in

Bacterial seed endophyte shapes disease resistance in rice

  • 1.

    Boyd, L. A., Ridout, C., O’Sullivan, D. M., Leach, J. E. & Leung, H. Plant–pathogen interactions: disease resistance in modern agriculture. Trends Genet. 29, 233–240 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    Edwards, J. et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl Acad. Sci. USA 112, E911–E920 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Bebber, D. P., Ramotowski, M. A. T. & Gurr, S. J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change 3, 985–988 (2013).

    Article  Google Scholar 

  • 4.

    Ham, J. H., Melanson, R. A. & Rush, M. C. Burkholderia glumae: next major pathogen of rice? Mol. Plant Pathol. 12, 329–339 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    Naughton, L. M. et al. Functional and genomic insights into the pathogenesis of Burkholderia species to rice. Environ. Microbiol. 18, 780–790 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Liu, X. et al. Biotoxin tropolone contamination associated with nationwide occurrence of pathogen Burkholderia plantarii in agricultural environments in China. Environ. Sci. Technol. 52, 5105–5114 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Hautier, Y. et al. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 348, 336–340 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 8.

    Jung, B. et al. Cooperative interactions between seed-borne bacterial and air-borne fungal pathogens on rice. Nat. Commun. 9, 31 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 9.

    Miyagawa, H., Ozaki, K. & Kimura, T. Pathogenicity of Pseudomonas glumae and P. plantarii to the ears and leaves of graminaceous plants. Bull. Chugoku Natl Agric. Exp. Stn 3, 31–43 (1988).

    Google Scholar 

  • 10.

    Wang, M., Hashimoto, M. & Hashidoko, Y. Carot-4-en-9,10-diol, a conidiation-inducing sesquiterpene diol produced by Trichoderma virens PS1-7 upon exposure to chemical stress from highly active iron chelators. Appl. Environ. Microbiol. 79, 1906–1914 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Wang, M., Hashimoto, M. & Hashidoko, Y. Repression of tropolone production and induction of a Burkholderia plantarii pseudo-biofilm by carot-4-en-9,10-diol, a cell-to-cell signaling disrupter produced by Trichoderma virens. PLoS ONE 8, e78024 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Leach, J. E., Triplett, L. R., Argueso, C. T. & Trivedi, P. Communication in the phytobiome. Cell 169, 587–596 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 13.

    Wu, Y. et al. Policy distortions, farm size, and the overuse of agricultural chemicals in China. Proc. Natl Acad. Sci. USA 115, 7010–7015 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Chaparro, J. M., Badri, D. V. & Vivanco, J. M. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 8, 790–803 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Derksen, H., Rampitsch, C. & Daayf, F. Signaling cross-talk in plant disease resistance. Plant Sci. 207, 79–87 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 16.

    Toju, H. et al. Core microbiomes for sustainable agroecosystems. Nat. Plants 4, 247–257 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Wang, M. & Cernava, T. Overhauling the assessment of agrochemical-driven interferences with microbial communities for improved global ecosystem integrity. Environ. Sci. Ecotechnol. 4, 100061 (2020).

    Article  Google Scholar 

  • 18.

    Cheng, Y. T., Zhang, L. & He, S. Y. Plant–microbe interactions facing environmental challenge. Cell Host Microbe 26, 183–192 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Berg, G., Grube, M., Schloter, M. & Smalla, K. Unraveling the plant microbiome: looking back and future perspectives. Front. Microbiol. 5, 148 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 20.

    Duran, P. et al. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell 175, 973–983 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Turner, T. R., James, E. K. & Poole, P. S. The plant microbiome. Genome Biol. 14, 209 (2013).

  • 22.

    Niu, B., Paulson, J. N., Zheng, X. & Kolter, R. Simplified and representative bacterial community of maize roots. Proc. Natl Acad. Sci. USA 114, E2450–E2459 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Kwak, M.-J. et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat. Biotechnol. 36, 1100 (2018).

    CAS  Article  Google Scholar 

  • 24.

    Zhang, J. et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat. Biotechnol. 37, 676–684 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    Haney, C. H., Samuel, B. S., Bush, J. & Ausubel, F. M. Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nat. Plants 1, 15051 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Liu, H., Brettell, L. E. & Singh, B. Linking the phyllosphere microbiome to plant health. Trends Plant Sci. 25, 841–844 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 27.

    Fan, X. et al. Microenvironmental interplay predominated by beneficial Aspergillus abates fungal pathogen incidence in paddy environment. Environ. Sci. Technol. 53, 13042–13052 (2019).

  • 28.

    Shade, A., Jacques, M. A. & Barret, M. Ecological patterns of seed microbiome diversity, transmission, and assembly. Curr. Opin. Microbiol. 37, 15–22 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Nelson, E. B. The seed microbiome: origins, interactions, and impacts. Plant Soil 422, 7–34 (2017).

    Article  CAS  Google Scholar 

  • 30.

    Sultan, S. E. Phenotypic plasticity for plant development, function and life history. Trends Plant Sci. 5, 537–542 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 31.

    Wang, M. et al. Indole-3-acetic acid produced by Burkholderia heleia acts as a phenylacetic acid antagonist to disrupt tropolone biosynthesis in Burkholderia plantarii. Sci. Rep. 6, 22596 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    Miwa, S. et al. Identification of the three genes involved in controlling production of a phytotoxin tropolone in Burkholderia plantarii. J. Bacteriol. 198, 1604–1609 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Solis, R., Bertani, I., Degrassi, G., Devescovi, G. & Venturi, V. Involvement of quorum sensing and RpoS in rice seedling blight caused by Burkholderia plantarii. FEMS Microbiol. Lett. 259, 106–112 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 34.

    Truyens, S., Weyens, N., Cuypers, A. & Vangronsveld, J. Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ. Microbiol. Rep. 7, 40–50 (2015).

    Article  Google Scholar 

  • 35.

    Rybakova, D. et al. The structure of the Brassica napus seed microbiome is cultivar-dependent and affects the interactions of symbionts and pathogens. Microbiome 5, 104 (2017).

  • 36.

    Bergna, A. et al. Tomato seeds preferably transmit plant beneficial endophytes. Phytobiomes J. 2, 183–193 (2018).

    Article  Google Scholar 

  • 37.

    Wassermann, B., Cernava, T., Muller, H., Berg, C. & Berg, G. Seeds of native alpine plants host unique microbial communities embedded in cross-kingdom networks. Microbiome 7, 108 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Berg, G. & Raaijmakers, J. M. Saving seed microbiomes. ISME J. 12, 1167–1170 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Kim, H., Nishiyama, M., Kunito, T. & Oyaizu, H. High population of Sphingomonas species on plant surface. J. Appl. Microbiol. 85, 731–736 (1998).

    Article  Google Scholar 

  • 40.

    Carlström, C. I. et al. Synthetic microbiota reveal priority effects and keystone strains in the Arabidopsis phyllosphere. Nat. Ecol. Evol. 3, 1445–1454 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 41.

    Rochefort, A. et al. Influence of environment and host plant genotype on the structure and diversity of the Brassica napus seed microbiota. Phytobiomes J. 3, 326–336 (2019).

    Article  Google Scholar 

  • 42.

    Berg, G. et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8, 103 (2020).

  • 43.

    Kim, H., Lee, K. K., Jeon, J., Harris, W. A. & Lee, Y. H. Domestication of Oryza species eco-evolutionarily shapes bacterial and fungal communities in rice seed. Microbiome 8, 20 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Cordovez, V., Dini-Andreote, F., Carrion, V. J. & Raaijmakers, J. M. Ecology and evolution of plant microbiomes. Annu. Rev. Microbiol. 73, 69–88 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 45.

    Banerjee, S., Schlaeppi, K. & van der Heijden, M. G. A. Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 16, 567–576 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 46.

    Thomas, F., Corre, E. & Cebron, A. Stable isotope probing and metagenomics highlight the effect of plants on uncultured phenanthrene-degrading bacterial consortium in polluted soil. ISME J. 13, 1814–1830 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 47.

    Wang, H., Zhi, X. Y., Qiu, J., Shi, L. & Lu, Z. Characterization of a novel nicotine degradation gene cluster ndp in Sphingomonas melonis TY and its evolutionary analysis. Front. Microbiol. 8, 337 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 48.

    Maeda, H. et al. A rice gene that confers broad-spectrum resistance to β-triketone herbicides. Science 365, 393 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 49.

    Bakker, P., Pieterse, C. M. J., de Jonge, R. & Berendsen, R. L. The soil-borne legacy. Cell 172, 1178–1180 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 50.

    Scholthof, K. B. The disease triangle: pathogens, the environment and society. Nat. Rev. Microbiol. 5, 152–156 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 51.

    Barillot, C. D. C., Sarde, C. O., Bert, V., Tarnaud, E. & Cochet, N. A standardized method for the sampling of rhizosphere and rhizoplan soil bacteria associated to a herbaceous root system. Ann. Microbiol. 63, 471–476 (2013).

    CAS  Article  Google Scholar 

  • 52.

    Maeda, Y. et al. Phylogenetic study and multiplex PCR-based detection of Burkholderia plantarii, Burkholderia glumae and Burkholderia gladioli using gyrB and rpoD sequences. Int. J. Syst. Evol. Microbiol. 56, 1031–1038 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 53.

    Takeuchi, T., Sawada, H., Suzuki, F. & Matsuda, I. Specific detection of Burkolderia plantarii and B. glumae by PCR using primers selected from the 16S–23S rDNA spacer regions. Ann. Phytopath. Soc. Japan 63, 455–462 (1997).

    CAS  Article  Google Scholar 

  • 54.

    Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 55.

    Kusstatscher, P. et al. Microbiome-driven identification of microbial indicators for postharvest diseases of sugar beets. Microbiome 7, 112 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 56.

    Lundberg, D. S., Yourstone, S., Mieczkowski, P., Jones, C. D. & Dangl, J. L. Practical innovations for high-throughput amplicon sequencing. Nat. Methods 10, 999–1002 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 57.

    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 58.

    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

  • 59.

    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 60.

    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahe, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 61.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 62.

    Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 63.

    Ayyagari, V. S. & Sreerama, K. Evaluation of haplotype diversity of Achatina fulica (Lissachatina) [Bowdich] from Indian sub-continent by means of 16S rDNA sequence and its phylogenetic relationships with other global populations. 3 Biotech 7, 252 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 64.

    Lu, J. et al. Induced jasmonate signaling leads to contrasting effects on root damage and herbivore performance. Plant Physiol. 167, 1100–1116 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 65.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 66.

    Anders, S., Pyl, P. T. & Huber, W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 67.

    Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 68.

    Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 69.

    Deng, X., Zhou, Y., Zheng, W., Bai, L. & Zhou, X. Dissipation dynamic and final residues of oxadiargyl in paddy fields using high-performance liquid chromatography-tandem mass spectrometry coupled with modified QuEChERS method. Int. J. Environ. Res. Public Health 15, 1680 (2018).

    PubMed Central  Article  CAS  Google Scholar 

  • 70.

    Lang, Z. et al. Isolation and characterization of a quinclorac-degrading Actinobacteria Streptomyces sp. strain AH-B and its implication on microecology in contaminated soil. Chemosphere 199, 210–217 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 71.

    Sun, M., Li, H. & Jaisi, D. P. Degradation of glyphosate and bioavailability of phosphorus derived from glyphosate in a soil–water system. Water Res. 163, 114840 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Aerosols from pollution, desert storms, and forest fires may intensify thunderstorms

    Portable device can quickly detect plant stress