi.org/10.1111/jmp.12220 (2016).
Google Scholar
Palme, R. Non-invasive measurement of glucocorticoids: Advances and problems. Physiol. Behav. 199, 229–243. https://doi.org/10.1016/j.physbeh.2018.11.021 (2019).
Google Scholar
Hoffman, C. L. et al. Immune function and HPA axis activity in free-ranging rhesus macaques. Physiol. Behav. 104, 507–514. https://doi.org/10.1016/j.physbeh.2011.05.021 (2011).
Google Scholar
Marty, P. R., Hodges, K., Heistermann, M., Agil, M. & Engelhardt, A. Is social dispersal stressful? A study in male crested macaques (Macaca nigra). Horm. Behav. 87, 62–68. https://doi.org/10.1016/j.yhbeh.2016.10.018 (2017).
Google Scholar
Takeshita, R. S. C., Bercovitch, F. B., Kinoshita, K. & Huffman, M. A. Beneficial effect of hot spring bathing on stress levels in Japanese macaques. Primates 59, 215–225. https://doi.org/10.1007/s10329-018-0655-x (2018).
Google Scholar
Sheriff, M. J., Dantzer, B., Delehanty, B., Palme, R. & Boonstra, R. Measuring stress in wildlife: Techniques for quantifying glucocorticoids. Oecologia 166, 869–887 (2011).
Google Scholar
Cheng, H. C. et al. The Red List of Terrestrial Mammals of Taiwan, 2017. 35 (Endemic Species Research Institute, 2017).
Chang, A.-M., Chen, C.-C. & Huffman, M. A. Entamoeba spp in wild formosan rock macaques (Macaca cyclopis) in an area with frequent human-macaque contact. J. Wildl. Dis. 55, 608–618 (2019).
Google Scholar
Source: Ecology - nature.com