in

Bacteria enhance the production of extracellular polymeric substances by the green dinoflagellate Lepidodinium chlorophorum

[adace-ad id="91168"]
  • 1.

    Siano, R. et al. Citizen participation in monitoring phytoplankton seawater discolorations. Mar. Policy 117, 1–11. https://doi.org/10.1016/j.marpol.2018.01.022 (2018).

    Article  Google Scholar 

  • 2.

    Elbrächter, M. & Schnepf, E. Gymnodinium chlorophorum, a new, green, bloom-forming dinoflagellate (Gymnodiniales, Dinophyceae) with a vestigial prasinophyte endosymbiont. Phycologia 35, 381–393 (1996).

    Article  Google Scholar 

  • 3.

    Hansen, G., Botes, L. & De Salas, M. Ultrastructure and large subunit rDNA sequences of Lepidodinium viride reveal a close relationship to Lepidodinium chlorophorum comb. Nov. (=Gymnodinium chlorophorum). Phycol. Res. 55, 25–41. https://doi.org/10.1111/j.1440-1835.2006.00442.x (2007).

    CAS  Article  Google Scholar 

  • 4.

    Gavalás-Olea, A. et al. 19,19′-diacyloxy signature: An atypical level of structural evolution in carotenoid pigments. Org. Lett. 18, 4642–4645. https://doi.org/10.1021/acs.orglett.6b02272 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 5.

    Jackson, C., Knoll, A. H., Chan, C. X. & Verbruggen, H. Plastid phylogenomics with broad taxon sampling further elucidates the distinct evolutionary origins and timing of secondary green plastids. Sci. Rep. 8, 1523. https://doi.org/10.1038/s41598-017-18805-w (2018).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 6.

    Kamikawa, R. et al. Plastid genome-based phylogeny pinpointed the origin of the green-colored plastid in the dinoflagellate Lepidodinium chlorophorum. Genome Biol. Evol. 7, 1133–1140. https://doi.org/10.1093/gbe/evv060 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 7.

    Chapelle, A., Lazure, P. & Ménesguen, A. Modelling eutrophication events in a coastal ecosystem. Sensitivity analysis. Estuar. Coast. Shelf Sci. 39, 529–548. https://doi.org/10.1016/S0272-7714(06)80008-9 (1994).

    ADS  CAS  Article  Google Scholar 

  • 8.

    Sournia, A. et al. The repetitive and expanding occurrence of a green, bloom-forming dinoflagellate (Dinophyceae) on the coast of France. Cryptogam. Algol. 13, 1–13 (1992).

    Google Scholar 

  • 9.

    Claquin, P., Probert, I., Lefebvre, S. & Veron, B. Effects of temperature on photosynthetic parameters and TEP production in eight species of marine microalgae. Aquat. Microb. Ecol. 51, 1–11. https://doi.org/10.3354/ame01187 (2008).

    Article  Google Scholar 

  • 10.

    Alldredge, A. L., Passow, U. & Logan, B. E. The abundance and significance of a class of large, transparent organic particles in the ocean. Deep-Sea Res. 40, 1131–1140. https://doi.org/10.1016/0967-0637(93)90129-Q (1993).

    CAS  Article  Google Scholar 

  • 11.

    Passow, U. Transparent exopolymer particles (TEP) in aquatic environments. Prog. Oceanogr. 55, 287–333. https://doi.org/10.1016/S0079-6611(02)00138-6 (2002).

    ADS  Article  Google Scholar 

  • 12.

    Verdugo, P. et al. The oceanic gel phase: A bridge in the DOM-POM continuum. Mar. Chem. 92, 67–85. https://doi.org/10.1016/j.marchem.2004.06.017 (2004).

    CAS  Article  Google Scholar 

  • 13.

    Azam, F. & Malfatti, F. Microbial structuring of marine ecosystems. Nature 5, 782–791. https://doi.org/10.1038/nrmicro1747 (2007).

    CAS  Article  Google Scholar 

  • 14.

    Bittar, T. B., Passow, U., Hamaraty, L., Bidle, K. D. & Harvey, E. L. An updated method for the calibration of transparent exopolymer particle measurements. Limnol. Oceanogr. Methods. 16, 621–628. https://doi.org/10.1002/lom3.10268 (2018).

    Article  Google Scholar 

  • 15.

    Mari, X., Passow, U., Migon, C., Burd, A. B. & Legendre, L. Transparent exopolymer particles: Effects on carbon cycling in the ocean. Prog. Oceanogr. 151, 13–37. https://doi.org/10.1016/j.pocean.2016.11.002 (2017).

    ADS  Article  Google Scholar 

  • 16.

    Passow, U. et al. The origin of transparent exopolymer particles (TEP) and their role in the sedimentation of particulate matter. Cont. Shelf. Res. 21, 327–346. https://doi.org/10.1016/S0278-4343(00)00101-1 (2001).

    ADS  Article  Google Scholar 

  • 17.

    Jenkinson, I. R. Oceanographic implications of non-newtonian properties found in phytoplankton cultures. Nature 323, 435–437. https://doi.org/10.1038/323435a0 (1986).

    ADS  Article  Google Scholar 

  • 18.

    Alldredge, A. L. & Gotschalk, C. C. Direct observations of the mass flocculation of diatom blooms: Characteristics, settling velocities and formation of diatom aggregates. Deep-Sea Res. 36, 159–171. https://doi.org/10.1016/0198-0149(89)90131-3 (1989).

    ADS  CAS  Article  Google Scholar 

  • 19.

    Schapira, M., McQuaid, C. D. & Froneman, P. W. Free-living and particle-associated prokaryote metabolism in giant kelp forests: Implications for carbon flux in a sub-Antarctic coastal area. Estuar. Coast. Shelf. Sci. 106, 69–79. https://doi.org/10.1016/j.ecss.2012.04.031 (2012).

    ADS  CAS  Article  Google Scholar 

  • 20.

    Schapira, M., McQuaid, C. D. & Froneman, P. W. Metabolism of free-living particle-associated prokaryotes: Consequences for carbon flux around a Southern Ocean archipelago. J. Mar. Syst. 90, 58–66. https://doi.org/10.1016/j.jmarsys.2011.08.009 (2012).

    Article  Google Scholar 

  • 21.

    Bhaskar, P.V. & Bhosle, N.B. Microbial extracellular polymeric substances in marine biogeochemical processes. Curr. Sci. 88, 45–53. http://drs.nio.org/drs/handle/2264/89 (2005).

  • 22.

    Passow, U. & Alldredge, A. L. A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP). Limnol. Oceanogr. 40, 1326–1335. https://doi.org/10.4319/lo.1995.40.7.1326 (1995).

    ADS  CAS  Article  Google Scholar 

  • 23.

    Gärdes, A., Iversen, M. H., Grossart, H. P., Passow, U. & Ullrich, M. S. Diatom-associated bacteria are required for aggregation of Thalassiosira weissflogii. ISME J. 5, 436–445. https://doi.org/10.1038/ismej.2010.145 (2011).

    CAS  Article  PubMed  Google Scholar 

  • 24.

    Nosaka, Y., Yamashita, Y. & Suzuki, K. Dynamics and origin of transparent exopolymer particles in the Oyashio region of the Western Subarctic Pacific during the spring diatom bloom. Front. Mar. Sci. 4, 1–16. https://doi.org/10.3389/fmars.2017.00079 (2017).

    Article  Google Scholar 

  • 25.

    Burns, W. G., Marchetti, A. & Ziervogel, K. Enhanced formation of transparent exopolymer particles (TEP) under turbulence during phytoplankton growth. J. Plankton Res. 41, 349–361. https://doi.org/10.1093/plankt/fbz018 (2019).

    CAS  Article  Google Scholar 

  • 26.

    Riebesell, U., Reigstad, M., Wassmann, P., Noji, T. & Passow, U. On the trophic fate of Phaeocystis pouchetii (hariot): Significance of Phaeocystis-derived mucus for vertical flux. Neth. J. Sea Res. 33, 193–203. https://doi.org/10.1016/0077-7579(95)90006-3 (1995).

    Article  Google Scholar 

  • 27.

    Alderkamp, A. C., Buma, A. G. J. & van Rijssel, M. The carbohydrates of Phaeocystis and their degradation in the microbial food web. Biogeochemistry 83, 1–3. https://doi.org/10.1007/s10533-007-9078-2 (2007).

    CAS  Article  Google Scholar 

  • 28.

    Grossart, H. P., Simon, M. & Logan, B. E. Formation of macroscopic organic aggregates (lake snow) in a large lake: The significance of transparent exopolymer particles, phytoplankton, and zooplankton. Limnol. Oceanogr. 42, 1651–1659. https://doi.org/10.4319/lo.1997.42.8.1651 (1997).

    ADS  CAS  Article  Google Scholar 

  • 29.

    Iuculano, F., Mazuecos, I. P., Reche, I. & Agusti, S. Prochlorococcus as a possible source for transparent exopolymer particles (TEP). Front. Microbiol. 8, 1–11. https://doi.org/10.3389/fmicb.2017.00709 (2017).

    Article  Google Scholar 

  • 30.

    Thornton, D. C. O. Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean. Eur. J. Phycol. 49, 20–46. https://doi.org/10.1080/09670262.2013.875596 (2014).

    CAS  Article  Google Scholar 

  • 31.

    Zhang, Z. et al. The fate of marine bacterial exopolysaccharide in natural marine microbial communities. PLoS One 10, 1–16. https://doi.org/10.1371/journal.pone.0142690 (2015).

    CAS  Article  Google Scholar 

  • 32.

    Xiao, R. & Zheng, Y. Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnol. Adv. 34, 1225–1244. https://doi.org/10.1016/j.biotechadv.2016.08.004 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 33.

    Thavasi, R. & Banat, I. M. Biosurfactant and bioemulsifiers from marine sources. In Biosurfactants: Research Trends and Applications, ***Chap 5 (eds Mulligan, C. N. et al.) 125–146 (CRC Press, Boca Raton, 2014).

    Google Scholar 

  • 34.

    Decho, A. W. & Gutierrez, T. Microbial extracellular polymeric substances (EPSs) in ocean systems. Front. Microbiol. 8, 1–28. https://doi.org/10.3389/fmicb.2017.00922 (2017).

    Article  Google Scholar 

  • 35.

    Parker, C. The effect of environmental stressors on biofilm formation of Chlorella vulgaris. Master thesis Appalachian State University (2013).

  • 36.

    Zhou, J., Mopper, K. & Passow, U. The role of surface-active carbohydrates in the formation of transparent exopolymer particles by bubble adsorption of seawater. Limnol. Oceanogr. 43, 1860–1871. https://doi.org/10.4319/lo.1998.43.8.1860 (1998).

    ADS  CAS  Article  Google Scholar 

  • 37.

    Fukao, T., Kimoto, K. & Kotani, Y. Production of transparent exopolymer particles by four diatom species. Fish Sci. 76, 755–760. https://doi.org/10.1007/s12562-010-0265-z (2010).

    CAS  Article  Google Scholar 

  • 38.

    Seebah, S., Fairfield, C., Ullrich, M. S. & Passow, U. Aggregation and sedimentation of Thalassiosira weissflogii (diatom) in a warmer and more acidified Future Ocean. PLoS One 9, 1–9. https://doi.org/10.1371/journal.pone.0112379 (2014).

    CAS  Article  Google Scholar 

  • 39.

    Staats, N., Stal, L. J. & Mur, L. R. Exopolysaccharide production by the epipelic diatom Cylindrotheca fusiformis: Effects of nutrient conditions. J. Exp. Mar. Biol. Ecol. 249, 13–27. https://doi.org/10.1016/S0022-0981(00)00166-0 (2000).

    CAS  Article  PubMed  Google Scholar 

  • 40.

    Underwood, G. J. C., Boulcott, M., Raines, C. A. & Waldron, K. Environmental effects on exopolymer production by marine benthic diatoms: Dynamics, changes in composition, and pathways of production. J. Phycol. 40, 293–304. https://doi.org/10.1111/j.1529-8817.2004.03076.x (2004).

    CAS  Article  Google Scholar 

  • 41.

    Engel, A. et al. Impact of CO2 enrichment on organic matter dynamics during nutrient induced coastal phytoplankton blooms. J. Plankton Res. 36, 641–657. https://doi.org/10.1093/plankt/fbt125 (2014).

    CAS  Article  Google Scholar 

  • 42.

    Thornton, D. C. O. & Chen, J. Exopolymer production as a function of cell permeability and death in a diatom (Thalassiosira weissflogii) and a cyanobacterium (Synechococcus elongatus). J. Phycol. 53, 245–260. https://doi.org/10.1111/jpy.12470 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 43.

    Sugimoto, K., Fukuda, H., Abdul Baki, M. & Koike, I. Bacterial contribution to formation of transparent exopolymer particles (TEP) and seasonal trends in coastal waters of Sagami Bay, Japan. Aquat. Microb. Ecol. 46, 31–41. https://doi.org/10.3354/ame046031 (2007).

    Article  Google Scholar 

  • 44.

    Gordillo, F. J. L., Jiménez, C., Chavarria, J. & Niell, F. X. Photosynthetic acclimation to photon irradiance and its relation to chlorophyll fluorescence and carbon assimilation in the halotolerant green alga Dunaliella viridis. Photosynth. Res. 68, 225–235. https://doi.org/10.1023/a:1012969324756 (2001).

    CAS  Article  PubMed  Google Scholar 

  • 45.

    Ekelund, N. G. A. & Aronsson, K. A. Changes in chlorophyll a fluorescence in Euglena gracilis and Chlamydomonas reinhardii after exposure to wood-ash. Environ. Exp. Bot. 59, 92–98. https://doi.org/10.1016/j.envexpbot.2005.10.004 (2007).

    CAS  Article  Google Scholar 

  • 46.

    Cole, J. J. Interactions between bacteria and algae in aquatic ecosystems. Ann. Rev. Ecol. Syst. 13, 291–314. https://doi.org/10.1146/annurev.es.13.110182.001451 (1982).

    Article  Google Scholar 

  • 47.

    Joint, I. et al. Competition for inorganic nutrients between phytoplankton and bacterioplankton in nutrient manipulated mesocosms. Aquat. Microb. Ecol. 29, 145–159. https://doi.org/10.3354/ame029145 (2002).

    Article  Google Scholar 

  • 48.

    Amin, S. A., Parker, M. S. & Armbrust, E. V. Interactions between diatoms and bacteria. Microbiol. Mol. Biol. Rev. 76, 667–684. https://doi.org/10.1128/MMBR.00007-12 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 49.

    Ramanan, R., Kim, B. H., Cho, D. H., Oh, H. M. & Kim, H. S. Algae-bacteria interactions: Evolution, ecology and emerging applications. Biotechnol. Adv. 34, 14–29. https://doi.org/10.1016/j.biotechadv.2015.12.003 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 50.

    Ray, S. & Bagchi, S. N. Nutrients and pH regulate algicide accumulation in cultures of the cyanobacterium Oscillatoria laetevirens. New Phytol. 149, 455–460. https://doi.org/10.1046/j.1469-8137.2001.00061.x (2001).

    CAS  Article  Google Scholar 

  • 51.

    Oremland, R. S. & Capone, D. G. Use of “specific” inhibitors in biogeochemistry and microbial ecology. Adv. Microb. Ecol. 10, 285–383. https://doi.org/10.1007/978-1-4684-5409-3_8 (1988).

    CAS  Article  Google Scholar 

  • 52.

    Middelburg, J. J. & Nieuwenhuize, J. Nitrogen uptake by heterotrophic bacteria and phytoplankton in the nitrate-rich Thames estuary. Mar. Ecol. Prog. Ser. 203, 13–21. https://doi.org/10.3354/meps203013 (2000).

    ADS  CAS  Article  Google Scholar 

  • 53.

    Mulholland, M. R., Rocha, A. M. & Boncillo, G. E. Incorporation of leucine and thymidine by estuarine phytoplankton: Implications for bacteria productivity estimates. Estuar. Coasts 34, 310–325. https://doi.org/10.1007/s12237-010-9366-2 (2010).

    CAS  Article  Google Scholar 

  • 54.

    Prieto, A. et al. Assessing the role of phytoplankton–bacterioplankton coupling in the response of microbial plankton to nutrient additions. J. Plankton Res. 38, 55–63. https://doi.org/10.1093/plankt/fbv101 (2016).

    CAS  Article  Google Scholar 

  • 55.

    Dakhama, A., de la Noüe, J. & Lavoie, M. C. Isolation and identification of antialgal substances produced by Pseudomonas aeruginosa. J. Appl. Phycol. 5, 297–306. https://doi.org/10.1007/BF02186232 (1993).

    CAS  Article  Google Scholar 

  • 56.

    Bowman, L. P. Bioactive compound synthetic capacity and ecological significance of marine bacterial genus Pseudoalteromonas. Mar. Drugs 5, 220–241. https://doi.org/10.3390/md504220 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 57.

    Meseck, S. L., Smith, B. C., Wikfors, G. H., Alix, J. H. & Kapareiko, D. Nutrient interactions between phytoplankton and bacterioplankton under different carbon dioxide regimes. J. Appl. Phycol. 19, 229–237. https://doi.org/10.1007/s10811-006-9128-5 (2007).

    CAS  Article  Google Scholar 

  • 58.

    Guerrini, F., Mazzotti, A., Boni, L. & Pistocchi, R. Bacterial-algal interactions in polysaccharide production. Aquat. Microb. Ecol. 15, 247–253. https://doi.org/10.3354/ame015247 (1998).

    Article  Google Scholar 

  • 59.

    Lu, X. et al. A marine algicidal Thalassiosira and its active substance against the harmful algal bloom species Karenia mikimotoi. Appl. Microbiol. Biotechnol. 100, 5131–5139. https://doi.org/10.1007/s00253-016-7352-8 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 60.

    Li, Y. et al. Chitinase producing bacteria with direct algicidal activity on marine diatoms. Sci. Rep. 6, 1–13. https://doi.org/10.1038/srep21984 (2016).

    CAS  Article  Google Scholar 

  • 61.

    Li, Y. et al. The first evidence of deinoxanthin from Deinococcus sp Y35 with strong algicidal effect on the toxic dinoflagellate Alexandrium tamarense. J. Hazard. Mater. 290, 87–95. https://doi.org/10.1016/j.jhazmat.2015.02.070 (2015).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 62.

    Lovejoy, C., Bowman, J. P. & Hallegraeff, G. M. Algicidal effects of a novel marine Pseudomonas isolate (class Proteobacteria, gamma subdivision) on harmful algal bloom species of the genera Chattonella, Gymnodinium and Heterosigma. Appl. Environ. Microbiol. 64, 2806–2813 (1998).

    CAS  Article  Google Scholar 

  • 63.

    Honsell, G. & Talarico, L. Gymnodinium chlorophorum (Dinophyceae) in the Adriatic Sea: Electron microscopical observations. Bot. Mar. 47, 152–166. https://doi.org/10.1515/BOT.2004.016 (2004).

    Article  Google Scholar 

  • 64.

    Iriarte, J. L., Quiñones, R. A. & González, R. R. Relationship between biomass and enzymatic activity of a bloom-forming dinoflagellate (Dinophyceae) in southern Chile (41°S): A field approach. J. Plankton. Res. 27, 159–161. https://doi.org/10.1093/plankt/fbh167 (2005).

    CAS  Article  Google Scholar 

  • 65.

    Gárate-Lizárraga, I., Muñetón-Gómez, M. S., Pérez-Cruz, B. & Díaz-Ortíz, J. A. Bloom of Gonyaulax spinifera (Dinophyceae: Gonyaulacales) in Ensenada de la Paz Lagoon, Gulf of California. CICIMAR Oceán. 29, 1–18 (2014).

    Google Scholar 

  • 66.

    McCarthy, P.M. Census of Australian Marine Dinoflagellates. Australian Biological Resources Study, Canberra. http://www.anbg.gov.au/abrs/Dinoflagellates/index_Dino.html. Accessed 11 July 2013 (2013).

  • 67.

    Azam, F. & Smith, D. C. Bacterial influence on the variability in the ocean’s biogeochemical state: A mechanistic view. In Particle Analysis in Oceanography. NATO ASI Series (Series G: Ecological Sciences), ***27 (ed. Demers, S.) (Springer, Berlin, 1991). https://doi.org/10.1007/978-3-642-75121-9_9.

    Google Scholar 

  • 68.

    Smith, D. C., Steward, G. F., Long, R. A. & Azam, F. Bacterial mediation of carbon fluxes during a diatom bloom in a mesocosm. Deep-Sea Res. 442, 75–97. https://doi.org/10.1016/0967-0645(95)00005-B (1995).

    ADS  Article  Google Scholar 

  • 69.

    Schuster, S. & Herndl, G. J. Formation and significance of transparent exopolymeric particles in the northern Adriatic Sea. Mar. Ecol. Prog. Ser. 124, 227–236. https://doi.org/10.3354/meps124227 (1995).

    ADS  Article  Google Scholar 

  • 70.

    Engel, A. & Passow, U. Carbon and nitrogen content of transparent exopolymer particles (TEP) in relation to their Alcian Blue adsorption. Mar. Ecol. Prog. Ser. 219, 1–10. https://doi.org/10.3354/meps219001 (2001).

    ADS  CAS  Article  Google Scholar 

  • 71.

    Hasui, M., Matsuda, M., Okutani, K. & Shigeta, S. In vitro antiviral activities of sulfated polysaccharides from a marine microalga (Cochlodinium polykrikoides) against human immunodeficiency virus and other enveloped viruses. Int. J. Biol. Macromol. 17, 293–297. https://doi.org/10.1016/0141-8130(95)98157-T (1995).

    CAS  Article  PubMed  Google Scholar 

  • 72.

    Yim, J. H., Kim, S. J., Ahn, S. H. & Lee, H. K. Characterization of a novel bioflocculant, p-KG03, from a marine dinoflagellate, Gyrodinium impudicum KG03. Bioresour. Technol. 98, 361–367. https://doi.org/10.1016/j.biortech.2005.12.021 (2007).

    CAS  Article  PubMed  Google Scholar 

  • 73.

    Mandal, S. K., Singh, R. P. & Patel, V. Isolation and characterization of exopolysaccharide secreted by a toxic dinoflagellate, Amphidinium carterae Hulburt 1957 and its probable role in harmful algal blooms (HABs). Microb. Ecol. 62, 518–527. https://doi.org/10.1007/s00248-011-9852-5 (2011).

    CAS  Article  PubMed  Google Scholar 

  • 74.

    Kesaulya, I., Leterme, S. C., Mitchell, J. G. & Seuront, L. The impact of turbulence and phytoplankton dynamics on foam formation, seawater viscosity and chlorophyll concentration in the eastern English Channel. Oceanologia 50, 167–182 (2008).

    Google Scholar 

  • 75.

    Seuront, L. & Vincent, D. Increased seawater viscosity, Phaeocystis globosa spring bloom and Temora longicornis feeding and swimming behaviours. Mar. Ecol. Prog. Ser. 363, 131–145. https://doi.org/10.3354/meps07373 (2008).

    ADS  CAS  Article  Google Scholar 

  • 76.

    Seuront, L., Vincent, D. & Mitchell, J. G. Biologically induced modification of seawater viscosity in the Eastern English Channel during a Phaeocystis globosa spring bloom. J. Mar. Syst. 61, 118–133. https://doi.org/10.1016/j.jmarsys.2005.04.010 (2006).

    Article  Google Scholar 

  • 77.

    Seuront, L. et al. The influence of Phaeocystis globosa on microscale spatial patterns of chlorophylla and bulk-phase seawater viscosity. Biogeochemistry 83, 173–188. https://doi.org/10.1007/s10533-007-9097-z (2007).

    CAS  Article  Google Scholar 

  • 78.

    Seuront, L. et al. Role of microbial and phytoplankton communities in the control of seawater viscosity off East Antarctica (30–80° E). Deep-Sea Res. 57, 877–886. https://doi.org/10.1016/j.dsr2.2008.09.018 (2010).

    ADS  CAS  Article  Google Scholar 

  • 79.

    Stoderegger, K. E. & Herndl, G. J. Production of exopolymer particles by marine bacterioplankton under contrasting turbulence conditions. Mar. Ecol. Prog. Ser. 189, 9–16. https://doi.org/10.3354/meps189009 (1999).

    ADS  CAS  Article  Google Scholar 

  • 80.

    Alunno-Bruscia, M. et al. A single bio-energetics growth and reproduction model for the oyster Crassostrea gigas in six Atlantic ecosystems. J. Sea Res. 66, 340–348. https://doi.org/10.1016/j.seares.2011.07.008 (2011).

    ADS  Article  Google Scholar 

  • 81.

    Thomas, Y. et al. Global change and climate-driven invasion of the Pacific oyster (Crassostrea gigas) along European coasts: A bioenergetics modelling approach. J. Biogeogr. 43, 568–579. https://doi.org/10.1111/jbi.12665 (2016).

    Article  Google Scholar 

  • 82.

    Guillard, R. & Hargraves, P. Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia 32, 234–236. https://doi.org/10.2216/i0031-8884-32-3-234.1 (1993).

    Article  Google Scholar 

  • 83.

    Scholin, C. A., Herzog, M., Sogin, M. & Anderson, D. M. Identification of group- and strain-specific genetic markers for globally distributed Alexandrium (Dinophyceae). II. Sequence analysis of a fragment of the LSU rRNA gene. J. Phycol. 30, 999–1011. https://doi.org/10.1111/j.0022-3646.1994.00999.x (1994).

    CAS  Article  Google Scholar 

  • 84.

    Nunn, G. B., Theisen, B. F., Christensen, B. & Arctander, P. Simplicity-correlated size growth of the nuclear 28S ribosomal RNA D3 expansion segment in the crustacean order Isopoda. J. Mol. Evol. 42, 211–223. https://doi.org/10.1007/BF02198847 (1996).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 85.

    Marie, D., Partensky, F., Jacquet, S. & Vaulot, D. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl. Environ. Microbiol. 63, 186–193. https://doi.org/10.1128/aem.63.1.186-193.1997 (1997).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 86.

    Wood, A. M., Everroad, R. C. & Wingard, L. M. Measuring growth rates in microalgal cultures. In Algal Culturing Techniques (ed. Anderson, R. A.) 269–285 (Elsevier, Amsterdam, 2005).

    Google Scholar 

  • 87.

    Kromkamp, J. C. & Forster, R. M. The use of variable fluorescence measurements in aquatic ecosystems: Differences between multiple and single turnover measuring protocols and suggested terminology. Eur. J. Phycol. 38, 103–112. https://doi.org/10.1080/0967026031000094094 (2003).

    Article  Google Scholar 

  • 88.

    Aminot, A. & Kérouel, R. Dosage Automatique des Nutriments dans les Eaux Marines: Méthodes en flux Continu (in French) (Ed. Ifremer, Plouzané, 2007).

    Google Scholar 

  • 89.

    Smith, P. K. et al. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85. https://doi.org/10.1016/0003-2697(85)90442-7 (1985).

    CAS  Article  PubMed  Google Scholar 

  • 90.

    Kamerling, J. P., Gerwig, G. J., Vliegenthart, J. F. G. & Clamp, J. R. Characterization by gas-liquid chromatography mass spectrometry of pertrimethylsilyl methyl glycosides obtained in the methanolysis of glycoproteins and glycolipids. Biochem. J. 151, 491–495. https://doi.org/10.1042/bj1510491 (1975).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 91.

    Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 22, 680–685. https://doi.org/10.1038/227680a0 (1970).

    ADS  Article  Google Scholar 

  • 92.

    Rigouin, C., Delbarre Ladrat, C., Sinquin, C., Colliec-Jouault, S. & Dion, M. Assessment of biochemical methods to detect enzymatic depolymerization of polysaccharides. Carbohydr. Polym. 76, 279–284. https://doi.org/10.1016/j.carbpol.2008.10.022 (2009).

    CAS  Article  Google Scholar 

  • 93.

    Dubray, G. & Bezard, G. A highly sensitive periodic acid-silver stain for 1,2-diol groups of glycoproteins and polysaccharides in polyacrylamide gels. Anal. Biochem. 119, 325–329. https://doi.org/10.1016/0003-2697(82)90593-0 (1982).

    CAS  Article  PubMed  Google Scholar 

  • 94.

    Aminot, A. & Kérouel, R. Hydrologie des Écosystèmes Marins: Paramètres et Analyses (in French) (Ed Ifremer, Plouzané, 2004).

    Google Scholar 

  • 95.

    R Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org (2018).

  • 96.

    Lê, S., Josse, J. & Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    King Climate Action Initiative announces new research to test and scale climate solutions

    The potential risk of exposure to Borrelia garinii, Anaplasma phagocytophilum and Babesia microti in the Wolinski National Park (north-western Poland)