Boudreau BP, Huettel M, Forster S, Jahnke RA, McLachlan A, Middelburg JJ, et al. Permeable marine sediments: overturning an old paradigm. Eos Trans AGU. 2001;82:133–6.
Huettel M, Berg P, Kostka JE. Benthic exchange and biogeochemical cycling in permeable sediments. Annu Rev Mar Sci. 2014;6:23–51.
Google Scholar
Huettel M, Ziebis W, Forster S. Flow-induced uptake of particulate matter in permeable sediments. Limnol Oceanogr. 1996;41:309–22.
Google Scholar
Huettel M, Rusch A. Transport and degradation of phytoplankton in permeable sediment. Limnol Oceanogr. 2000;45:534–49.
Google Scholar
Rusch A, Forster S, Huettel M. Bacteria, diatoms and detritus in an intertidal sandflat subject to advective transport across the water-sediment interface. Biogeochemistry. 2001;55:1–27.
Google Scholar
Ahmerkamp S, Winter C, Krämer K, de Beer D, Janssen F, Friedrich J, et al. Regulation of benthic oxygen fluxes in permeable sediments of the coastal ocean. Limnol Oceanogr. 2017;62:1935–54.
Google Scholar
Jahnke RA Global Synthesis. In: Liu KK, Atkinson L, Quinones R, Talaue-McManus L, editors. Carbon and nutrient fluxes in continental margins. Ch. 16 Berlin: Springer; 2010.
Joiris C, Billen G, Lancelot C, Daro MH, Mommaerts JP, Bertels A, et al. A budget of carbon cycling in the Belgian coastal zone: relative roles of zooplankton, bacterioplankton and benthos in the utilization of primary production. Neth. J. Sea Res. 1982;16:260–75.
Google Scholar
Jørgensen BB, Bang M, Blackburn TH. Anaerobic mineralization in marine-sediments from the Baltic-Sea-North Sea transition. Mar Ecol Prog Ser. 1990;59:39–54.
Google Scholar
Middelburg JJ, Barranguet C, Boschker HTS, Herman PMJ, Moens T, Heip CHR. The fate of intertidal microphytobenthos carbon: an in situ 13C-labeling study. Limnol Oceanogr. 2000;45:1224–34.
Google Scholar
Böer SI, Arnosti C, van Beusekom JEE, Boetius A. Temporal variations in microbial activities and carbon turnover in subtidal sandy sediments. Biogeosciences. 2009;6:1149–65.
Google Scholar
Goto N, Mitamura O, Terai H. Biodegradation of photosynthetically produced extracellular organic carbon from intertidal benthic algae. J Exp Mar Biol Ecol. 2001;257:73–86.
Google Scholar
Rusch A, Huettel M, Reimers CE, Taghon GL, Fuller CM. Activity and distribution of bacterial populations in Middle Atlantic Bight shelf sands. FEMS Microb Ecol. 2003;44:89–100.
Google Scholar
Hewson I, Vargo GA, Fuhrman JA. Bacterial diversity in shallow oligotrophic marine benthos and overlying waters: effects of virus infection, containment, and nutrient enrichment. Microb Ecol. 2003;46:322–36.
Google Scholar
Teske A, Durbin A, Ziervogel K, Cox C, Arnosti C. Microbial community composition and function in permanently cold seawater and sediments from an Arctic fjord of Svalbard. Appl Environ Microbiol. 2011;77:2008–18.
Google Scholar
Zinger L, Amaral-Zettler LA, Fuhrman JA, Horner-Devine MC, Huse SM, Welch DBM, et al. Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS ONE. 2011;6:e24570.
Google Scholar
Cardman Z, Arnosti C, Durbin A, Ziervogel K, Cox C, Steen AD, et al. Verrucomicrobia are candidates for polysaccharide-degrading bacterioplankton in an Arctic fjord of Svalbard. Appl Environ Microbiol. 2014;80:3749–56.
Google Scholar
Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science. 2012;336:608–11.
Google Scholar
Teeling H, Fuchs BM, Bennke CM, Kruger K, Chafee M, Kappelmann L, et al. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. eLife. 2016;5:e11888.
Google Scholar
Fuhrman JA, Hewson I, Schwalbach MS, Steele JA, Brown MV, Naeem S. Annually reoccurring bacterial communities are predictable from ocean conditions. Proc Natl Acad Sci USA. 2006;103:13104–9.
Google Scholar
Chafee M, Fernàndez-Guerra A, Buttigieg PL, Gerdts G, Eren AM, Teeling H, et al. Recurrent patterns of microdiversity in a temperate coastal marine environment. ISME J. 2018;12:237–52.
Google Scholar
Mayer LM. Extracellular proteolytic enzyme activity in sediments of an intertidal mudflat. Limnol Oceanogr. 1989;34:973–81.
Google Scholar
Middelburg J, Klaver G, Nieuwenhuize J, Wielemaker A, Haas W, Vlug T, et al. Organic matter mineralization in intertidal sediment along an estuarine gradient. Mar Ecol Prog Ser. 1996;132:157–68.
Tabuchi K, Kojima H, Fukui M. Seasonal changes in organic matter mineralization in a sublittoral sediment and temperature-driven decoupling of key processes. Microb Ecol. 2010;60:551–60.
Google Scholar
Hoffmann K, Hassenrück C, Salman-Carvalho V, Holtappels M, Bienhold C. Response of bacterial communities to different detritus compositions in Arctic deep-sea sediments. Front Microbiol. 2017;8:266.
Google Scholar
Gobet A, Boer SI, Huse SM, van Beusekom JEE, Quince C, Sogin ML, et al. Diversity and dynamics of rare and of resident bacterial populations in coastal sands. ISME J. 2012;6:542–53.
Google Scholar
Mills HJ, Hunter E, Humphrys M, Kerkhof L, McGuinness L, Huettel M, et al. Characterization of nitrifying, denitrifying, and overall bacterial communities in permeable marine sediments of the northeastern Gulf of Mexico. Appl Environ Microbiol. 2008;74:4440–53.
Google Scholar
Probandt D, Knittel K, Tegetmeyer HE, Ahmerkamp S, Holtappels M, Amann R. Permeability shapes bacterial communities in sublittoral surface sediments. Environ Microbiol. 2017;19:1584–99.
Google Scholar
Tait K, Airs RL, Widdicombe CE, Tarran GA, Jones MR, Widdicombe S. Dynamic responses of the benthic bacterial community at the Western English Channel observatory site L4 are driven by deposition of fresh phytodetritus. Prog Oceanogr. 2015;137:546–58.
Google Scholar
Wiltshire K, Kraberg A, Bartsch I, Boersma M, Franke H-D, Freund J, et al. Helgoland Roads, North Sea: 45 years of change. Estuaries and Coasts. 2010;33:295–310.
Google Scholar
Probandt D. Microbial ecology of subtidal sandy sediments [PhD thesis]. Bremen: University of Bremen; 2017.
Berge J, Renaud PE, Darnis G, Cottier F, Last K, Gabrielsen TM, et al. In the dark: a review of ecosystem processes during the Arctic polar night. Prog Oceanogr. 2015;139:258–71.
Google Scholar
Boehnert S, Ruiz Soto S, Fox BRS, Yokoyama Y, Hebbeln D. Historic development of heavy metal contamination into the Firth of Thames, New Zealand. Geo-Mar Lett. 2020;40:149–65.
Google Scholar
Lorenzen CJ. Determination of chlorophyll and pheo-pigments: spectrophotometric eqations. Limnol Oceanogr. 1967;12:343–6.
Google Scholar
Zhou J, Bruns MA, Tiedje JM. DNA recovery from soils of diverse composition. Appl Environ Microbiol. 1996;62:316–22.
Google Scholar
Herlemann DPR, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011;5:1571–9.
Google Scholar
Bushnell B, Rood J, Singer E. BBMerge—accurate paired shotgun read merging via overlap. PLoS ONE. 2017;12:e0185056.
Google Scholar
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–41.
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D596.
Google Scholar
Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11:2639–43.
Google Scholar
Oksanen J, Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. R package version. 2019;2:5–6.
Team R.C. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.r-project.org/; 2019.
Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, et al. Welcome to the Tidyverse. J Open Source Softw. 2019;4:1686.
Google Scholar
Chapman MG, Underwood AJ. Ecological patterns in multivariate assemblages: information and interpretation of negative values in ANOSIM tests. Mar Ecol Prog Ser. 1999;180:257–65.
Google Scholar
Pernthaler A, Pernthaler J, Amann R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol. 2002;68:3094–101.
Google Scholar
Pernthaler J, Pernthaler A, Amann R. Automated enumeration of groups of marine picoplankton after fluorescence in situ hybridization. Appl Environ Microbiol. 2003;69:2631–7.
Google Scholar
Bennke CM, Reintjes G, Schattenhofer M, Ellrott A, Wulf J, Zeder M, et al. Modification of a high-throughput automatic microbial cell enumeration system for shipboard analyses. Appl Environ Microbiol. 2016;82:3289–96.
Google Scholar
Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, et al. ARB: a software environment for sequence data. Nucleic Acids Res. 2004;32:1363–71.
Google Scholar
Snaidr J, Amann R, Huber I, Ludwig W, Schleifer K, Snaidr J, et al. Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl Environ Microbiol. 1997;63:2884–96.
Google Scholar
Bockelmann F-D, Puls W, Kleeberg U, Müller D, Emeis K-C. Mapping mud content and median grain-size of North Sea sediments—a geostatistical approach. Mar Geol. 2018;397:60–71.
Google Scholar
Hoshino T, Doi H, Uramoto G-I, Wörmer L, Adhikari RR, Xiao N, et al. Global diversity of microbial communities in marine sediment. Proc Natl Acad Sci USA. 2020;117:27587–97.
Google Scholar
Probandt D, Eickhorst T, Ellrott A, Amann R, Knittel K. Microbial life on a sand grain: from bulk sediment to single grains. ISME J. 2017;12:623.
Google Scholar
Acosta-González A, Rosselló-Móra R, Marqués S. Characterization of the anaerobic microbial community in oil-polluted subtidal sediments: aromatic biodegradation potential after the Prestige oil spill. Environ Microbiol. 2013;15:77–92.
Google Scholar
Tian F, Yu Y, Chen B, Li H, Yao Y-F, Guo X-K. Bacterial, archaeal and eukaryotic diversity in Arctic sediment as revealed by 16S rRNA and 18S rRNA gene clone libraries analysis. Polar Biol. 2009;32:93–103.
Google Scholar
Zeng Y, Zou Y, Grebmeier JM, He J, Zheng T. Culture-independent and culture-dependent methods to investigate the diversity of planktonic bacteria in the northern Bering Sea. Polar Biol. 2012;35:117–29.
Google Scholar
Santelli CM, Orcutt BN, Banning E, Bach W, Moyer CL, Sogin ML, et al. Abundance and diversity of microbial life in ocean crust. Nature. 2008;453:653–6.
Google Scholar
Ravenschlag K, Sahm K, Pernthaler J, Amann R. High bacterial diversity in permanently cold marine sediments. Appl Environ Microbiol. 1999;65:3982–9.
Google Scholar
Hunter EM, Mills HJ, Kostka JE. Microbial community diversity associated with carbon and nitrogen cycling in permeable shelf sediments. Appl Environ Microbiol. 2006;72:5689–701.
Google Scholar
Dyksma S, Bischof K, Fuchs BM, Hoffmann K, Meier D, Meyerdierks A, et al. Ubiquitous Gammaproteobacteria dominate dark carbon fixation in coastal sediments. ISME J. 2016;10:1939–53.
Google Scholar
Allers E, Wright JJ, Konwar KM, Howes CG, Beneze E, Hallam SJ, et al. Diversity and population structure of Marine Group A bacteria in the Northeast subarctic Pacific Ocean. ISME J. 2013;7:256–68.
Google Scholar
Hodal H, Falk-Petersen S, Hop H, Kristiansen S, Reigstad M. Spring bloom dynamics in Kongsfjorden, Svalbard: nutrients, phytoplankton, protozoans and primary production. Polar Biol. 2012;35:191–203.
Google Scholar
Jönsson BF, Salisbury JE, Mahadevan A. Large variability in continental shelf production of phytoplankton carbon revealed by satellite. Biogeosciences. 2011;8:1213–23.
Google Scholar
Kuliński K, Kędra M, Legeżyńska J, Gluchowska M, Zaborska A. Particulate organic matter sinks and sources in high Arctic fjord. J Mar Syst. 2014;139:27–37.
Google Scholar
Bourgeois S, Kerhervé P, Calleja ML, Many G, Morata N. Glacier inputs influence organic matter composition and prokaryotic distribution in a high Arctic fjord (Kongsfjorden, Svalbard). J Mar Syst. 2016;164:112–27.
Google Scholar
Zaborska A, Włodarska-Kowalczuk M, Legeżyńska J, Jankowska E, Winogradow A, Deja K. Sedimentary organic matter sources, benthic consumption and burial in west Spitsbergen fjords—signs of maturing of Arctic fjordic systems? J Mar Syst. 2018;180:112–23.
Google Scholar
McGovern M, Pavlov AK, Deininger A, Granskog MA, Leu E, Søreide JE, et al. Terrestrial inputs drive seasonality in organic matter and nutrient biogeochemistry in a high Arctic fjord system (Isfjorden, Svalbard). Front Mar Sci. 2020;7:747.
Google Scholar
Avci B, Krüger K, Fuchs BM, Teeling H, Amann RI. Polysaccharide niche partitioning of distinct Polaribacter clades during North Sea spring algal blooms. ISME J. 2020;14:1369–83.
Google Scholar
Braeckman U, Janssen F, Lavik G, Elvert M, Marchant H, Buckner C, et al. Carbon and nitrogen turnover in the Arctic deep sea: in situ benthic community response to diatom and coccolithophorid phytodetritus. Biogeosciences. 2018;15:6537–57.
Google Scholar
Guilini K, Oevelen DV, Soetaert K, Middelburg JJ, Vanreusela A. Nutritional importance of benthic bacteria for deep-sea nematodes from the Arctic ice margin: results of an isotope tracer experi5ment. Limnol Oceanogr. 2010;55:1977–89.
Google Scholar
van Oevelen D, Soetaert K, Middelburg J, Herman P, Moodley L, Hamels I, et al. Carbon flows through a benthic food web: Integrating biomass, isotope and tracer data. J Mar Res. 2006;64:453–82.
Google Scholar
Danovaro R, Dell’Anno A, Corinaldesi C, Magagnini M, Noble R, Tamburini C. et al. Major viral impact on the functioning of benthic deep-sea ecosystems. Nature. 2008;454:1084–7.
Google Scholar
Miller DC. Abrasion effects on microbes in sandy sediments. Mar Ecol Prog Ser. 1989;55:73–82.
Google Scholar
Ahmerkamp S, Marchant HK, Peng C, Probandt D, Littmann S, Kuypers MM. et al. The effect of sediment grain properties and porewater flow on microbial abundance and respiration in permeable sediments. Sci. Rep. 2020;10:3573
Google Scholar
Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk HP. et al. Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev. 2016;80:1–43.
Google Scholar
Schrempf H. Actinobacteria within soils: capacities for mutualism, symbiosis and pathogenesis. FEMS Microbiol Lett. 2013;342:77–78.
Google Scholar
Giovannoni SJ, Stingl U. Molecular diversity and ecology of microbial plankton. Nature. 2005;437:343–8.
Google Scholar
Yilmaz P, Iversen MH, Hankeln W, Kottmann R, Quast C, Glöckner FO. Ecological structuring of bacterial and archaeal taxa in surface ocean waters. FEMS Microbiol Ecol. 2012;81:373–85.
Google Scholar
Bienhold C, Zinger L, Boetius A, Ramette A. Diversity and biogeography of bathyal and abyssal seafloor bacteria. PLoS ONE. 2016;11:e0148016.
Google Scholar
Rappé MS, Kemp PF, Giovannoni SJ. Phylogenetic diversity of marine coastal picoplankton 16S rRNA genes cloned from the continental shelf off Cape Hatteras, North Carolina. Limnol Oceanogr. 1997;42:811–26.
Google Scholar
Zeng Y-X, Yu Y, Li H-R, Luo W. Prokaryotic community composition in Arctic Kongsfjorden and sub-arctic northern Bering Sea sediments as revealed by 454 pyrosequencing. Front Microbiol. 2017;8:2498.
Google Scholar
Fang X-M, Zhang T, Li J, Wang NF, Wang Z, Yu LY. Bacterial community pattern along the sediment seafloor of the Arctic fjorden (Kongsfjorden, Svalbard). Antonie Van Leeuwenhoek. 2019;112:1121–36.
Google Scholar
Ziemert N, Lechner A, Wietz M, Millán-Aguiñaga N, Chavarria KL, Jensen PR. et al. Diversity and evolution of secondary metabolism in the marine actinomycete genus salinispora. Proc Natl Acad Sci USA. 2014;111:e1130–1139.
Google Scholar
Manivasagan P, Venkatesan J, Sivakumar K, Kim SK. Pharmaceutically active secondary metabolites of marine actinobacteria. Microbiol Res. 2014;169:262–78.
Google Scholar
Kamjam M, Sivalingam P, Deng Z, Hong K. Deep sea Actinomycetes and their secondary metabolites. Front Microbiol. 2017;8:760.
Google Scholar
Lewin GR, Carlos C, Chevrette MG, Horn HA, McDonald BR, Stankey RJ. et al. Evolution and ecology of Actinobacteria and their bioenergy applications. Annu Rev Microbiol. 2016;70:235–54.
Google Scholar
Matsumoto A, Kasai H, Matsuo Y, Ōmura S, Shizuri Y, Takahashi Y. Ilumatobacter fluminis gen. nov., sp. nov., a novel actinobacterium isolated from the sediment of an estuary. J Gen Appl Microbiol. 2009;55:201–5.
Google Scholar
Ghai R, Mizuno CM, Picazo A, Camacho A, Rodriguez-Valera F. Metagenomics uncovers a new group of low GC and ultra-small marine Actinobacteria. Sci Rep. 2013;3:2471.
Google Scholar
El Kaoutari A, Armougom F, Gordon J, Raoult D, Henrissat B. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat Rev Microbiol. 2013;11:497–504.
Berlemont R, Martiny AC. Glycoside hydrolases across environmental microbial communities. PLoS Comp. Biol. 2016;12:e1005300.
Google Scholar
Becker S, Tebben J, Coffinet S, Wiltshire K, Iversen MH, Harder T, et al. Laminarin is a major molecule in the marine carbon cycle. Proc Natl Acad Sci USA. 2020;117:6599–607.
Google Scholar
Coutinho MCL, Teixeira VL, Santos CSG. A review of “Polychaeta” chemicals and their possible ecological role. J Chem Ecol. 2018;44:72–94.
Google Scholar
Arnosti C. Functional differences between Arctic seawater and sedimentary microbial communities: contrasts in microbial hydrolysis of complex substrates. FEMS Microbiol Ecol. 2008;66:343–51.
Google Scholar
Krüger K, Chafee M, Francis TB, Del Rio TG, Becher D, Schweder T, et al. In marine Bacteroidetes the bulk of glycan degradation during algae blooms is mediated by few clades using a restricted set of genes. ISME J. 2019;13:2800–16.
Google Scholar
Reintjes G, Arnosti C, Fuchs BM, Amann R. An alternative polysaccharide uptake mechanism of marine bacteria. ISME J. 2017;11:1640–50.
Google Scholar
Arnosti C, Jørgensen BB. High activity and low temperature optima of extracellular enzymes in Arctic sediments: implications for carbon cycling by heterotrophic microbial communities. Mar Ecol Prog Ser. 2003;249:15–24.
Google Scholar
Arnosti C, Jørgensen BB. Organic carbon degradation in Arctic marine sediments, Svalbard: a comparison of initial and terminal steps. Geomicrobiol J. 2006;23:551–63.
Google Scholar
Source: Ecology - nature.com