in

Bacillus amyloliquefaciens FH-1 significantly affects cucumber seedlings and the rhizosphere bacterial community but not soil

  • 1.

    Sun, Y., Hu, K. L., Zhang, K. F., Jiang, L. H. & Xu, Y. Simulation of nitrogen fate for greenhouse cucumber grown under different water and fertilizer management using the EU-Rotate_N model. Agric. Water Manage. 112, 21–32 (2012).

    Article 

    Google Scholar 

  • 2.

    Vejan, P., Abdullah, R., Khadiran, T., Ismail, S. & Boyce, A. N. Role of plant growth promoting rhizobacteria in agricultural sustainability—A review. Molecules 21(5), 573. https://doi.org/10.3390/molecules21050573 (2016).

  • 3.

    Ferreira, C. M. H., Soares, H. & Soares, E. V. Promising bacterial genera for agricultural practices: An insight on plant growth-promoting properties and microbial safety aspects. Sci. Total Environ. 682, 779–799. https://doi.org/10.1016/j.scitotenv.2019.04.225 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 4.

    Sammauria, R., Kumawat, S., Kumawat, P., Singh, J. & Jatwa, T. K. Microbial inoculants: potential tool for sustainability of agricultural production systems. Arch. Microbiol. 202(4), 677–693 https://doi.org/10.1007/s00203-019-01795-w (2020).

  • 5.

    Singh, M. et al. PGPR Amelioration in Sustainable Agriculture 41–66 (Woodhead Publishing, 2019).

    Book 

    Google Scholar 

  • 6.

    Berg, G. Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 84, 11–18 (2009).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Olanrewaju, O. S., Glick, B. R. & Babalola, O. O. Mechanisms of action of plant growth promoting bacteria. World J. Microbiol. Biotechnol. 33(11), 197. https://doi.org/10.1007/s11274-017-2364-9 (2017).

  • 8.

    Ambrosini, A., de Souza, R. & Passaglia, L. M. P. Ecological role of bacterial inoculants and their potential impact on soil microbial diversity. Plant Soil 400, 193–207. https://doi.org/10.1007/s11104-015-2727-7 (2016).

    CAS 
    Article 

    Google Scholar 

  • 9.

    O’Callaghan, M. Microbial inoculation of seed for improved crop performance: Issues and opportunities. Appl. Microbiol. Biotechnol. 100, 5729–5746 (2016).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Kaminsky, L. M., Trexler, R. V., Malik, R. J., Hockett, K. L. & Bell, T. H. The inherent conflicts in developing soil microbial inoculants. Trends Biotechnol. 37, 140–151 (2019).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Chen, X. H. et al. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat. Biotechnol. 25, 1007–1014 (2007).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Chowdhury, S. P., Hartmann, A., Gao, X. W. & Borriss, R. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42—A review. Front. Microbiol. 6, 780. https://doi.org/10.3389/fmicb.2015.00780 (2015).

  • 13.

    Han, L. et al. Bacillus amyloliquefaciens B1408 suppresses Fusarium wilt in cucumber by regulating the rhizosphere microbial community. Appl. Soil Ecol. 136, 55–66 (2019).

    Article 

    Google Scholar 

  • 14.

    Wu, B. et al. Effects of Bacillus amyloliquefaciens ZM9 on bacterial wilt and rhizosphere microbial communities of tobacco. Appl. Soil Ecol. 103, 1–12 (2016).

    ADS 
    Article 

    Google Scholar 

  • 15.

    Krober, M. et al. Effect of the strain Bacillus amyloliquefaciens FZB42 on the microbial community in the rhizosphere of lettuce under field conditions analyzed by whole rnetagenome sequencing. Front. Microbiol. 5, 252. https://doi.org/10.3389/fmicb.2014.00252 (2014).

  • 16.

    Shen, Z. Z. et al. Effect of the combination of bio-organic fertiliser with Bacillus amyloliquefaciens NJN-6 on the control of banana Fusarium wilt disease, crop production and banana rhizosphere culturable microflora. Biocontrol Sci. Technol. 25, 716–731 (2015).

    Article 

    Google Scholar 

  • 17.

    Shen, Z. Z. et al. Rhizosphere microbial community manipulated by 2 years of consecutive biofertilizer application associated with banana Fusarium wilt disease suppression. Biol. Fertility Soils 51, 553–562 (2015).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Li, Q. et al. Rhizosphere microbiome mediated growth-promoting mechanisms of Bacillus amyloliquefaciens FH-1 on rice. Acta Microbiol. Sin. 59, 1–17 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 19.

    Qin, Y. X., Shang, Q. M., Zhang, Y., Li, P. L. & Chai, Y. R. Bacillus amyloliquefaciens L-S60 reforms the rhizosphere bacterial community and improves growth conditions in cucumber plug seedling. Front. Microbiol. 8, 2620. https://doi.org/10.3389/fmicb.2017.02620 (2017).

  • 20.

    Idris, E. E., Iglesias, D. J., Talon, M. & Borriss, R. Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol. Plant-Microbe Interact. 20, 619–626. https://doi.org/10.1094/Mpmi-20-6-0619 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 21.

    Mendes, R. et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332, 1097–1100 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 22.

    Panke-Buisse, K., Poole, A. C., Goodrich, J. K., Ley, R. E. & Kao-Kniffin, J. Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J 9, 980–989. https://doi.org/10.1038/ismej.2014.196 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 23.

    de Vries, F. T., Griffiths, R. I., Knight, C. G., Nicolitch, O. & Williams, A. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 368, 270 (2020).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Rodriguez, P. A. et al. Systems biology of plant–microbiome interactions. Mol. Plant 12, 804–821. https://doi.org/10.1016/j.molp.2019.05.006 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 25.

    Trabelsi, D. & Mhamdi, R. Microbial inoculants and their impact on soil microbial communities: A review. Biomed. Res. Int. 2013, 863240. https://doi.org/10.1155/2013/863240 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Gu, Y. et al. The effect of microbial inoculant origin on the rhizosphere bacterial community composition and plant growth-promotion. Plant Soil 452, 105–117. https://doi.org/10.1007/s11104-020-04545-w (2020).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Ke, X. B. et al. Effect of inoculation with nitrogen-fixing bacterium Pseudomonas stutzeri A1501 on maize plant growth and the microbiome indigenous to the rhizosphere. Syst. Appl. Microbiol. 42, 248–260 (2019).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Barberan, A., Bates, S. T., Casamayor, E. O. & Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 6, 343–351. https://doi.org/10.1038/ismej.2011.119 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 29.

    Kong, Z. Y. et al. Co-occurrence patterns of microbial communities affected by inoculants of plant growth-promoting bacteria during phytoremediation of heavy metal contaminated soils. Ecotoxicol. Environ. Saf. 183, 109504. https://doi.org/10.1016/j.ecoenv.2019.109504 (2019).

  • 30.

    Newman, M. E. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 103, 8577–8582. https://doi.org/10.1073/pnas.0601602103 (2006).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 31.

    Mendes, R. & Raaijmakers, J. M. Cross-kingdom similarities in microbiome functions. ISME J. 9, 1905–1907. https://doi.org/10.1038/ismej.2015.7 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Mueller, U. G. & Sachs, J. L. Engineering microbiomes to improve plant and animal health. Trends Microbiol. 23, 606–617. https://doi.org/10.1016/j.tim.2015.07.009 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 33.

    Toju, H. et al. Core microbiomes for sustainable agroecosystems. Nat. Plants 4, 247–257 (2018).

    Article 

    Google Scholar 

  • 34.

    Chowdhury, S. P. et al. Effects of Bacillus amyloliquefaciens FZB42 on lettuce growth and health under pathogen pressure and its impact on the rhizosphere bacterial community. Plos One 8(7), e68818. https://doi.org/10.1371/journal.pone.0068818 (2013).

  • 35.

    Correa, O. S. et al. Bacillus amyloliquefaciens BNM122, a potential microbial biocontrol agent applied on soybean seeds, causes a minor impact on rhizosphere and soil microbial communities. Appl. Soil Ecol. 41, 185–194 (2009).

    Article 

    Google Scholar 

  • 36.

    Wan, T. T., Zhao, H. H. & Wang, W. Effect of biocontrol agent Bacillus amyloliquefaciens SN16-1 and plant pathogen Fusarium oxysporum on tomato rhizosphere bacterial community composition. Biol. Control 112, 1–9 (2017).

    Article 

    Google Scholar 

  • 37.

    Wan, T. T., Zhao, H. H. & Wang, W. Effects of the biocontrol agent Bacillus amyloliquefaciens SN16-1 on the rhizosphere bacterial community and growth of tomato. J. Phytopathol. 166, 324–332 (2018).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Nautiyal, C. S. et al. Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol. Biochem. 66, 1–9 (2013).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Kumar, S., Suyal, D. C., Yadav, A., Shouche, Y. & Goel, R. Microbial diversity and soil physiochemical characteristic of higher altitude. Plos One 14(3), e0213844. https://doi.org/10.1371/journal.pone.0213844 (2019).

  • 40.

    Kielak, A. M., Barreto, C. C., Kowalchuk, G. A., van Veen, J. A. & Kuramae, E. E. The ecology of acidobacteria: Moving beyond genes and genomes. Front. Microbiol. 7, 744. https://doi.org/10.3389/fmicb.2016.00744 (2016).

  • 41.

    Ul-Hassan, A. & Wellington, E. M. Actinobacteria in Encyclopedia of Microbiology (Third Edition) (ed Schaechter, M.) 25–44 (Academic Press, 2009).

  • 42.

    Zhang, M., Powell, C. A., Guo, Y., Benyon, L. & Duan, Y. Characterization of the microbial community structure in Candidatus Liberibacter asiaticus-infected citrus plants treated with antibiotics in the field. BMC Microbiol. 13, 112. https://doi.org/10.1186/1471-2180-13-112 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Albuquerque, L., Johnson, M. M., Schumann, P., Rainey, F. A. & da Costa, M. S. Description of two new thermophilic species of the genus Rubrobacter, Rubrobacter calidifluminis sp. nov. and Rubrobacter naiadicus sp. Nov., and emended description of the genus Rubrobacter and the species Rubrobacter bracarensis. Syst. Appl. Microbiol. 37, 235–243. https://doi.org/10.1016/j.syapm.2014.03.001 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 44.

    Egas, C. et al. Complete genome sequence of the radiation-resistant bacterium Rubrobacter radiotolerans RSPS-4. Stand. Genomic. Sci. 9(3), 1062–1075. https://doi.org/10.4056/sigs.5661021 (2014).

  • 45.

    Ge, S. M., Zhou, M. H., Dong, X. J., Lu, Y. & Ge, S. C. Distinct and effective biotransformation of hexavalent chromium by a novel isolate under aerobic growth followed by facultative anaerobic incubation. Appl. Microbiol. Biotechnol. 97, 2131–2137 (2013).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Sturm, G., Jacobs, J., Sproer, C., Schumann, P. & Gescher, J. Leucobacter chromiiresistens sp. nov., a chromate-resistant strain. Int. J. Syst. Evol. Microbiol. 61, 956–960 (2011).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Muir, R. E. & Tan, M. W. Virulence of Leucobacter chromiireducens subsp. solipictus to Caenorhabditis elegans: Characterization of a novel host-pathogen interaction. Appl. Environ. Microbiol. 74, 4185–4198 (2008).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Zhang, Y. et al. Abundance and diversity of candidate division JS1-and Chloroflexi-related bacteria in cold seep sediments of the northern South China Sea. Front. Earth Sci. Prc. 6, 373–382. https://doi.org/10.1007/s11707-012-0324-0 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 49.

    Bennett, A. C., Murugapiran, S. K. & Hamilton, T. L. Temperature impacts community structure and function of phototrophic Chloroflexi and Cyanobacteria in two alkaline hot springs in Yellowstone National Park. Environ. Microbiol. Rep. https://doi.org/10.1111/1758-2229.12863 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Devos, D. P. Gemmata obscuriglobus. Curr. Biol. 23, R705-707. https://doi.org/10.1016/j.cub.2013.07.013 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 51.

    Dong, L. L. et al. Diversity and composition of bacterial endophytes among plant parts of Panax notoginseng. Chin. Med. UK 13, 41. https://doi.org/10.1186/s13020-018-0198-5 (2018).

  • 52.

    Ma, Q. et al. Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing. Bioresour. Technol. 179, 436–443 (2015).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Kepel, B. J. F., Gani, M. A. & Tallei, T. E. Comparison of bacterial community structure and diversity in traditional gold mining waste disposal site and rice field by using a metabarcoding approach. Int. J. Microbiol. 2020, 1858732. https://doi.org/10.1155/2020/1858732 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Chouari, R. et al. Molecular evidence for novel planctomycete diversity in a municipal wastewater treatment plant. Appl. Environ. Microbiol. 69, 7354–7363. https://doi.org/10.1128/aem.69.12.7354-7363.2003 (2003).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Zhao, Y. et al. Endosphere microbiome comparison between symptomatic and asymptomatic roots of Brassica napus infected with Plasmodiophora brassicae. Plos One 12(10), e0185907. https://doi.org/10.1371/journal.pone.0185907 (2017).

  • 56.

    Banerjee, S. et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. https://doi.org/10.1038/s41396-019-0383-2 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Faust, K. & Raes, J. Microbial interactions: From networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).

    CAS 
    Article 

    Google Scholar 

  • 58.

    Olesen, J. M., Bascompte, J., Dupont, Y. L. & Jordano, P. The modularity of pollination networks. Proc. Natl. Acad. Sci. USA 104, 19891–19896 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 59.

    Kang, Y., Shen, M., Wang, H. & Zhao, Q. A possible mechanism of action of plant growth-promoting rhizobacteria (PGPR) strain Bacillus pumilus WP8 via regulation of soil bacterial community structure. J. Gen. Appl. Microbiol. 59, 267–277 (2013).

    CAS 
    Article 

    Google Scholar 

  • 60.

    Wang, J. et al. Traits-based integration of multi-species inoculants facilitates shifts of indigenous soil bacterial community. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.01692 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing (2020).

  • 62.

    Xiong, J. et al. Evidence of bacterioplankton community adaptation in response to long-term mariculture disturbance. Scientific Report 5, 15274. https://doi.org/10.1038/srep15274 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 63.

    Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12(6), R60. https://doi.org/10.1186/gb-2011-12-6-r60 (2011).

  • 64.

    Jiang, Y. J. et al. Plant cultivars imprint the rhizosphere bacterial community composition and association networks. Soil Biol. Biochem. 109, 145–155 (2017).

    CAS 
    Article 

    Google Scholar 

  • 65.

    Ju, F., Xia, Y., Guo, F., Wang, Z. P. & Zhang, T. Taxonomic relatedness shapes bacterial assembly in activated sludge of globally distributed wastewater treatment plants. Environ. Microbiol. 16, 2421–2432 (2014).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Unleashing capacity at Heineken México with systems thinking from MIT

    MITEI researchers build a supply chain model to support the hydrogen economy