in

AusTraits, a curated plant trait database for the Australian flora

  • 1.

    Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 2.

    Cornwell, W. K. et al. Functional distinctiveness of major plant lineages. J. Ecol. 102, 345–356 (2014).

    Article 

    Google Scholar 

  • 3.

    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167 (2016).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 4.

    Kunstler, G. et al. Plant functional traits have globally consistent effects on competition. Nature 529, 204 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 5.

    Chapin, F. S. III, Autumn, K. & Pugnaire, F. Evolution of suites of traits in response to environmental stress. Am. Nat. 142, S78–S92 (1993).

    Article 

    Google Scholar 

  • 6.

    Adler, P. B. et al. Functional traits explain variation in plant life history strategies. Proc. Natl. Acad. Sci. USA 111, 740–745 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Diaz, S., Cabido, M. & Casanoves, F. Plant functional traits and environmental filters at a regional scale. J. Veg. Sci. 9, 113–122 (1998).

    Article 

    Google Scholar 

  • 8.

    Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).

    Article 

    Google Scholar 

  • 9.

    Westoby, M. A leaf-height-seed (LHS) plant ecol. Strategy scheme. Plant Soil 199, 213–227 (1998).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Funk, J. L. et al. Revisiting the holy grail: Using plant functional traits to understand ecological processes. Biol. Rev. 92, 1156–1173 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Kattge, J. et al. TRY a global database of plant traits. Glob. Chang. Biol. 17, 2905–2935 (2011).

    ADS 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Kattge, J. et al. TRY plant trait database enhanced coverage and open access. Glob. Chang. Biol. 26, 119–188 (2020).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    CHAH. Australian Plant Census, Centre of Australian National Biodiversity Research. https://id.biodiversity.org.au/tree/51354547 (2020).

  • 14.

    Kissling, W. D. et al. Towards global data products of Essential Biodiversity Variables on species traits. Nat. Ecol. Evol. 2, 1531–1540 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Gallagher, R. V. et al. Open Science principles for accelerating trait-based science across the Tree of Life. Nat. Ecol. Evol. 4, 294–303 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Chapman, A. D. et al. Numbers of living species in Australia and the world. (Australian Government, 2009).

  • 17.

    Hopper, S. D. & Gioia, P. The Southwest Australian Floristic Region: Evolution and conservation of a global hot spot of biodiversity. Annual Review of Ecology, Evolution, and Systematics 35, 623–650 (2004).

    Article 

    Google Scholar 

  • 18.

    Madin, J. et al. An ontology for describing and synthesizing ecological observation data. Ecol. Inform. 2, 279–296 (2007).

    Article 

    Google Scholar 

  • 19.

    Garnier, E. et al. Towards a thesaurus of plant characteristics: An ecological contribution. J. Ecol. 105, 298–309 (2017).

    Article 

    Google Scholar 

  • 20.

    Adams, M. A. M, P. & Attiwill. Role of Acacia spp. in nutrient balance and cycling in regenerating Eucalyptus regnans F. Muell. forests. I. Temporal changes in biomass and nutrient content. Aust. J. Bot. 32, 205–215 (1984).

    CAS 

    Google Scholar 

  • 21.

    Ahrens, C. W. et al. Plant functional traits differ in adaptability and are predicted to be differentially affected by climate change. Ecol. Evo. 10, 232–248 (2019).

    Article 

    Google Scholar 

  • 22.

    Australian National Botanic Gardens. The National Seed Bank. http://www.anbg.gov.au/gardens/living/seedbank/ (2018).

  • 23.

    Angevin, T. Species richness and functional trait diversity response to land use in a temperate eucalypt woodland community. (La Trobe University, 2011).

  • 24.

    Apgaua, D. M. G. et al. Functional traits and water transport strategies in lowland tropical rainforest trees. PLoS One 10, e0130799 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 25.

    Apgaua, D. M. G. et al. Plant functional groups within a tropical forest exhibit different wood functional anatomy. Funct. Ecol. 31, 582–591 (2017).

    Article 

    Google Scholar 

  • 26.

    Ashton, D. H. Studies of litter in Eucalyptus regnans forests. Aust. J. Bot. 23, 413–433 (1975).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Ashton, D. H. Phosphorus in forest ecosystems at Beenak, Victoria. The J. Ecol. 64, 171–186 (1976).

    CAS 

    Google Scholar 

  • 28.

    Attiwill, P. M. Nutrient cycling in a Eucalyptus obliqua (L’Herit.) forest IV: Nutrient uptake and nutrient return. Aust. J. Bot. 28, 199–222 (1980).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Barlow, B. A., Clifford, H. T., George, A. S. & McCusker, A. K. A. Flora of Australia. http://www.environment.gov.au/biodiversity/abrs/online-resources/flora/main/ (1981).

  • 30.

    Bean, A. R. A revision of Baeckea (Myrtaceae) in eastern Australia, Malesia and south-east Asia. Telopea 7, 245–268 (1997).

    Article 

    Google Scholar 

  • 31.

    Bell, L.C. Nutrient requirements for the establishment of native flora at Weipa. (Comalco Aluminium Ltd., 1985).

  • 32.

    Bennett, L. T. & Attiwill, P. M. The nutritional status of healthy and declining stands of Banksia integrifolia on the Yanakie Isthmus, Victoria. Aust. J. Bot. 45, 15–30 (1997).

    Article 

    Google Scholar 

  • 33.

    Bevege, D. I. Biomass and nutrient distribution in indigenous forest ecosystems. vol. 6 20 (Queensland Department of Forestry, 1978).

  • 34.

    Birk, E. M. & Turner, J. Response of flooded gum (E. grandis) to intensive cultural treatments: biomass and nutrient content of eucalypt plantations and native forests. For. Ecol. Manage. 47, 1–28 (1992).

    Article 

    Google Scholar 

  • 35.

    Blackman, C. J., Brodribb, T. J. & Jordan, G. J. Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms. New Phytol. 188, 1113–1123 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 36.

    Blackman, C. J. et al. Leaf hydraulic vulnerability to drought is linked to site water availability across a broad range of species and climates. Ann. Bot. 114, 435–440 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    Blackman, C. J. et al. The links between leaf hydraulic vulnerability to drought and key aspects of leaf venation and xylem anatomy among 26 Australian woody angiosperms from contrasting climates. Ann. Bot. 122, 59–67 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Bloomfield, K. J. et al. A continental-scale assessment of variability in leaf traits: Within species, across sites and between seasons. Funct. Ecol. 32, 1492–1506 (2018).

    Article 

    Google Scholar 

  • 39.

    Bolza, E. Properties and uses of 175 timber species from Papua New Guinea and West Irian. (Victoria (Australia) CSIRO, Div. of Building Research, 1975).

  • 40.

    Bragg, J. G. & Westoby, M. Leaf size and foraging for light in a sclerophyll woodland. Funct. Ecol. 16, 633–639 (2002).

    Article 

    Google Scholar 

  • 41.

    Brisbane Rainforest Action and Information Network. Trait measurements for Australian rainforest species. http://www.brisrain.org.au/ (2016).

  • 42.

    Briggs, A. L. & Morgan, J. W. Seed characteristics and soil surface patch type interact to affect germination of semi-arid woodland species. Plant Ecol. 212, 91–103 (2010).

    Article 

    Google Scholar 

  • 43.

    Brock, J. & Dunlop, A. Native plants of northern Australia. (Reed New Holland, 1993).

  • 44.

    Brodribb, T. J. & Cochard, H. Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiol. 149, 575–584 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Buckton, G. et al. Functional traits of lianas in an Australian lowland rainforest align with post-disturbance rather than dry season advantage. Austral Ecol. 44, 983–994 (2019).

    Article 

    Google Scholar 

  • 46.

    Burgess, S. S. O. & Dawson, T. E. Predicting the limits to tree height using statistical regressions of leaf traits. New Phytol. 174, 626–636 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 47.

    Burrows, G. E. Comparative anatomy of the photosynthetic organs of 39 xeromorphic species from subhumid New South Wales, Australia. Int. J. Plant Sci. 162, 411–430 (2001).

    Article 

    Google Scholar 

  • 48.

    Butler, D. W., Gleason, S. M., Davidson, I., Onoda, Y. & Westoby, M. Safety and streamlining of woody shoots in wind: an empirical study across 39 species in tropical Australia. New Phytol. 193, 137–149 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 49.

    CAB International. Forestry Compendium. http://www.cabi.org/fc/ (2009).

  • 50.

    Caldwell, E., Read, J. & Sanson, G. D. Which leaf mechanical traits correlate with insect herbivory among feeding guilds? Ann. Bot. 117, 349–361 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Canham, C. A., Froend, R. H. & Stock, W. D. Water stress vulnerability of four Banksia species in contrasting ecohydrological habitats on the Gnangara Mound. Western Australia. Plant Cell Envrion. 32, 64–72 (2009).

    Article 

    Google Scholar 

  • 52.

    Carpenter, R. J. Cuticular morphology and aspects of the ecology and fossil history of North Queensland rainforest Proteaceae. Bot. J. Linn. Soc. 116, 249–303 (1994).

    Article 

    Google Scholar 

  • 53.

    Carpenter, R. J., Hill, R. S. & Jordan, G. J. Leaf Cuticular Morphology Links Platanaceae and Proteaceae. Int. J. Plant Sci. 166, 843–855 (2005).

    Article 

    Google Scholar 

  • 54.

    Catford, J. A., Downes, B. J., Gippel, C. J. & Vesk, P. A. Flow regulation reduces native plant cover and facilitates exotic invasion in riparian wetlands. J. Appl. Ecol. 48, 432–442 (2011).

    Article 

    Google Scholar 

  • 55.

    Catford, J. A., Morris, W. K., Vesk, P. A., Gippel, C. J. & Downes, B. J. Species and environmental characteristics point to flow regulation and drought as drivers of riparian plant invasion. Divers. Distrib. 20, 1084–1096 (2014).

    Article 

    Google Scholar 

  • 56.

    Cernusak, L. A., Hutley, L. B., Beringer, J. & Tapper, N. J. Stem and leaf gas exchange and their responses to fire in a north Australian tropical savanna. Plant Cell Envrion. 29, 632–646 (2006).

    Article 

    Google Scholar 

  • 57.

    Cernusak, L. A., Hutley, L. B., Beringer, J., Holtum, J. A. M. & Turner, B. L. Photosynthetic physiology of eucalypts along a sub-continental rainfall gradient in northern Australia. Agric. For. Meteorol. 151, 1462–1470 (2011).

    ADS 
    Article 

    Google Scholar 

  • 58.

    Chandler, G. T., Crisp, M. D., Cayzer, L. W. & Bayer, R. J. Monograph of Gastrolobium (Fabaceae: Mirbelieae). Aust. Syst. Bot. 15, 619–739 (2002).

    Article 

    Google Scholar 

  • 59.

    Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 60.

    Cheal, D. Growth stages and tolerable fire intervals for Victoria’s native vegetation data sets. (Victorian Government Department of Sustainability; Environment Melbourne, 2010).

  • 61.

    Cheesman, A. W., Duff, H., Hill, K., Cernusak, L. A. & McInerney, F. A. Isotopic and morphologic proxies for reconstructing light environment and leaf function of fossil leaves: A modern calibration in the Daintree Rainforest, Australia. Am. J. Bot. 107, 1165–1176 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 62.

    Chen et al. Plants show more flesh in the tropics: Variation in fruit type along latitudinal and climatic gradients. Ecography 40, 531–538 (2017).

    Article 

    Google Scholar 

  • 63.

    Chinnock, R. J. Eremophila and allied genera: A monograph of the plant family Myoporaceae. (Rosenberg, 2007).

  • 64.

    Choat, B., Ball, M. C., Luly, J. G. & Holtum, J. A. M. Hydraulic architecture of deciduous and evergreen dry rainforest tree species from north-eastern Australia. Trees 19, 305–311 (2005).

    Article 

    Google Scholar 

  • 65.

    Choat, B., Ball, M. C., Luly, J. G., Donnelly, C. F. & Holtum, J. A. M. Seasonal patterns of leaf gas exchange and water relations in dry rain forest trees of contrasting leaf phenology. Tree Physiol. 26, 657–664 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 66.

    Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 67.

    Chudnoff, M. Tropical timbers of the world. 472 (US Department of Agriculture, Forest Service, 1984).

  • 68.

    The French agricultural research and international cooperation organization (CIRAD). Wood density data. http://www.cirad.fr/ (2009).

  • 69.

    Clarke, P. J. et al. A synthesis of postfire recovery traits of woody plants in Australian ecosystems. Sci. Total Environ. 534, 31–42 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 70.

    Cooper, W. & Cooper, W. T. Fruits of the Australian tropical rainforest. (Nokomis Editions, 2004).

  • 71.

    Cooper, W. & Cooper, W. T. Australian rainforest fruits. 272 (CSIRO Publishing, 2013).

  • 72.

    Cornwell, W. K. Causes and consequences of functional trait diversity: plant community assembly and leaf decomposition. (Stanford University, California, 2006).

  • 73.

    Centre for Plant Biodiversity Research. EUCLID 2.0: Eucalypts of Australia. http://apps.lucidcentral.org/euclid/text/intro/index.html (2002).

  • 74.

    Craven, L. A., A taxonomic revision of Calytrix Labill. (Myrtaceae). Brunonia 10, 1–138 (1987).

    Article 

    Google Scholar 

  • 75.

    Craven, L. A., Lepschi, B. J. & Cowley, K. J. Melaleuca (Myrtaceae) of Western Australia: Five new species, three new combinations, one new name and a new state record. Nuytsia 20, 27–36 (2010).

    Google Scholar 

  • 76.

    Crisp, M. D., Cayzer, L., Chandler, G. T. & Cook, L. G. A monograph of Daviesia (Mirbelieae, Faboideae, Fabaceae). Phytotaxa 300, 1–308 (2017).

    Article 

    Google Scholar 

  • 77.

    Cromer, R. N., Raupach, M., Clarke, A. R. P. & Cameron, J. N. Eucalypt plantations in Australia – the potential for intensive production and utilization. Appita J. 29, 165–173 (1975).

    Google Scholar 

  • 78.

    Cross, E. The characteristics of natives and invaders: A trait-based investigation into the theory of limiting similarity. (La Trobe University, 2009).

  • 79.

    Crous, K. Y. et al. Photosynthesis of temperate Eucalyptus globulus trees outside their native range has limited adjustment to elevated CO2 and climate warming. Glob. Chang. Biol. 19, 3790–3807 (2013).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 80.

    Crous, K. Y., Wujeska-Klause, A., Jiang, M., Medlyn, B. E. & Ellsworth, D. S. Nitrogen and phosphorus retranslocation of leaves and stemwood in a mature Eucalyptus forest exposed to 5 years of elevated CO2. Front. Plant. Sci. 10, art664 (2019).

    Article 

    Google Scholar 

  • 81.

    Cunningham, S. A., Summerhayes, B. & Westoby, M. Evolutionary divergences in leaf structure and chemistry, comparing rainfall and soil nutrient gradients. Ecol. Monogr. 69, 569–588 (1999).

    Article 

    Google Scholar 

  • 82.

    Curran, T. J., Clarke, P. J. & Warwick, N. W. M. Water relations of woody plants on contrasting soils during drought: does edaphic compensation account for dry rainforest distribution? Aust. J. Bot. 57, 629–639 (2009).

    Article 

    Google Scholar 

  • 83.

    Curtis, E. M., Leigh, A. & Rayburg, S. Relationships among leaf traits of Australian arid zone plants: alternative modes of thermal protection. Aust. J. Bot. 60, 471–483 (2012).

    Article 

    Google Scholar 

  • 84.

    Denton, M. D., Veneklaas, E. J., Freimoser, F. M. & Lambers, H. Banksia species (Proteaceae) from severely phosphorus-impoverished soils exhibit extreme efficiency in the use and re-mobilization of phosphorus. Plant Cell Envrion. 30, 1557–1565 (2007).

    CAS 
    Article 

    Google Scholar 

  • 85.

    Desch, H. E. & Dinwoodie, J. M. Timber structure, properties, conversion and use. (Palgrave Macmillan, 1996).

  • 86.

    de Tombeur, F. et al. A shift from phenol to silica-based leaf defenses during long-term soil and ecosystem development. Ecol. Lett. 24, 984–995 (2021).

    PubMed 
    Article 

    Google Scholar 

  • 87.

    Dong, N. et al. Leaf nitrogen from first principles: field evidence for adaptive variation with climate. Biogeosciences 14, 481–495 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 88.

    Dong, N. et al. Components of leaf-trait variation along environmental gradients. New Phytol. 228, 82–94 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 89.

    Du, P., Arndt, S. K. & Farrell, C. Relationships between plant drought response, traits, and climate of origin for green roof plant selection. Ecol. Appl. 28, 1752–1761 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 90.

    Du, P., Arndt, S. K. & Farrell, C. Can the turgor loss point be used to assess drought response to select plants for green roofs in hot and dry climates? Plant Soil 441, 399–408 (2019).

    CAS 
    Article 

    Google Scholar 

  • 91.

    Duan, H. et al. Drought responses of two gymnosperm species with contrasting stomatal regulation strategies under elevated [CO2] and temperature. Tree Physiol. 35, 756–770 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 92.

    Duncan, R. P. et al. Plant traits and extinction in urban areas: a meta-analysis of 11 cities. Glob. Ecol. Biog. 20, 509–519 (2011).

    Article 

    Google Scholar 

  • 93.

    Dwyer, J. M. & Laughlin, D. C. Constraints on trait combinations explain climatic drivers of biodiversity: The importance of trait covariance in community assembly. Ecol. Lett. 20, 872–882 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 94.

    Dwyer, J. M. & Mason, R. Plant community responses to thinning in densely regenerating Acacia harpophylla forest. Restor. Ecol. 26, 97–105 (2018).

    Article 

    Google Scholar 

  • 95.

    Eamus, D. & Prichard, H. A cost-benefit analysis of leaves of four Australian savanna species. Tree Physiol. 18, 537–545 (1998).

    PubMed 
    Article 

    Google Scholar 

  • 96.

    Eamus, D., Myers, B., Duff, G. & Williams, D. Seasonal changes in photosynthesis of eight savanna tree species. Tree Physiol. 19, 665–671 (1999).

    PubMed 
    Article 

    Google Scholar 

  • 97.

    Myers, B., E., D. & Duff, G. A cost-benefit analysis of leaves of eight Australian savanna tree species of differing life-span. Photosynthetica 36, 575–586 (1999).

    Article 

    Google Scholar 

  • 98.

    Edwards, C., Read, J. & Sanson, G. D. Characterising sclerophylly: some mechanical properties of leaves from heath and forest. Oecologia 123, 158–167 (2000).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 99.

    Edwards, C., Sanson, G. D., Aranwela, N. & Read, J. Relationships between sclerophylly, leaf biomechanical properties and leaf anatomy in some Australian heath and forest species. Plant Biosyst. 134, 261–277 (2000).

    Article 

    Google Scholar 

  • 100.

    Schöenenberger, J. et al. Phylogenetic analysis of fossil flowers using an angiosperm-wide data set: proof-of-concept and challenges ahead. Am. J. Bot. 107, 1433–1448 (2020).

    Article 

    Google Scholar 

  • 101.

    Esperon-Rodriguez, M. et al. Functional adaptations and trait plasticity of urban trees along a climatic gradient. Urban For. Urban Green. 54, art126771 (2020).

    Article 

    Google Scholar 

  • 102.

    Everingham, S. E., Offord, C. A., Sabot, M. E. B. & Moles, A. T. Time travelling seeds reveal that plant regeneration and growth traits are responding to climate change. Ecology 102, e03272 (2020).

    Google Scholar 

  • 103.

    Falster, D. S. & Westoby, M. Leaf size and angle vary widely across species: what consequences for light interception? New Phytol. 158, 509–525 (2003).

    Article 

    Google Scholar 

  • 104.

    Falster, D. S. & Westoby, M. Alternative height strategies among 45 dicot rain forest species from tropical Queensland, Australia. J. Ecol. 93, 521–535 (2005).

    Article 

    Google Scholar 

  • 105.

    Falster, D. S. & Westoby, M. Tradeoffs between height growth rate, stem persistence and maximum height among plant species in a post-fire succession. Oikos 111, 57–66 (2005).

    Article 

    Google Scholar 

  • 106.

    Farrell, C., Mitchell, R. E., Szota, C., Rayner, J. P. & Williams, N. S. G. Green roofs for hot and dry climates: Interacting effects of plant water use, succulence and substrate. Ecol. Eng. 49, 270–276 (2012).

    Article 

    Google Scholar 

  • 107.

    Farrell, C., Szota, C., Williams, N. S. G. & Arndt, S. K. High water users can be drought tolerant: using physiological traits for green roof plant selection. Plant Soil 372, 177–193 (2013).

    CAS 
    Article 

    Google Scholar 

  • 108.

    Farrell, C., Szota, C. & Arndt, S. K. Does the turgor loss point characterize drought response in dryland plants? Plant Cell Envrion. 40, 1500–1511 (2017).

    CAS 
    Article 

    Google Scholar 

  • 109.

    Feller, M. C. Biomass and nutrient distribution in two eucalypt forest ecosystems. Austral Ecol. 5, 309–333 (1980).

    Article 

    Google Scholar 

  • 110.

    Firn, J. et al. Leaf nutrients, not specific leaf area, are consistent indicators of elevated nutrient inputs. Nature Ecol. Evo. 3, 400–406 (2019).

    Article 

    Google Scholar 

  • 111.

    Flynn, J. H. & Holder, C. D. A guide to useful woods of the world. (Forest Products Society, 2001).

  • 112.

    Fonseca, C. R., Overton, J. M. C., Collins, B. & Westoby, M. Shifts in trait-combinations along rainfall and phosphorus gradients. J. Ecol. 88, 964–977 (2000).

    Article 

    Google Scholar 

  • 113.

    McDonald, P. G., Fonseca, C. R., Overton, J. M. C. & Westoby, M. Leaf-size divergence along rainfall and soil-nutrient gradients: is the method of size reduction common among clades? Funct. Ecol. 17, 50–57 (2003).

    Article 

    Google Scholar 

  • 114.

    Forster, P. I. A taxonomic revision of Alyxia (Apocynaceae) in Australia. Aust. Syst. Bot. 5, 547–580 (1992).

    Article 

    Google Scholar 

  • 115.

    Forster, P. I. New names and combinations in Marsdenia (Asclepiadaceae: Marsdenieae) from Asia and Malesia (excluding Papusia). Aust. Syst. Bot. 8, 691–701 (1995).

    Article 

    Google Scholar 

  • 116.

    French, B. J., Prior, L. D., Williamson, G. J. & Bowman, D. M. J. S. Cause and effects of a megafire in sedge-heathland in the Tasmanian temperate wilderness. Aust. J. Bot. 64, 513–525 (2016).

    Article 

    Google Scholar 

  • 117.

    Froend, R. H. & Drake, P. L. Defining phreatophyte response to reduced water availability: preliminary investigations on the use of xylem cavitation vulnerability in Banksia woodland species. Aust. J. Bot. 54, 173–179 (2006).

    Article 

    Google Scholar 

  • 118.

    Funk, J. L., Standish, R. J., Stock, W. D. & Valladares, F. Plant functional traits of dominant native and invasive species in mediterranean-climate ecosystems. Ecology 97, 75–83 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 119.

    Gallagher, R. V. et al. Invasiveness in introduced Australian acacias: The role of species traits and genome size. Divers. Distrib. 17, 884–897 (2011).

    Article 

    Google Scholar 

  • 120.

    Gallagher, R. V. & Leishman, M. R. A global analysis of trait variation and evolution in climbing plants. J. Biogeogr. 39, 1757–1771 (2012).

    Article 

    Google Scholar 

  • 121.

    Gardiner, R., Shoo, L. P. & Dwyer John. M. Look to seedling heights, rather than functional traits, to explain survival during extreme heat stress in the early stages of subtropical rainforest restoration. J. Appl. Ecol. 56, 2687–2697 (2019).

    Article 

    Google Scholar 

  • 122.

    Geange, S. R. et al. Phenotypic plasticity and water availability: responses of alpine herb species along an elevation gradient. Clim. Change Responses 4, 1–12 (2017).

    Article 

    Google Scholar 

  • 123.

    Geange, S. R., Holloway-Phillips, M.-M., Briceno, V. F. & Nicotra, A. B. Aciphylla glacialis mortality, growth and frost resistance: a field warming experiment. Aust. J. Bot. 67, 599–609 (2020).

    Article 

    Google Scholar 

  • 124.

    Ghannoum, O. et al. Exposure to preindustrial, current and future atmospheric CO2 and temperature differentially affects growth and photosynthesis in Eucalyptus. Glob. Chang. Biol. 16, 303–319 (2010).

    ADS 
    Article 

    Google Scholar 

  • 125.

    Gleason, S. M., Butler, D. W., Zieminska, K., Waryszak, P. & Westoby, M. Stem xylem conductivity is key to plant water balance across Australian angiosperm species. Funct. Ecol. 26, 343–352 (2012).

    Article 

    Google Scholar 

  • 126.

    Gleason, S. M., Butler, D. W. & Waryszak, P. Shifts in leaf and stem hydraulic traits across aridity gradients in eastern Australia. Int. J. Plant Sci. 174, 1292–1301 (2013).

    Article 

    Google Scholar 

  • 127.

    Gleason, S. M., Blackman, C. J., Cook, A. M., Laws, C. A. & Westoby, M. Whole-plant capacitance, embolism resistance and slow transpiration rates all contribute to longer desiccation times in woody angiosperms from arid and wet habitats. Tree Physiol. 34, 275–284 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 128.

    Gleason, S. M. et al. Vessel scaling in evergreen angiosperm leaves conforms with Murray’s law and area-filling assumptions: implications for plant size, leaf size and cold tolerance. New Phytol. 218, 1360–1370 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 129.

    Goble-Garratt, E., Bell, D. & Loneragan, W. Floristic and leaf structure patterns along a shallow elevational gradient. Aust. J. Bot. 29, 329–347 (1981).

    Article 

    Google Scholar 

  • 130.

    Gosper, C. R. Fruit characteristics of invasive bitou bush, Chrysanthemoides monilifera (Asteraceae), and a comparison with co-occurring native plant species. Aust. J. Bot. 52, 223–230 (2004).

    Article 

    Google Scholar 

  • 131.

    Gosper, C. R., Yates, C. J. & Prober, S. M. Changes in plant species and functional composition with time since fire in two mediterranean climate plant communities. J. Veg. Sci. 23, 1071–1081 (2012).

    Article 

    Google Scholar 

  • 132.

    Gosper, C. R., Prober, S. M. & Yates, C. J. Estimating fire interval bounds using vital attributes: implications of uncertainty and among-population variability. Ecol. Appl. 23, 924–935 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 133.

    Gosper, C. R., Yates, C. J. & Prober, S. M. Floristic diversity in fire-sensitive eucalypt woodlands shows a “U”-shaped relationship with time since fire. J. Appl. Ecol. 50, 1187–1196 (2013).

    Article 

    Google Scholar 

  • 134.

    Gosper, C. R. et al. A conceptual model of vegetation dynamics for the unique obligate-seeder eucalypt woodlands of south-western Australia. Austral Ecol. 43, 681–695 (2018).

    Article 

    Google Scholar 

  • 135.

    Clayton, W. D., Vorontsova, M. S., Harman, K. T. & Williamson, H. GrassBase – The online world grass flora. http://www.kew.org/data/grasses-db.html (2006).

  • 136.

    Gray, E. F. et al. Leaf:wood allometry and functional traits together explain substantial growth rate variation in rainforest trees. AoB Plants 11, 1–11 (2019).

    Article 

    Google Scholar 

  • 137.

    Groom, P. K. & Lamont, B. B. Reproductive ecology of non-sprouting and re-sprouting Hakea species (Proteaceae) in southwestern Australia. In Gondwanan heritage (eds. S.D. Hopper M. Harvey, J. C. & George, A. S.) (Surrey Beatty, Chipping Norton, 1996).

  • 138.

    Groom, P. K. & Lamont, B. B. Fruit-seed relations in Hakea: serotinous species invest more dry matter in predispersal seed protection. Austral Ecol. 22, 352–355 (1997).

    Article 

    Google Scholar 

  • 139.

    Groom, P. K. & Lamont, B. B. Phosphorus accumulation in Proteaceae seeds: A synthesis. Plant Soil 334, 61–72 (2010).

    CAS 
    Article 

    Google Scholar 

  • 140.

    Grootemaat, S., Wright, I. J., van Bodegom, P. M., Cornelissen, J. H. C. & Cornwell, W. K. Burn or rot: leaf traits explain why flammability and decomposability are decoupled across species. Funct. Ecol. 29, 1486–1497 (2015).

    Article 

    Google Scholar 

  • 141.

    Grootemaat, S., Wright, I. J., van Bodegom, P. M., Cornelissen, J. H. C. & Shaw, V. Bark traits, decomposition and flammability of Australian forest trees. Aust. J. Bot. 65, 327 (2017).

    Article 

    Google Scholar 

  • 142.

    Grootemaat, S., Wright, I. J., van Bodegom, P. M. & Cornelissen, J. H. C. Scaling up flammability from individual leaves to fuel beds. Oikos 126, 1428–1438 (2017).

    Article 

    Google Scholar 

  • 143.

    Gross, C. L. The reproductive ecology of Canavalia rosea (Fabaceae) on Anak Krakatau. Indonesia. Aust. J. Bot. 41, 591–599 (1993).

    Article 

    Google Scholar 

  • 144.

    Gross, C. L. A comparison of the sexual systems in the trees from the Australian tropics with other tropical biomes–more monoecy but why? Am. J. Bot. 92, 907–919 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 145.

    Grubb, P. J. & Metcalfe, D. J. Adaptation and inertia in the Australian tropical lowland rain-forest flora: Contradictory trends in intergeneric and intrageneric comparisons of seed size in relation to light demand. Funct. Ecol. 10, 512–520 (1996).

    Article 

    Google Scholar 

  • 146.

    Grubb, P. J. et al. Monocot leaves are eaten less than dicot leaves in tropical lowland rain forests: Correlations with toughness and leaf presentation. Ann. Bot. 101, 1379–1389 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 147.

    Guilherme Pereira, C., Clode, P. L., Oliveira, R. S. & Lambers, H. Eudicots from severely phosphorus-impoverished environments preferentially allocate phosphorus to their mesophyll. New Phytol. 218, 959–973 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 148.

    Guilherme Pereira, C. et al. Trait convergence in photosynthetic nutrient-use efficiency along a 2-million year dune chronosequence in a global biodiversity hotspot.  J. Ecol. 107, 2006–2023 (2019).

    CAS 
    Article 

    Google Scholar 

  • 149.

    Hacke, U. G. et al. Water transport in vesselless Angiosperms: Conducting efficiency and cavitation safety. Int. J. Plant Sci. 168, 1113–1126 (2007).

    Article 

    Google Scholar 

  • 150.

    Hall, T. J. The nitrogen and phosphorus concentrations of some pasture species in the Dichanthium-Eulalia Grasslands of North-West Queensland. Rangeland J. 3, 67–73 (1981).

    Article 

    Google Scholar 

  • 151.

    Harrison, M. T., Edwards, E. J., Farquhar, G. D., Nicotra, A. B. & Evans, J. R. Nitrogen in cell walls of sclerophyllous leaves accounts for little of the variation in photosynthetic nitrogen-use efficiency. Plant Cell Envrion. 32, 259–270 (2009).

    CAS 
    Article 

    Google Scholar 

  • 152.

    Hassiotou, F., Evans, J. R., Ludwig, M. & Veneklaas, E. J. Stomatal crypts may facilitate diffusion of CO2 to adaxial mesophyll cells in thick sclerophylls. Plant Cell Envrion. 32, 1596–1611 (2009).

    CAS 
    Article 

    Google Scholar 

  • 153.

    Hatch, A. B. Influence of plant litter on the Jarrah forest soils of the Dwellingup region. West. Aust. For. Timber Bur. Leaflet 18 (1955).

  • 154.

    Hayes, P., Turner, B. L., Lambers, H. & Laliberte, E. Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient-acquisition strategies along a 2-million-year dune chronosequence. J. Ecol. 102, 396–410 (2013).

    Article 
    CAS 

    Google Scholar 

  • 155.

    Hayes, P. E., Clode, P. L., Oliveira, R. S. & Lambers, H. Proteaceae from phosphorus-impoverished habitats preferentially allocate phosphorus to photosynthetic cells: an adaptation improving phosphorus-use efficiency. Plant Cell Envrion. 41, 605–619 (2018).

    CAS 
    Article 

    Google Scholar 

  • 156.

    Henery, M. L. & Westoby, M. Seed mass and seed nutrient content as predictors of seed output variation between species. Oikos 92, 479–490 (2001).

    Article 

    Google Scholar 

  • 157.

    Hocking, P. J. The nutrition of fruits of two proteaceous shrubs, Grevillea wilsonii and Hakea undulata, from south-western Australia. Aust. J. Bot. 30, 219–230 (1982).

    CAS 
    Article 

    Google Scholar 

  • 158.

    Hocking, P. J. Mineral nutrient composition of leaves and fruits of selected species of Grevillea from southwestern Australia, with special reference to Grevillea leucopteris Meissn. Aust. J. Bot. 34, 155–164 (1986).

    CAS 
    Article 

    Google Scholar 

  • 159.

    Hong, L. T. et al. Plant resources of south east Asia: Timber trees. World biodiversity Database CD rom series (Springer-Verlag Berlin; Heidelberg GmbH; Co. KG, 1999).

  • 160.

    Hopmans, P., Stewart, H. T. L. & Flinn, D. W. Impacts of harvesting on nutrients in a eucalypt ecosystem in southeastern Australia. For. Ecol. Manage. 59, 29–51 (1993).

    Article 

    Google Scholar 

  • 161.

    Huang, G., Rymer, P. D., Duan, H., Smith, R. A. & Tissue, D. T. Elevated temperature is more effective than elevated CO2 in exposing genotypic variation in Telopea speciosissima growth plasticity: implications for woody plant populations under climate change. Glob. Chang. Biol. 21, 3800–3813 (2015).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 162.

    Hyland, B. P. M., Whiffin, T., Christophel, D., Gray, B. & Elick, R. W. Australian tropical rain forest plants trees, shrubs and vines. (CSIRO Publishing, 2003).

  • 163.

    World Agroforestry Centre (ICRAF). The wood density database. http://www.worldagroforestry.org/output/wood-density-database (2009).

  • 164.

    Ilic, J., Boland, D., McDonald, M., G., D. & Blakemore, P. Woody density phase 1 – State of knowledge. National Carbon Accounting System. Technical Report 18. (Australian Greenhouse Office, Canberra, Australia, 2000).

  • 165.

    Islam, M., Turner, D. W. & Adams, M. A. Phosphorus availability and the growth, mineral composition and nutritive value of ephemeral forbs and associated perennials from the Pilbara, Western Australia. Aust. J. Exp. Agric. 39, 149–159 (1999).

    Article 

    Google Scholar 

  • 166.

    Islam, M. & Adams, M. A. Mineral content and nutritive value of native grasses and the response to added phosphorus in a Pilbara rangeland. Trop. Grassl. 33, 193–200 (1999).

    Google Scholar 

  • 167.

    Jordan, G. J. An investigation of long-distance dispersal based on species native to both Tasmania and New Zealand. Aust. J. Bot. 49, 333–340 (2001).

    Article 

    Google Scholar 

  • 168.

    Jordan, G. J., Weston, P. H., Carpenter, R. J., Dillon, R. A. & Brodribb, T. J. The evolutionary relations of sunken, covered, and encrypted stomata to dry habitats in Proteaceae. Am. J. Bot. 95, 521–530 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 169.

    Jordan, G. J., Carpenter, R. J., Koutoulis, A., Price, A. & Brodribb, T. J. Environmental adaptation in stomatal size independent of the effects of genome size. New Phytol. 205, 608–617 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 170.

    Jordan, G. J. et al. Links between environment and stomatal size through evolutionary time in Proteaceae. Proc. R. Soc. Lond. B Biol. Sci. 287, 20192876 (2020).

    CAS 

    Google Scholar 

  • 171.

    Jurado, E. Diaspore weight, dispersal, growth form and perenniality of central Australian plants. J. Ecol. 79, 811–828 (1991).

    Article 

    Google Scholar 

  • 172.

    Jurado, E. & Westoby, M. Germination biology of selected central Australian plants. Austral Ecol. 17, 341–348 (1992).

    Article 

    Google Scholar 

  • 173.

    Kanowski, J. Ecological determinants of the distribution and abundance of the folivorous marsupials endemic to the rainforests of the Atherton uplands, north Queensland. (James Cook University, Townsville, 1999).

  • 174.

    Keighery, G. Taxonomy of the Calytrix ecalycata complex (Myrtaceae). Nuytsia 15, 261–268 (2004).

    Google Scholar 

  • 175.

    Royal Botanic Gardens Kew. Seed Information Database (SID) and Seed Bank Database. http://data.kew.org/sid/ (2019).

  • 176.

    Royal Botanic Gardens Kew. Seed protein data from Seed Information Database (SID) and Seed Bank Database. http://data.kew.org/sid/ (2019).

  • 177.

    Royal Botanic Gardens Kew. Oil content data from Seed Information Database (SID) and Seed Bank Database. http://data.kew.org/sid/ (2019).

  • 178.

    Royal Botanic Gardens Kew. Seed dispersal data from the Seed Information Database (SID) and Seed Bank Database. http://data.kew.org/sid/ (2019).

  • 179.

    Royal Botanic Gardens Kew. Germination data from the Seed Information Database (SID) and Seed Bank Database. http://data.kew.org/sid/ (2019).

  • 180.

    Knox, K. J. E. & Clarke, P. J. Fire severity and nutrient availability do not constrain resprouting in forest shrubs. Plant Ecol. 212, 1967–1978 (2011).

    Article 

    Google Scholar 

  • 181.

    Körner, C. & Cochrane, P. M. Stomatal responses and water relations of Eucalyptus pauciflora in summer along an elevational gradient. Oecologia 66, 443–455 (1985).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 182.

    Kooyman, R., Rossetto, M., Cornwell, W. & Westoby, M. Phylogenetic tests of community assembly across regional to continental scales in tropical and subtropical rain forests. Glob. Ecol. Biog. 20, 707–716 (2011).

    Article 

    Google Scholar 

  • 183.

    Kotowska, M. M., Wright, I. J. & Westoby, M. Parenchyma abundance in wood of evergreen trees varies independently of nutrients. Front. Plant. Sci. 11, art86 (2020).

    Article 

    Google Scholar 

  • 184.

    Kuo, J., Hocking, P. & Pate, J. Nutrient reserves in seeds of selected Proteaceous species from South-western Australia. Aust. J. Bot. 30, 231–249 (1982).

    CAS 
    Article 

    Google Scholar 

  • 185.

    Laliberté, E. et al. Experimental assessment of nutrient limitation along a 2-million-year dune chronosequence in the south-western Australia biodiversity hotspot. J. Ecol. 100, 631–642 (2012).

    Article 
    CAS 

    Google Scholar 

  • 186.

    Lambert, M. J. Sulphur relationships of native and exotic tree species. (Macquarie University, Sydney, 1979).

  • 187.

    Lamont, B. B., Groom, P. K. & Cowling, R. M. High leaf mass per area of related species assemblages may reflect low rainfall and carbon isotope discrimination rather than low phosphorus and nitrogen concentrations. Funct. Ecol. 16, 403–412 (2002).

    Article 

    Google Scholar 

  • 188.

    Lamont, B. B., Groom, P. K., Williams, M. & He, T. LMA, density and thickness: recognizing different leaf shapes and correcting for their nonlaminarity. New Phytol. 207, 942–947 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 189.

    Landsberg, J. Dieback of rural eucalypts: response of foliar dietary quality and herbivory to defoliation. Austral Ecol. 15, 89–96 (1990).

    Article 

    Google Scholar 

  • 190.

    Landsberg, J. & Gillieson, D. S. Regional and local variation in insect herbivory, vegetation and soils of eucalypt associations in contrasted landscape positions along a climatic gradient. Aust. J. Ecol. 20, 299–315 (1995).

    Article 

    Google Scholar 

  • 191.

    Lawes, M. J., Adie, H., Russell-Smith, J., Murphy, B. & Midgley, J. J. How do small savanna trees avoid stem mortality by fire? The roles of stem diameter, height and bark thickness. Ecosphere 2, 1–13 (2011).

    Article 

    Google Scholar 

  • 192.

    Lawes, M. J., Richards, A., Dathe, J. & Midgley, J. J. Bark thickness determines fire resistance of selected tree species from fire-prone tropical savanna in north Australia. Plant Ecol. 212, 2057–2069 (2011).

    Article 

    Google Scholar 

  • 193.

    Lawes, M. J., Midgley, J. J. & Clarke, P. J. Costs and benefits of relative bark thickness in relation to fire damage: A savanna/forest contrast. J. Ecol. 101, 517–524 (2012).

    Article 

    Google Scholar 

  • 194.

    Lawson, J. R., Fryirs, K. A. & Leishman, M. R. Data from: Hydrological conditions explain wood density in riparian plants of south-eastern Australia. Dryad Digital Repository https://doi.org/10.5061/dryad.72h45 (2015).

  • 195.

    Laxton, E. Relationship between leaf traits, insect communities and resource availability. (Macquarie University, 2005).

  • 196.

    Lee, M. R. et al. Good neighbors aplenty: fungal endophytes rarely exhibit competitive exclusion patterns across a span of woody habitats. Ecology 100, e02790 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 197.

    Leigh, A. & Nicotra, A. B. Sexual dimorphism in reproductive allocation and water use efficiency in Maireana pyramidata (Chenopodiaceae), a dioecious, semi-arid shrub. Aust. J. Bot. 51, 509–514 (2003).

    Article 

    Google Scholar 

  • 198.

    Leigh, A., Cosgrove, M. J. & Nicotra, A. B. Reproductive allocation in a gender dimorphic shrub: anomalous female investment in Gynatrix pulchella? J. Ecol. 94, 1261–1271 (2006).

    Article 

    Google Scholar 

  • 199.

    Leishman, M. R. & Westoby, M. Classifying plants into groups on the basis of associations of individual traits–Evidence from Australian semi-arid woodlands. J. Ecol. 80, 417–424 (1992).

    Article 

    Google Scholar 

  • 200.

    Leishman, M. R., Westoby, M. & Jurado, E. Correlates of seed size variation: A comparison among five temperate floras. J. Ecol. 83, 517–529 (1995).

    Article 

    Google Scholar 

  • 201.

    Leishman, M. R., Haslehurst, T., Ares, A. & Baruch, Z. Leaf trait relationships of native and invasive plants: community- and global-scale comparisons. New Phytol. 176, 635–643 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 202.

    Lemmens, R. H. M. J. & Soerjanegara, I. Prosea, Volume 5/1: Timber Trees – Major Commercial Timbers. (Pudoc/Prosea, 1993).

  • 203.

    Lenz, T. I., Wright, I. J. & Westoby, M. Interrelations among pressure-volume curve traits across species and water availability gradients. Physiol. Plant. 127, 423–433 (2006).

    CAS 
    Article 

    Google Scholar 

  • 204.

    Leuning, R., Cromer, R. N. & Rance, S. Spatial distributions of foliar nitrogen and phosphorus in crowns of Eucalyptus grandis. Oecologia 88, 504–510 (1991).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 205.

    Lewis, J. D. et al. Rising temperature may negate the stimulatory effect of rising CO2 on growth and physiology of Wollemi pine (Wollemia nobilis). Funct. Plant. Bio. 42, 836–850 (2015).

    CAS 
    Article 

    Google Scholar 

  • 206.

    Lim, F. K. S., Pollock, L. J. & Vesk, P. A. The role of plant functional traits in shrub distribution around alpine frost hollows. J. Veg. Sci. 28, 585–594 (2017).

    Article 

    Google Scholar 

  • 207.

    Lord, J. et al. Larger seeds in tropical floras: Consistent patterns independent of growth form and dispersal mode. J. Biogeogr. 24, 205–211 (1997).

    Article 

    Google Scholar 

  • 208.

    Lusk, C. H., Onoda, Y., Kooyman, R. & Gutiurrez-Giron, A. Reconciling species-level vs plastic responses of evergreen leaf structure to light gradients: shade leaves punch above their weight. New Phytol. 186, 429–438 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 209.

    Lusk, C. H., Kelly, J. W. G. & Gleason, S. M. Light requirements of Australian tropical vs. cool-temperate rainforest tree species show different relationships with seedling growth and functional traits. Ann. Bot. 111, 479–488 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 210.

    Lusk, C. H., Sendall, K. M. & Clarke, P. J. Seedling growth rates and light requirements of subtropical rainforest trees associated with basaltic and rhyolitic soils. Aust. J. Bot. 62, 48–55 (2014).

    Article 

    Google Scholar 

  • 211.

    Macinnis-Ng, C., McClenahan, K. & Eamus, D. Convergence in hydraulic architecture, water relations and primary productivity amongst habitats and across seasons in Sydney. Funct. Plant. Bio. 31, 429–439 (2004).

    Article 

    Google Scholar 

  • 212.

    Macinnis-Ng, C. M. O., Zeppel, M. J. B., Palmer, A. R. & Eamus, D. Seasonal variations in tree water use and physiology correlate with soil salinity and soil water content in remnant woodlands on saline soils. J. Arid Environ. 129, 102–110 (2016).

    ADS 
    Article 

    Google Scholar 

  • 213.

    Marsh, N. R. & Adams, M. A. Decline of Eucalyptus tereticornis near Bairnsdale, Victoria: insect herbivory and nitrogen fractions in sap and foliage. Aust. J. Bot. 43, 39–49 (1995).

    Article 

    Google Scholar 

  • 214.

    Maslin, B. WATTLE, Interactive Identification of Australian Acacia. Version 2. (Australian Biological Resources Study, Canberra, 2014).

  • 215.

    McCarthy, J. K., Dwyer, J. M. & Mokany, K. A regional-scale assessment of using metabolic scaling theory to predict ecosystem properties. Proc. R. Soc. Lond. B Biol. Sci. 286, 20192221 (2019).

    Google Scholar 

  • 216.

    McClenahan, K., Macinnis-Ng, C. & Eamus, D. Hydraulic architecture and water relations of several species at diverse sites around Sydney. Aust. J. Bot. 52, 509–518 (2004).

    Article 

    Google Scholar 

  • 217.

    McGlone, M. S., Richardson, S. J. & Jordan, G. J. Comparative biogeography of New Zealand trees: Species richness, height, leaf traits and range sizes. New Zealand J. Ecol. 34, 137–151 (2010).

    Google Scholar 

  • 218.

    McGlone, M. S., Richardson, S. J., Jordan, G. J. & Perry, G. L. W. Is there a “suboptimal” woody species height? A response to Scheffer et al. Trends in Ecol. Evo. 30, 4–5 (2015).

    Article 

    Google Scholar 

  • 219.

    McIntyre, S., Lavorel, S. & Tremont, R. M. Plant life-history attributes: Their relationship to disturbance response in herbaceous vegetation. The J. Ecol. 83, 31–44 (1995).

    Article 

    Google Scholar 

  • 220.

    Meers, T. Role of plant functional traits in determining the response of vegetation to land use change on the Delatite Peninsula, Victoria. (University of Melbourne, 2007).

  • 221.

    Meers, T. L., Bell, T. L., Enright, N. J. & Kasel, S. Role of plant functional traits in determining vegetation composition of abandoned grazing land in north-eastern Victoria, Australia. J. Veg. Sci. 19, 515–524 (2008).

    Article 

    Google Scholar 

  • 222.

    Meers, T. L., Bell, T. L., Enright, N. J. & Kasel, S. Do generalisations of global trade-offs in plant design apply to an Australian sclerophyllous flora? Aust. J. Bot. 58, 257–270 (2010).

    Article 

    Google Scholar 

  • 223.

    Meers, T. L., Kasel, S., Bell, T. L. & Enright, N. J. Conversion of native forest to exotic Pinus radiata plantation: response of understorey plant composition using a plant functional trait approach. For. Ecol. Manage. 259, 399–409 (2010).

    Article 

    Google Scholar 

  • 224.

    Meier, E. The wood database. http://www.wood-database.com/ (2007).

  • 225.

    Laliberté, E. et al. Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecol. Lett. 13, 76–86 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 226.

    Milberg, P. & Lamont, B. B. Seed/cotyledon size and nutrient content play a major role in early performance of species on nutrient-poor soils. New Phytol. 137, 665–672 (1997).

    Article 

    Google Scholar 

  • 227.

    Milberg, P., Pérez-Fernández, M. A. & Lamont, B. B. Seedling growth response to added nutrients depends on seed size in three woody genera. J. Ecol. 86, 624–632 (1998).

    Article 

    Google Scholar 

  • 228.

    Mokany, K. & Ash, J. Are traits measured on pot grown plants representative of those in natural communities? J. Veg. Sci. 19, 119–126 (2008).

    Article 

    Google Scholar 

  • 229.

    Mokany, K., Thomson, J. J., Lynch, A. J. J., Jordan, G. J. & Ferrier, S. Linking changes in community composition and function under climate change. Ecol. Appl. 25, 2132–2141 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 230.

    Moles, A. T. & Westoby, M. Do small leaves expand faster than large leaves, and do shorter expansion times reduce herbivore damage? Oikos 90, 517–524 (2000).

    Article 

    Google Scholar 

  • 231.

    Moles, A. T., Warton, D. I. & Westoby, M. Seed size and survival in the soil in arid Australia. Austral Ecol. 28, 575–585 (2003).

    Article 

    Google Scholar 

  • 232.

    Moles, A. T. et al. Putting plant resistance traits on the map: A test of the idea that plants are better defended at lower latitudes. New Phytol. 191, 777–788 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 233.

    Mooney, H. A., Ferrar, P. J. & Slatyer, R. O. Photosynthetic capacity and carbon allocation patterns in diverse growth forms of Eucalyptus. Oecologia 36, 103–111 (1978).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 234.

    Moore, A. W., Russell, J. S. & Coaldrake, J. E. Dry matter and nutrient content of a subtropical semiarid forest of Acacia harpophylla F. Muell. (Brigalow). Aust. J. Bot. 15, 11–24 (1967).

    Article 

    Google Scholar 

  • 235.

    Moore, N. A., Camac, J. S. & Morgan, J. W. Effects of drought and fire on resprouting capacity of 52 temperate Australian perennial native grasses. New Phytol. 221, 1424–1433 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 236.

    Morgan, H. Root system architecture, water use and rainfall responses of perennial species. (Macquarie University, 2005).

  • 237.

    Muir, A. M., Vesk, P. A. & Hepworth, G. Reproductive trajectories over decadal time-spans after fire for eight obligate-seeder shrub species in south-eastern Australia. Aust. J. Bot. 62, 369–379 (2014).

    Article 

    Google Scholar 

  • 238.

    Munroe, S. E. M. et al. The photosynthetic pathways of plant species surveyed in Australia’s national terrestrial monitoring network. Scientific Data 8, 97 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 239.

    National Herbarium of NSW. Trait measurements for NSW rainforest species from PLantNET. http://plantnet.rbgsyd.nsw.gov.au/ (2016).

  • 240.

    Nicholson, A., Prior, L. D., Perry, G. L. W. & Bowman, D. M. J. S. High post-fire mortality of resprouting woody plants in Tasmanian Mediterranean-type vegetation. Int. J. Wildland Fire 26, 532–537 (2017).

    Article 

    Google Scholar 

  • 241.

    Nicolle, D. A classification and census of regenerative strategies in the eucalypts (Angophora, Corymbia and Eucalyptus – Myrtaceae), with special reference to the obligate seeders. Aust. J. Bot. 54, 391–407 (2006).

    Article 

    Google Scholar 

  • 242.

    Nicolle, D. Classification of the Eucalypts (Angophora, Corymbia and Eucalyptus) Version 3. (Currency Creek Arboretum Eucalypt Research, 2018).

  • 243.

    Niinemets, U., Wright, I. J. & Evans, J. R. Leaf mesophyll diffusion conductance in 35 Australian sclerophylls covering a broad range of foliage structural and physiological variation. J. Exp. Bot. 60, 2433–2449 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 244.

    Kenny, B., Orscheg, C., Tasker, E., Gill, M. A. & Bradstock, R. NSW Flora Fire Response Database, v2.1. (NSW Department of Planning Industry; Environment, 2014).

  • 245.

    Northern Territory Herbarium. Flora of the Darwin Region Online. http://www.lrm.nt.gov.au/plants-and-animals/herbarium/darwin_flora_online (2014).

  • 246.

    Onoda, Y., Richards, A. E. & Westoby, M. The relationship between stem biomechanics and wood density is modified by rainfall in 32 Australian woody plant species. New Phytol. 185, 493–501 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 247.

    O’Reilly-Nugent, A. et al. Measuring competitive impact: Joint‐species modelling of invaded plant communities. J. Ecol. 108, 449–459 (2018).

    Article 

    Google Scholar 

  • 248.

    Osborne, C. P. et al. A global database of C4 photosynthesis in grasses. New Phytol. 204, 441–446 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 249.

    Paczkowska G. & Chapman, A.R. The Western Australian flora: A descriptive catalogue. 652 (CALM, Kings Park; Botanic Gardens; Wildflower Society of Western Australia, 2000).

  • 250.

    Palma, E. et al. Functional trait changes in the floras of 11 cities across the globe in response to urbanization. Ecography 40, 875–886 (2017).

    Article 

    Google Scholar 

  • 251.

    Pate, J. S., Rasins, E., Rullo, J. & Kuo, J. Seed nutrient reserves of Proteaceae with special reference to protein bodies and their inclusions. Ann. Bot. 57, 747–770 (1986).

    CAS 
    Article 

    Google Scholar 

  • 252.

    Pearcy, R. W. Photosynthetic gas exchange responses of Australian tropical forest trees in canopy, gap and understory micro-environments. Funct. Ecol. 1, 169–178 (1987).

    Article 

    Google Scholar 

  • 253.

    Peeters, P. J. Correlations between leaf structural traits and the densities of herbivorous insect guilds. Biol. J. Linn. Soc. 77, 43–65 (2002).

    Article 

    Google Scholar 

  • 254.

    Pekin, B. K., Wittkuhn, R. S., Boer, M. M., Macfarlane, C. & Grierson, P. F. Plant functional traits along environmental gradients in seasonally dry and fire-prone ecosystem. J. Veg. Sci. 22, 1009–1020 (2011).

    Article 

    Google Scholar 

  • 255.

    Pickering, C., Green, K., Barros, A. A. & Venn, S. A resurvey of late-lying snowpatches reveals changes in both species and functional composition across snowmelt zones. Alp. Bot. 124, 93–103 (2014).

    Article 

    Google Scholar 

  • 256.

    Pickup, M., Westoby, M. & Basden, A. Dry mass costs of deploying leaf area in relation to leaf size. Funct. Ecol. 19, 88–97 (2005).

    Article 

    Google Scholar 

  • 257.

    Pollock, L. J., Morris, W. K. & Vesk, P. A. The role of functional traits in species distributions revealed through a hierarchical model. Ecography 35, 716–725 (2011).

    Article 

    Google Scholar 

  • 258.

    Pollock, L. J. et al. Combining functional traits, the environment and multiple surveys to understand semi-arid tree distributions. J. Veg. Sci. 29, 967–977 (2018).

    Article 

    Google Scholar 

  • 259.

    Prior, L. D., Eamus, D. & Bowman, D. M. J. S. Leaf attributes in the seasonally dry tropics: A comparison of four habitats in northern Australia. Funct. Ecol. 17, 504–515 (2003).

    Article 

    Google Scholar 

  • 260.

    Prior, L. D., Bowman, D. M. J. S. & Eamus, D. Seasonal differences in leaf attributes in Australian tropical tree species: family and habitat comparisons. Funct. Ecol. 18, 707–718 (2004).

    Article 

    Google Scholar 

  • 261.

    Prior, L. D., Williamson, G. J. & Bowman, D. M. J. S. Impact of high-severity fire in a Tasmainian dry eucalypt forest. Aust. J. Bot. 64, 193–205 (2016).

    Article 

    Google Scholar 

  • 262.

    Oxford Forestry Institute. Prospect: The wood database. http://dps.plants.ox.ac.uk/ofi/prospect/index.htm (2009).

  • 263.

    Royal Botanic Gardens Kew. Seed Information Database (SID). http://data.kew.org/sid/ (2014).

  • 264.

    Royal Botanic Gardens Sydney. PLantNET. http://plantnet.rbgsyd.nsw.gov.au/search/simple.htm (2014).

  • 265.

    Royal Botanic Gardens Sydney. PLantNET: NSW flora online. http://plantnet.rbgsyd.nsw.gov.au/ (2014).

  • 266.

    Read, J. & Sanson, G. D. Characterizing sclerophylly: the mechanical properties of a diverse range of leaf types. New Phytol. 160, 81–99 (2003).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 267.

    Read, J., Sanson, G. D. & Lamont, B. B. Leaf mechanical properties in sclerophyll woodland and shrubland on contrasting soils. Plant Soil 276, 95–113 (2005).

    CAS 
    Article 

    Google Scholar 

  • 268.

    Reid, J. B., Hill, R., Brown, M. & and M. Hovenden. Vegetation of Tasmania. 456 (1999).

  • 269.

    Reynolds, V. A., Anderegg, L. D. L., Loy, X., HilleRisLambers, J. & Mayfield, M. M. Unexpected drought resistance strategies in seedlings of four Brachychiton species. Tree Physiol. 38, 664–677 (2017).

    Article 
    CAS 

    Google Scholar 

  • 270.

    Rice, K. J., Matzner, S. L., Byer, W. & Brown, J. R. Patterns of tree dieback in Queensland, Australia: The importance of drought stress and the role of resistance to cavitation. Oecologia 139, 190–198 (2004).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 271.

    Richards, A. E. et al. Physiological profiles of restricted endemic plants and their widespread congenors in the North Queensland wet tropics, Australia. Biol. Conserv. 111, 41–52 (2003).

    Article 

    Google Scholar 

  • 272.

    Roderick, M. L., Berry, S. L. & Noble, I. R. The relationship between leaf composition and morphology at elevated CO2 concentrations. New Phytol. 143, 63–72 (1999).

    Article 

    Google Scholar 

  • 273.

    Roderick, M. L. & Cochrane, M. J. On the conservative nature of the leaf mass-area relationship. Ann. Bot. 89, 537–542 (2002).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 274.

    Rosell, J. A., Gleason, S., Mendez-Alonzo, R., Chang, Y. & Westoby, M. Bark functional ecology: Evidence for tradeoffs, functional coordination, and environment producing bark diversity. New Phytol. 201, 486–497 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 275.

    Rye, B. L. A revision of south-western Australian species of Micromyrtus (Myrtaceae) with five antisepalous ribs on the hypanthium. Nuytsia 15, 101–122 (2002).

    Google Scholar 

  • 276.

    Rye, B. L. A partial revision of the south-western Australian species of Micromyrtus (Myrtaceae: Chamelaucieae). Nuytsia 16, 117–147 (2006).

    Google Scholar 

  • 277.

    Rye, B. L. Reinstatement of the Western Australian genus Oxymyrrhine (Myrtaceae: Chamelaucieae) with three new species. Nuytsia 19, 149–165 (2009).

    Google Scholar 

  • 278.

    Rye, B. L. A revision of the Micromyrtus racemosa complex (Myrtaceae: Chamelaucieae) of south-western Australia. Nuytsia 20, 37–56 (2010).

    Google Scholar 

  • 279.

    Rye, B. L., Wilson, P. G. & Keighery, G. J. A revision of the species of Hypocalymma (Myrtaceae: Chamelaucieae) with smooth or colliculate seeds. Nuytsia 23, 283–312 (2013).

    Google Scholar 

  • 280.

    Rye, B. L. An update to the taxonomy of some western Australian genera of Myrtaceae tribe Chamelaucieae. 1. Calytrix. Nuytsia 23, 483–501 (2013).

    Google Scholar 

  • 281.

    Rye, B. L. A revision of the south-western Australian genus Babingtonia (Myrtaceae: Chamelaucieae). Nuytsia 25, 219–250 (2015).

    Google Scholar 

  • 282.

    Jessop, J. P. & Toelken, H. R. Flora of South Australia, 4th edition, 4 vols. (Government Printer, Adelaide, 1986).

  • 283.

    Sams, M. A. et al. Landscape context explains changes in the functional diversity of regenerating forests better than climate or species richness. Glob. Ecol. Biog. 26, 1165–1176 (2017).

    Article 

    Google Scholar 

  • 284.

    Sauquet, H. et al. The ancestral flower of angiosperms and its early diversification. Nat. Commun. 8, 1–10 (2017).

    Article 
    CAS 

    Google Scholar 

  • 285.

    Schmidt, S. & Stewart, G. R. Waterlogging and fire impacts on nitrogen availability and utilization in a subtropical wet heathland (wallum). Plant Cell Envrion. 20, 1231–1241 (1997).

    Article 

    Google Scholar 

  • 286.

    Schmidt, S. & Stewart, G. R. d15N values of tropical savanna and monsoon forest species reflect root specialisations and soil nitrogen status. Oecologia 134, 569–577 (2003).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 287.

    Schmidt, S., Lamble, R. E., Fensham, R. J. & Siddique, I. Effect of woody vegetation clearing on nutrient and carbon relations of semi-arid dystrophic savanna. Plant Soil 331, 79–90 (2009).

    Article 
    CAS 

    Google Scholar 

  • 288.

    Schulze, E., Kelliher, F. M., Körner, C., Lloyd, J. & Leuning, R. Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: A global ecology scaling exercise. Annu. Rev. Ecol. Syst. 25, 629–662 (1994).

    Article 

    Google Scholar 

  • 289.

    Schulze, E.-D. et al. Carbon and nitrogen isotope discrimination and nitrogen nutrition of trees along a rainfall gradient in northern Australia. Aust. J. Plant. Physiol. 25, 413–425 (1998).

    Google Scholar 

  • 290.

    Schulze, E.-D., Turner, N. C., Nicolle, D. & Schumacher, J. Species differences in carbon isotope ratios, specific leaf area and nitrogen concentrations in leaves of Eucalyptus growing in a common garden compared with along an aridity gradient. Physiol. Plant. 127, 434–444 (2006).

    CAS 
    Article 

    Google Scholar 

  • 291.

    Schulze, E.-D., Turner, N. C., Nicolle, D. & Schumacher, J. Leaf and wood carbon isotope ratios, specific leaf areas and wood growth of Eucalyptus species across a rainfall gradient in Australia. Tree Physiol. 26, 479–492 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 292.

    Turner, N. C., Schulze, E.-D., Nicolle, D., Schumacher, J. & Kuhlmann, I. Annual rainfall does not directly determine the carbon isotope ratio of leaves of Eucalyptus species. Physiol. Plant. 132, 440–445 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 293.

    Schulze, E. D. et al. Stable carbon and nitrogen isotope ratios of Eucalyptus and Acacia species along a seasonal rainfall gradient in Western Australia. Trees 28, 1125–1135 (2014).

    CAS 
    Article 

    Google Scholar 

  • 294.

    Scott, A. J. Vegetation recovery and recruitment processes in south-eastern Australian semi-arid old fields. (La Trobe University, 2010).

  • 295.

    Sendall, K. M., Lusk, C. H. & Reich, P. B. Trade-offs in juvenile growth potential vs. shade tolerance among subtropical rain forest trees on soils of contrasting fertility. Funct. Ecol. 30, 845–855 (2015).

    Article 

    Google Scholar 

  • 296.

    Seng, O. D. Specific gravity of Indonesian Woods and its significance for practical use. (FPRDC Forestry Department, Bogor, Indonesia, 1951).

  • 297.

    Sjöström, A. & Gross, C. L. Life-history characters and phylogeny are correlated with extinction risk in the Australian angiosperms. J. Biogeogr. 33, 271–290 (2006).

    Article 

    Google Scholar 

  • 298.

    Smith, B. Community-level Convergence and Community Structure of temperate Nothofagus forests. (University of Otago, Dunedin, New Zealand, 1996).

  • 299.

    Smith, R. A., Lewis, J. D., Ghannoum, O. & Tissue, D. T. Leaf structural responses to pre-industrial, current and elevated atmospheric CO2 and temperature affect leaf function in Eucalyptus sideroxylon. Funct. Plant. Bio. 39, 285–296 (2012).

    CAS 
    Article 

    Google Scholar 

  • 300.

    Soliveres, S., Eldridge, D. J., Hemmings, F. & Maestre, F. T. Nurse plant effects on plant species richness in drylands: The role of grazing, rainfall and species specificity. Perspect. Plant Ecol. Evol. Systs. 14, 402–410 (2012).

    Article 

    Google Scholar 

  • 301.

    Soper, F. M. et al. Natural abundance (delta15N) indicates shifts in nitrogen relations of woody taxa along a savanna-woodland continental rainfall gradient. Oecologia 178, 297–308 (2014).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 302.

    Specht, R. L. et al. Mediterranean-type ecosystems: A data source book. 248 (Springer, 1988).

  • 303.

    Specht, R. L. & Rundel, P. W. Sclerophylly and foliar nutrient status of Mediterranean-climate plant communities in southern Australia. Aust. J. Bot. 38, 459–474 (1990).

    Article 

    Google Scholar 

  • 304.

    Sperry, J. S., Hacke, U. G., Feild, T. S., Sano, Y. & Sikkema, E. H. Hydraulic consequences of vessel evolution in Angiosperms. Int. J. Plant Sci. 168, 1127–1139 (2007).

    Article 

    Google Scholar 

  • 305.

    Staples, T., Dwyer, J. M., England, J. R. & Mayfield, M. M. Productivity does not correlate with species and functional diversity in Australian reforestation plantings across a wide climate gradient. Glob. Ecol. Biog. 28, 1417–1429 (2019).

    Article 

    Google Scholar 

  • 306.

    Stewart, G., Turnbull, M., Schmidt, S. & Erskine, P. 13C natural abundance in plant communities along a rainfall gradient: a biological integrator of water availability. Funct. Plant. Bio. 22, 51–55 (1995).

    Article 

    Google Scholar 

  • 307.

    Stock, W. D., Pate, J. S. & Rasins, E. Seed developmental patterns in Banksia attenuata R. Br. and B. laricina C. Gardner in relation to mechanical defence costs. New Phytol. 117, 109–114 (1991).

    CAS 
    Article 

    Google Scholar 

  • 308.

    Tait, C. J., Daniels, C. B. & Hill, R. S. Changes in species assemblages within the Adelaide metropolitan area, Australia, 1836–2002. Ecol. Appl. 15, 346–359 (2005).

    Article 

    Google Scholar 

  • 309.

    Taseski, G., Keith, D. A., Dalrymple, R. L. & Cornwell, W. K. Shifts in fine root traits within and among species along a small-scale hydrological gradient. (University of New South Wales, 2017).

  • 310.

    Taylor, D. & Eamus, D. Coordinating leaf functional traits with branch hydraulic conductivity: Resource substitution and implications for carbon gain. Tree Physiol. 28, 1169–1177 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 311.

    Thomas, F. M. & Vesk, P. A. Growth races in The Mallee: Height growth in woody plants examined with a trait-based model. Austral Ecol. 42, 790–800 (2017).

    Article 

    Google Scholar 

  • 312.

    Thomas, F. M. & Vesk, P. A. Are trait-growth models transferable? Predicting multi-species growth trajectories between ecosystems using plant functional traits. PLoS One 12, e0176959 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 313.

    Thompson, I. R. Morphometric analysis and revision of eastern Australian Hovea (Brongniartieae-Fabaceae). Aust. Syst. Bot. 14, 1–99 (2001).

    Article 

    Google Scholar 

  • 314.

    Tasmanian Herbarium. Flora of Tasmania Online. http://www.tmag.tas.gov.au/floratasmania (2009).

  • 315.

    Tng, D. Y. P., Jordan, G. J. & Bowman, D. M. J. S. Plant traits demonstrate that temperate and tropical giant Eucalypt forests are ecologically convergent with rainforest not savanna. PLoS One 8, e84378 (2013).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 316.

    Toelken, H. R. A revision of the genus Kunzea (Myrtaceae) I. The western Australian section Zeanuk. J. Adel. Bot. Gard. 17, 29–106 (1996).

    Google Scholar 

  • 317.

    Tomlinson, K. W. et al. Biomass partitioning and root morphology of savanna trees across a water gradient. J. Ecol. 100, 1113–1121 (2012).

    Article 

    Google Scholar 

  • 318.

    Tomlinson, K. W. et al. Leaf adaptations of evergreen and deciduous trees of semi-arid and humid savannas on three continents. J. Ecol. 101, 430–440 (2013).

    Article 

    Google Scholar 

  • 319.

    Tomlinson, K. W. et al. Seedling growth of savanna tree species from three continents under grass competition and nutrient limitation in a greenhouse experiment. J. Ecol. 107, 1051–1066 (2019).

    Article 

    Google Scholar 

  • 320.

    Tremont, R. M. Life-history attributes of plants in grazed and ungrazed grasslands on the Northern Tablelands of New South Wales. Aust. J. Bot. 42, 511–530 (1994).

    Article 

    Google Scholar 

  • 321.

    Trudgen, M. E. & Rye, B. L. Astus, a new western Australian genus of Myrtaceae with heterocarpidic fruits. Nuytsia 14, 495–512 (2005).

    Google Scholar 

  • 322.

    Trudgen, M. E. & Rye, B. L. An update to the taxonomy of some western Australian genera of Myrtaceae tribe Chamelaucieae. 2. Cyathostemon. Nuytsia 24, 7–16 (2014).

    Google Scholar 

  • 323.

    Turner, J. & Lambert, M. J. Nutrient cycling within a 27-year-old Eucalyptus grandis plantation in New South Wales. For. Ecol. Manage. 6, 155–168 (1983).

    CAS 
    Article 

    Google Scholar 

  • 324.

    Turner, N. C., Schulze, E.-D., Nicolle, D. & Kuhlmann, I. Growth in two common gardens reveals species by environment interaction in carbon isotope discrimination of Eucalyptus. Tree Physiol. 30, 741–747 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 325.

    Veneklaas, E. J. & Poot, P. Seasonal patterns in water use and leaf turnover of different plant functional types in a species-rich woodland, south-western Australia. Plant Soil 257, 295–304 (2003).

    CAS 
    Article 

    Google Scholar 

  • 326.

    Venn, S. E., Green, K., Pickering, C. M. & Morgan, J. W. Using plant functional traits to explain community composition across a strong environmental filter in Australian alpine snowpatches. Plant Ecol. 212, 1491–1499 (2011).

    Article 

    Google Scholar 

  • 327.

    Venn, S., Pickering, C. & Green, K. Spatial and temporal functional changes in alpine summit vegetation are driven by increases in shrubs and graminoids. AoB Plants 6, plu008 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 328.

    Vesk, P. A., Leishman, M. R. & Westoby, M. Simple traits do not predict grazing response in Australian dry shrublands and woodlands. J. Appl. Ecol. 41, 22–31 (2004).

    Article 

    Google Scholar 

  • 329.

    Vesk, P. A. & Yen, J. D. L. Plant resprouting: How many sprouts and how deep? Flexible modelling of multispecies experimental disturbances. Perspect. Plant Ecol. Evol. Systs. 41, 125497 (2019).

    Article 

    Google Scholar 

  • 330.

    Vlasveld, C., O’Leary, B., Udovicic, F. & Burd, M. Leaf heteroblasty in eucalypts: biogeographic evidence of ecological function. Aust. J. Bot. 66, 191–201 (2018).

    Article 

    Google Scholar 

  • 331.

    Western Australian Herbarium. FloraBase: The Western Australian flora. http://florabase.dpaw.wa.gov.au (1998).

  • 332.

    Western Australian Herbarium. FloraBase: The Western Australian flora. http://florabase.dpaw.wa.gov.au/ (2016).

  • 333.

    Warren, C. R., Tausz, M. & Adams, M. A. Does rainfall explain variation in leaf morphology and physiology among populations of red ironbark (Eucalyptus sideroxylon subsp. tricarpa) grown in a common garden? Tree Physiol. 25, 1369–1378 (2005).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 334.

    Warren, C. R., Dreyer, E., Tausz, M. & Adams, M. A. Ecotype adaptation and acclimation of leaf traits to rainfall in 29 species of 16-year-old Eucalyptus at two common gardens. Funct. Ecol. 20, 929–940 (2006).

    Article 

    Google Scholar 

  • 335.

    Weerasinghe, L. K. et al. Canopy position affects the relationships between leaf respiration and associated traits in a tropical rainforest in Far North Queensland. Tree Physiol. 34, 564–584 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 336.

    Wells, J. A. Phylogeny and inter-relations of ecological traits and seed dispersal in rainforest plants: Exploring aspects of functional diversity in primary and secondary rainforests in Australia’s Wet Tropics. (University of Queensland, 2012).

  • 337.

    Westman, W. E. & Roggers, R. V. Nutrient stocks in a subtropical eucalypt forest, North Stradbroke Island. Austral Ecol. 2, 447–460 (1977).

    Article 

    Google Scholar 

  • 338.

    Westoby, M. et al. Seed size and plant growth form as factors in dispersal spectra. Ecology 71, 1307–1315 (1990).

    Article 

    Google Scholar 

  • 339.

    Westoby, M. & Wright, I. J. The leaf size – twig size spectrum and its relationship to other important spectra of variation among species. Oecologia 135, 621–628 (2003).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 340.

    Wheeler, J. R., Marchant, N. G. & Lewington, M. Flora of the south west: Bunbury, Augusta, Denmark. (Australian Biological Resources Study; University of Western Australia Press, 2002).

  • 341.

    White, M., Sinclair, S. & Frood, D. Victorian Vital Attributes Database. (Department of Environment, Land, Water; Planning, Victoria, 2020).

  • 342.

    Williams, N. S. G., Morgan, J. W., McDonnell, M. J. & McCarthy, M. A. Plant traits and local extinctions in natural grasslands along an urban-rural gradient. J. Ecol. 93, 1203–1213 (2005).

    Article 

    Google Scholar 

  • 343.

    Wills, J. et al. Tree leaf trade-offs are stronger for sub-canopy trees: leaf traits reveal little about growth rates in canopy trees. Ecol. Appl. 28, 1116–1125 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 344.

    Wilson, P. G. & Rowe, R. A revision of the Indigofereae (Fabaceae) in Australia. 2. Indigofera species with trifoliolate and alternately pinnate leaves. Telopea 12, 293–307 (2008).

    Article 

    Google Scholar 

  • 345.

    Wright, I. J. et al. A survey of seed and seedling characters in 1744 Australian dicotyledon species: Cross-species trait correlations and correlated trait-shifts within evolutionary lineages. Biol. J. Linn. Soc. 69, 521–547 (2000).

    Article 

    Google Scholar 

  • 346.

    Wright, I. J., Reich, P. B. & Westoby, M. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Funct. Ecol. 15, 423–434 (2001).

    Article 

    Google Scholar 

  • 347.

    Wright, I. J. & Westoby, M. Leaves at low versus high rainfall: Coordination of structure, lifespan and physiology. New Phytol. 155, 403–416 (2002).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 348.

    Wright, I. J., Westoby, M. & Reich, P. B. Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span. J. Ecol. 90, 534–543 (2002).

    Article 

    Google Scholar 

  • 349.

    Wright, I. J., Falster, D. S., Pickup, M. & Westoby, M. Cross-species patterns in the coordination between leaf and stem traits, and their implications for plant hydraulics. Physiol. Plant. 127, 445–456 (2006).

    CAS 
    Article 

    Google Scholar 

  • 350.

    Wright, I. J. et al. Stem diameter growth rates in a fire-prone savanna correlate with photosynthetic rate and branch-scale biomass allocation, but not specific leaf area. Austral Ecol. 44, 339–350 (2018).

    Article 

    Google Scholar 

  • 351.

    Yates, C. J. et al. Mallee woodlands and shrublands: the mallee, muruk/muert and maalok vegetation of Southern Australia. in Australian Vegetation (Cambridge University Press, 2017).

  • 352.

    Zanne, A. E. et al. Data from: Towards a worldwide wood economics spectrum. Dryad https://doi.org/10.5061/dryad.234 (2009).

  • 353.

    Zieminska, K., Butler, D. W., Gleason, S. M., Wright, I. J. & Westoby, M. Fibre wall and lumen fractions drive wood density variation across 24 Australian angiosperms. AoB Plants 5, plt046 (2013).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 354.

    Zieminska, K., Westoby, M. & Wright, I. J. Broad anatomical variation within a narrow wood density range – A study of twig wood across 69 Australian Angiosperms. PLoS One 10, e0124892 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 355.

    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).

  • 356.

    Wickham, H. et al. Welcome to the tidyverse. Journal of Open Source Software 4, 1686 (2019).

    ADS 
    Article 

    Google Scholar 

  • 357.

    Stephens, J. Yaml: Methods to convert r data to YAML and back (r package version 2.1. 13). (2014).

  • 358.

    FitzJohn, R. Remake: Make-like build management. R package version 0.2.0. (2016).

  • 359.

    Xie, Y. Dynamic documents with R and Knitr. (2015).

  • 360.

    Allaire, J. et al. Rmarkdown: Dynamic documents for R. R package version 0.5.1. (2015).

  • 361.

    CHAH. Australian Plant Name Index (continuously updated), Centre of Australian National Biodiversity Research. (https://www.biodiversity.org.au/nsl/services/apni (14/05/2020), 2020).

  • 362.

    Chamberlain, S. A. & Szöcs, E. Taxize: Taxonomic search and retrieval in R. F1000Res. 2, 191 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 363.

    Falster, D. et al. AusTraits: a curated plant trait database for the Australian flora. Zenodo https://doi.org/10.5281/zenodo.3568417 (2021).

  • 364.

    Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3 (2016).

  • 365.

    Falster, D. S., FitzJohn, R. G., Pennell, M. W. & Cornwell, W. K. Datastorr: A workflow and package for delivering successive versions of ‘evolving data’ directly into R. GigaScience 8, giz035 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 366.

    Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 367.

    Jin, Y. V.PhyloMaker: Make phylogenetic hypotheses for vascular plants, etc.. R package version 0.1.0. (2020).

  • 368.

    Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T.-Y. Gtree: An r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecol. Evo. 8, 28–36 (2017).

    Article 

    Google Scholar 

  • 369.

    Stefan, V. & Levin, S. Plotbiomes: Plot Whittaker biomes with ggplot2. R package version 0.0.0.9001. (2020).

  • 370.

    Whittaker, R. H. Communities and ecosystems. (MacMillan Publishers, 1975).

  • 371.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    The language of change

    Genetic diversity may help evolutionary rescue in a clonal endemic plant species of Western Himalaya