in

Baleen whale prey consumption based on high-resolution foraging measurements

  • 1.

    Enquist, B. J., Abraham, A. J., Harfoot, M. B. J., Malhi, Y. & Doughty, C. E. The megabiota are disproportionately important for biosphere functioning. Nat. Commun. 11, 699 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 2.

    Doughty, C. E. et al. Global nutrient transport in a world of giants. Proc. Natl Acad. Sci. USA 113, 868–873 (2016).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Roman, J. & McCarthy, J. J. The whale pump: marine mammals enhance primary productivity in a coastal basin. PLoS ONE 5, e13255 (2010).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 4.

    Barlow, J., Kahru, M. & Mitchell, B. G. Cetacean biomass, prey consumption, and primary production requirements in the California Current ecosystem. Mar. Ecol. Prog. Ser. 371, 285–295 (2008).

    ADS 
    Article 

    Google Scholar 

  • 5.

    Fortune, S. M. E., Trites, A. W., Mayo, C. A., Rosen, D. A. S. & Hamilton, P. K. Energetic requirements of North Atlantic right whales and the implications for species recovery. Mar. Ecol. Prog. Ser. 478, 253–272 (2013).

    ADS 
    Article 

    Google Scholar 

  • 6.

    Trites, A. W., Christensen, V. & Pauly, D. Competition between fisheries and marine mammals for prey and primary production in the Pacific Ocean. J. Northwest Atl. Fish. Sci. 22, 173–187 (1997).

    Article 

    Google Scholar 

  • 7.

    Lavery, T. J. et al. Whales sustain fisheries: blue whales stimulate primary production in the Southern Ocean. Mar. Mammal Sci. 30, 888–904 (2014).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Croll, D. A., Kudela, R. & Tershy, B. R. in Whales, Whaling, and Ocean Ecosystems (eds. Estes, J. A. et al.) 202–214 (Univ. California Press, 2006).

  • 9.

    Smith, L. A., Link, J. S., Cadrin, S. X. & Palka, D. L. Consumption by marine mammals on the Northeast U.S. continental shelf. Ecol. Appl. 25, 373–389 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Atkinson, A., Siegel, V., Pakhomov, E. A., Jessopp, M. J. & Loeb, V. A re-appraisal of the total biomass and annual production of Antarctic krill. Deep. Res. Part I Oceanogr. Res. Pap. 56, 727–740 (2009).

    ADS 
    Article 

    Google Scholar 

  • 11.

    Pauly, D. & Zeller, D. Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nat. Commun. 7, 10244 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Estes, J. A., Heithaus, M., McCauley, D. J., Rasher, D. B. & Worm, B. Megafaunal Impacts on Structure and Function of Ocean Ecosystems. Annu. Rev. Environ. Resour. 41, 83–116 (2016).

    Article 

    Google Scholar 

  • 13.

    Smetacek, V. in Impacts of Global Warming on Polar Ecosystems (ed. Duarte, C. M.) 46–80 (Fundacion BBVA, 2008).

  • 14.

    Wing, S. et al. Seabirds and marine mammals redistribute bioavailable iron in the Southern Ocean. Mar. Ecol. Prog. Ser. 510, 1–13 (2014).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 15.

    Nicol, S. et al. Southern Ocean iron fertilization by baleen whales and Antarctic krill. Fish Fish. 11, 203–209 (2010).

    Article 

    Google Scholar 

  • 16.

    Ripple, W. J., Wolf, C., Newsome, T. M., Hoffmann, M. & Wirsing, A. J. Extinction risk is most acute for the world’s largest and smallest vertebrates. Proc. Natl Acad. Sci. USA 114, 10678–10683 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    McCauley, D. J. et al. Marine defaunation: animal loss in the global ocean. Science 347, 1255641 (2015).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 18.

    Goldbogen, J. A. et al. How baleen whales feed: the biomechanics of engulfment and filtration. Ann. Rev. Mar. Sci. 9, 367–386 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Kleiber, M. The Fire of Life: An Introduction to Animal Energetics (Krieger, 1975).

  • 20.

    Nagy, K. A. Field metabolic rate and body size. J. Exp. Biol. 208, 1621–1625 (2005).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Roman, J. et al. Whales as marine ecosystem engineers. Front. Ecol. Environ. 12, 377–385 (2014).

    Article 

    Google Scholar 

  • 22.

    Atkinson, A., Siegel, V., Pakhomov, E. & Rothery, P. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432, 100–103 (2004).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Lee, C. I. L., Pakhomov, E., Atkinson, A. & Siegel, V. Long-term relationships between the marine environment, krill and salps in the Southern Ocean. J. Mar. Biol. 2010, 410129 (2010).

    Article 

    Google Scholar 

  • 24.

    Kahane-Rapport, S. R. & Goldbogen, J. A. Allometric scaling of morphology and engulfment capacity in rorqual whales. J. Morphol. 279, 1256–1268 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Goldbogen, J. A. et al. Why whales are big but not bigger: physiological drivers and ecological limits in the age of ocean giants. Science 366, 1367–1372 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Nickels, C. F., Sala, L. M. & Ohman, M. D. The morphology of euphausiid mandibles used to assess selective predation by blue whales in the southern sector of the California Current System. J. Crustac. Biol. 38, 563–573 (2018).

    Article 

    Google Scholar 

  • 27.

    Croll, D. A., Kudela, R. & Tershy, B. R. in Whales, Whaling, and Ocean Ecosystems (eds. Estes, J. A. et al.) 202–214 (Univ. California Press, 2006).

  • 28.

    Fleming, A. H., Clark, C. T., Calambokidis, J. & Barlow, J. Humpback whale diets respond to variance in ocean climate and ecosystem conditions in the California Current. Glob. Chang. Biol. 22, 1214–1224 (2015).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Katija, K. Biogenic inputs to ocean mixing. J. Exp. Biol. 215, 1040–1049 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Katija, K., Sherlock, R. E., Sherman, A. D. & Robison, B. H. New technology reveals the role of giant larvaceans in oceanic carbon cycling. Sci. Adv. 3, e1602374 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Riisgård, H. U. On measurement of filtration rates in bivalves — the stony road to reliable data: review and interpretation. Mar. Ecol. Prog. Ser. 211, 275–291 (2001).

    ADS 
    Article 

    Google Scholar 

  • 32.

    Drenner, R. W., Mummert, J. R. & O’Brien, W. J. Filter-feeding rates of gizzard shad. Trans. Am. Fish. Soc. 111, 210–215 (1982).

    Article 

    Google Scholar 

  • 33.

    Rocha, R. C. Jr, Clapham, P. J. & Ivashchenko, Y. V. Emptying the oceans: a summary of industrial whaling catches in the 20th century. Mar. Fish. Rev. 76, 37–48 (2014).

    Article 

    Google Scholar 

  • 34.

    Christensen, L. B. Marine mammal populations: reconstructing historical abundances at the global scale. Fish. Cent. Res. Reports 14, 167 (2006).

    Google Scholar 

  • 35.

    Laws, R. M. Seals and whales of the Southern Ocean. Philos. Trans. R. Soc. B Biol. Sci. 279, 81–96 (1977).

    ADS 

    Google Scholar 

  • 36.

    Myers, R. A. & Worm, B. Rapid worldwide depletion of predatory fish communities. Nature 423, 280–283 (2003).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Trathan, P. N., Ratcliffe, N. & Masden, E. A. Ecological drivers of change at South Georgia: the krill surplus, or climate variability. Ecography 35, 983–993 (2012).

    Article 

    Google Scholar 

  • 38.

    Dunn, M. J. et al. Population size and decadal trends of three penguin species nesting at Signy Island, South Orkney Islands. PLoS ONE 11, e0164025 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 39.

    Falkowski, P. G., Barber, R. T. & Smetacek, V. Biogeochemical controls and feedbacks on ocean primary production. Science 281, 200–206 (1998).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Ratnarajah, L. et al. A preliminary model of iron fertilisation by baleen whales and Antarctic krill in the Southern Ocean: sensitivity of primary productivity estimates to parameter uncertainty. Ecol. Modell. 320, 203–212 (2016).

    Article 

    Google Scholar 

  • 41.

    Willis, J. Whales maintained a high abundance of krill; both are ecosystem engineers in the Southern Ocean. Mar. Ecol. Prog. Ser. 513, 51–69 (2014).

    ADS 
    Article 

    Google Scholar 

  • 42.

    Gerber, L. R., Morissette, L., Kaschner, K. & Pauly, D. Should whales be culled to increase fishery yield? Science 323, 880–881 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Ruzicka, J. J., Steele, J. H., Ballerini, T., Gaichas, S. K. & Ainley, D. G. Dividing up the pie: whales, fish, and humans as competitors. Prog. Oceanogr. 116, 207–219 (2013).

    ADS 
    Article 

    Google Scholar 

  • 44.

    Arrigo, K. R., van Dijken, G. L. & Bushinsky, S. Primary production in the Southern Ocean, 1997-2006. J. Geophys. Res. Ocean. 113, C08004 (2008).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 45.

    Geremia, C. et al. Migrating bison engineer the green wave. Proc. Natl Acad. Sci. USA 116, 25707–25713 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 46.

    Abrahms, B. et al. Memory and resource tracking drive blue whale migrations. Proc. Natl Acad. Sci. USA 116, 5582–5587 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Bar-on, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 48.

    Pallin, L. J. et al. High pregnancy rates in humpback whales (Megaptera novaeangliae) around the Western Antarctic Peninsula, evidence of a rapidly growing population. R. Soc. Open Sci. 5, 180017 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 49.

    Aksnes, D. L. & Ohman, M. D. Multi-decadal shoaling of the euphotic zone in the southern sector of the California Current System. Limnol. Oceanogr. 54, 1272–1281 (2009).

    ADS 
    Article 

    Google Scholar 

  • 50.

    Krough, A. The physiology of the blue whale. Nature 133, 635–637 (1934).

    ADS 
    Article 

    Google Scholar 

  • 51.

    Lockyer, C. in Mammals in the Seas: Large Cetaceans (eds. Clarke, J. G., Goodman, J. & Soave, G. A.) 379–487 (FAO, 1981).

  • 52.

    Tamura, T. & Ohsumi, S. Regional assessments of prey consumption by marine cetaceans in the world. International Whaling Comission Scientific Report (2000); https://doi.org/10.1079/9780851996332.0143

  • 53.

    Leaper, R. & Lavigne, D. How much do large whales eat? J. Cetacean Res. Manag. 9, 179–188 (2007).

    Google Scholar 

  • 54.

    Klumov, S. K. Food and helminth fauna of whalebone whales (Mystacoceti) in the main whaling regions of the world ocean. Tr. Instituta Okeanol. 71, 94–194 (1963).

    Google Scholar 

  • 55.

    Sigurjónsson, J. & Víkingsson, G. A. Estimation of food consumption by cetaceans in Icelandic and adjacent waters. J. Northw. Atl. Fish. Sci 22, 271–287 (1997).

    Article 

    Google Scholar 

  • 56.

    Tamura, T. & Konishi, K. Food habit and prey consumption of Antarctic minke whale Balaenoptera bonaerensis in JARPA research area. Inst. Cetacean Res. Rep. SC/D06/J18 (2006).

  • 57.

    Kenney, R. D., Scott, G. P., Thompson, T. J. & Winn, H. E. Estimates of prey consumption and trophic impacts of cetaceans in the USA northeast continental shelf ecosystem. J. Northwest Atl. Fish. Sci. 22, 155–171 (1997).

    Article 

    Google Scholar 

  • 58.

    Innes, B. Y. S., Lavigne, D. M., Earle, W. M. & Kovacs, K. M. Feeding rates of seals and whales. J. Anim. Ecol. 56, 115–130 (1987).

    Article 

    Google Scholar 

  • 59.

    Tamura, T. & Konishi, K. Prey composition and consumption rate by Antarctic minke whales based on JARPA and JARPAII data. Inst. Cetacean Res. Rep. SC/F14/J15 (2014).

  • 60.

    Tamura, T. Preliminary analyses on prey consumption by fin whales based on JARPAII data. Inst. Cetacean Res. Rep. SC/F14/J16 (2014).

  • 61.

    Tamura, T., Konishi, K. & Isoda, T. Updated estimation of prey consumption by common minke, Bryde’s and sei whales in the western North Pacific. Inst. Cetacean Res. Rep. SC/F16/JR15 (2016).

  • 62.

    Lockyer, C. All creatures great and smaller: a study in cetacean life history energetics. J. Mar. Biol. Assoc. UK 87, 1035–1045 (2007).

    Article 

    Google Scholar 

  • 63.

    Víkingsson, G. A. Feeding of fin whales (Balaenoptera physalus) off Iceland – diurnal and seasonal variation and possible rates. J. Northwest Atl. Fish. Sci. 22, 77–89 (1997).

    Article 

    Google Scholar 

  • 64.

    Ichii, T. & Kato, H. Food and daily food consumption of southern minke whales in the Antarctic (Balaenoptera acutorostrata). Polar Biol. 11, 479–487 (1991).

    Article 

    Google Scholar 

  • 65.

    Tamura, T. & Konishi, K. Feeding habits and prey consumption of Antarctic minke whale (Balaenoptera bonaerensis) in the Southern Ocean. J. Northwest Atl. Fish. Sci. 42, 13–25 (2009).

    Article 

    Google Scholar 

  • 66.

    Lockyer, C. Body fat condition in northeast Atlantic fin whales, Balaenoptera physalus, and its relationship with reproduction and food resource. Can. J. Fish. Aquat. Sci. 43, 142–147 (1986).

    Article 

    Google Scholar 

  • 67.

    Goldbogen, J. A. et al. Using digital tags with integrated video and inertial sensors to study moving morphology and associated function in large aquatic vertebrates. Anat. Rec. 300, 1935–1941 (2017).

    CAS 
    Article 

    Google Scholar 

  • 68.

    Sumich, J. L. Swimming velocities, breathing patterns, and estimated costs of locomotion in migrating gray whales, Eschrichtius robustus. Can. J. Zool. 61, 647–652 (1983).

    Article 

    Google Scholar 

  • 69.

    Pauly, D., Trites, A. W., Capuli, E. & Christensen, V. Diet composition and trophic levels of marine mammals. ICES J. Mar. Sci. 55, 467–481 (1998).

    Article 

    Google Scholar 

  • 70.

    White, C. R. & Kearney, M. R. Metabolic scaling in animals: methods, empirical results, and theoretical explanations. Compr. Physiol. 4, 231–256 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 71.

    Schmitz, O. J. & Lavigne, D. M. Intrinsic rate of increase, body size, and specific metabolic rate in marine mammals. Oecologia 62, 305–309 (1984).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 72.

    Nagy, K. A., Girard, I. A. & Brown, T. K. Energetics of free-ranging mammals, reptiles, and birds. Annu. Rev. Nutr. 19, 247–277 (1999).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 73.

    Rivero, J.-L. L. Locomotor muscle fibre heterogeneity and metabolism in the fastest large-bodied rorqual: the fin whale (Balaenoptera physalus). J. Exp. Biol. 221, jeb177758 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 74.

    Friedlaender, A. S. et al. The advantages of diving deep: Fin whales quadruple their energy intake when targeting deep krill patches. Funct. Ecol. 34, 497–506 (2019).

    Article 

    Google Scholar 

  • 75.

    Calambokidis, J. et al. Differential vulnerability to ship strikes between day and night for blue, fin, and humpback whales based on dive and movement data from medium duration archival tags. Front. Mar. Sci. 6, 543 (2019).

    Article 

    Google Scholar 

  • 76.

    Cade, D. E., Friedlaender, A. S., Calambokidis, J. & Goldbogen, J. A. Kinematic diversity in rorqual whale feeding mechanisms. Curr. Biol. 26, 2617–2624 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 77.

    Gough, W. T. et al. Scaling of swimming performance in baleen whales. J. Exp. Biol. 222, jeb204172 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 78.

    Parks, S. E., Warren, J. D., Stamieszkin, K., Mayo, C. A. & Wiley, D. Dangerous dining: Surface foraging of North Atlantic right whales increases risk of vessel collisions. Biol. Lett. 8, 57–60 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 79.

    Nowacek, D. P. et al. Buoyant balaenids: the ups and downs of buoyancy in right whales. Proc. R. Soc. B Biol. Sci. 268, 1811–1816 (2001).

    CAS 
    Article 

    Google Scholar 

  • 80.

    Johnson, M. P. & Tyack, P. L. A digital acoustic recording tag for measuring the response of wild marine mammals to sound. IEEE J. Ocean. Eng. 28, 3–12 (2003).

    ADS 
    Article 

    Google Scholar 

  • 81.

    Cade, D. E., Barr, K. R., Calambokidis, J., Friedlaender, A. S. & Goldbogen, J. A. Determining forward speed from accelerometer jiggle in aquatic environments. J. Exp. Biol. 221, 170449 (2018).

    Google Scholar 

  • 82.

    Goldbogen, J. A. et al. Integrative approaches to the study of baleen whale diving behavior, feeding performance, and foraging ecology. Bioscience 63, 90–100 (2013).

    Article 

    Google Scholar 

  • 83.

    Hazen, E. L., Friedlaender, A. S. & Goldbogen, J. A. Blue whales (Balaenoptera musculus) optimize foraging efficiency by balancing oxygen use and energy gain as a function of prey density. Sci. Adv. 1, e1500469 (2015).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 84.

    Cade, D. E. et al. Predator-scale spatial analysis of intra-patch prey distribution reveals the energetic drivers of rorqual whale super group formation. Fucntional Ecol. 35, 894–908 (2021).

    Article 

    Google Scholar 

  • 85.

    Nowacek, D. P. et al. Super-aggregations of krill and humpback whales in Wilhelmina bay, Antarctic Peninsula. PLoS ONE 6, 2–6 (2011).

    Article 
    CAS 

    Google Scholar 

  • 86.

    Goldbogen, J. A. et al. Prey density and distribution drive the three-dimensional foraging strategies of the largest filter feeder. Funct. Ecol. 29, 951–961 (2015).

    Article 

    Google Scholar 

  • 87.

    Cade, D. E., Carey, N., Domenici, P., Potvin, J. & Goldbogen, J. A. Predator-informed looming stimulus experiments reveal how large filter feeding whales capture highly maneuverable forage fish. Proc. Natl Acad. Sci. USA 117, 472–478 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 88.

    Goldbogen, J. A. et al. Mechanics, hydrodynamics and energetics of blue whale lunge feeding: efficiency dependence on krill density. J. Exp. Biol. 214, 131–146 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 89.

    Hamner, W. M. Aspects of schooling in Euphausia superba. J. Crustac. Biol. 4, 67–74 (1984).

    Article 

    Google Scholar 

  • 90.

    Potvin, J., Goldbogen, J. A. & Shadwick, R. E. Passive versus active engulfment: verdict from trajectory simulations of lunge-feeding fin whales Balaenoptera physalus. J. R. Soc. Interface 6, 1005–1025 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 91.

    Potvin, J., Goldbogen, J. A. & Shadwick, R. E. Scaling of lunge feeding in rorqual whales: an integrated model of engulfment duration. J. Theor. Biol. 267, 437–453 (2010).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 

  • 92.

    Goldbogen, J. A. et al. Underwater acrobatics by the world’s largest predator: 360° rolling manoeuvres by lunge-feeding blue whales. Biol. Lett. 9, 20120986 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 93.

    Rodriguez-Romero, J., Palacios-Salgado, D. S., Lopez-Martinez, J., Vazquez, S. H. & Velazquez-Abunader, J. I. The length – weight relationship parameters of demersal fish species off the western coast of Baja California Sur, Mexico. J. Appl. Ichthology 25, 114–116 (2009).

    Article 

    Google Scholar 

  • 94.

    Pitcher, T. J. & Partridge, B. L. Fish school density and volume. Mar. Biol. 394, 383–394 (1979).

    Article 

    Google Scholar 

  • 95.

    Laidre, K. L., Heide-Jørgensen, M. P. & Nielsen, T. G. Role of the bowhead whale as a predator in West Greenland. Mar. Ecol. Prog. Ser. 346, 285–297 (2007).

    ADS 
    Article 

    Google Scholar 

  • 96.

    Simon, M., Johnson, M., Tyack, P. & Madsen, P. T. Behaviour and kinematics of continuous ram filtration in bowhead whales (Balaena mysticetus). Proc. R. Soc. B Biol. Sci. 276, 3819–3828 (2009).

    Article 

    Google Scholar 

  • 97.

    Baumgartner, M. F. & Mate, B. R. Summertime foraging ecology of North Atlantic right whales. Mar. Ecol. Prog. Ser. 264, 123–135 (2003).

    ADS 
    Article 

    Google Scholar 

  • 98.

    van der Hoop, J. M. et al. Foraging rates of ram‐filtering North Atlantic right whales. Funct. Ecol. 33, 1290–1306 (2019).

    Article 

    Google Scholar 

  • 99.

    Burnett, J. D. et al. Estimating morphometric attributes of baleen whales with photogrammetry from small UASs: a case study with blue and gray whales. Mar. Mammal Sci. 35, 108–139 (2019).

    Article 

    Google Scholar 

  • 100.

    Torres, W. I. & Bierlich, K. C. MorphoMetriX: a photogrammetric measurement GUI for morphometric analysis of megafauna. J. Open Source Softw. 5, 1825 (2020).

    ADS 
    Article 

    Google Scholar 

  • 101.

    Johnston, D. W. Unoccupied aircraft systems in marine science and conservation. Ann. Rev. Mar. Sci. 11, 439–463 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 102.

    Durban, J. W. et al. Photogrammetry of blue whales with an unmanned hexacopter. Mar. Mammal Sci. 32, 1510–1515 (2016).

    Article 

    Google Scholar 

  • 103.

    Kelley, D. & Richards, C. oce: Analysis of Oceanographic Data R Package v. 1.1 (2019).

  • 104.

    Dubreuil, J. & Petitgas, P. Energy density of anchovy Engraulis encrasicolus in the Bay of Biscay. J. Fish Biol. 74, 521–534 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 105.

    Chenowith, E. M. Bioenergetic and Economic Impacts of Humpback Whale Depredation at Salmon Hatchery Release Sites. PhD thesis, Univ. Alaska (2018).

  • 106.

    Werth, A. J. Models of hydrodynamic flow in the bowhead whale filter feeding apparatus. J. Exp. Biol. 207, 3569–3580 (2004).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 107.

    Werth, A. in Feeding: Form, Function, and Evolution in Tetrapod Vertebrates (ed. Schwenk, K.) 487–526 (Academic, 2000).

  • 108.

    Mckinstry, C. A. E., Westgate, A. J. & Koopman, H. N. Annual variation in the nutritional value of stage V Calanus finmarchicus: implications for right whales and other copepod predators. Endang. Species Res. 20, 195–204 (2013).

    Article 

    Google Scholar 

  • 109.

    Folkow, L. P., Haug, T., Nilssen, K. T. & Nordy, E. S. Estimated food consumption of minke whales Balaenoptera acutorostrata in Northeast Atlantic waters in 1992-1995. NAMMCO Sci. Publ. 2, 65–80 (2000).

    Article 

    Google Scholar 

  • 110.

    Brodie, P. F. Cetacean energetics, an overview of intraspecific size variation. Ecology 56, 152–161 (1975).

    ADS 
    Article 

    Google Scholar 

  • 111.

    Hill, S. L. et al. Is current management of the antarctic krill fishery in the atlantic sector of the southern ocean precautionary? CCAMLR Sci. 23, 31–51 (2016).

    Google Scholar 

  • 112.

    Atkinson, A. et al. Oceanic circumpolar habitats of Antarctic krill. Mar. Ecol. Prog. Ser. 362, 1–23 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 113.

    Ratnarajah, L., Bowie, A. R., Lannuzel, D., Meiners, K. M. & Nicol, S. The biogeochemical role of baleen whales and krill in Southern Ocean nutrient cycling. PLoS ONE 9, e114067 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 114.

    Rose, C., Parker, A., Jefferson, B. & Cartmell, E. The characterization of feces and urine: a review of the literature to inform advanced treatment technology. Crit. Rev. Environ. Sci. Technol. 45, 1827–1879 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 115.

    Candela, E., Camacho, M. V. & Perdomo, J. Iron absorption by humans and swine from Fe (III)-EDTA. Further studies. J. Nutr. 114, 2204–2211 (1984).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 116.

    Ratnarajah, L. et al. A preliminary model of iron fertilisation by baleen whales and Antarctic krill in the Southern Ocean: sensitivity of primary productivity estimates to parameter uncertainty. Ecol. Modell. 320, 203–212 (2016).

    Article 

    Google Scholar 

  • 117.

    Twining, B. S., Baines, S. B. & Fisher, N. S. Element stoichiometries of individual plankton cells collected during the Southern Ocean Iron Experiment (SOFeX). Limnol. Oceanogr. 49, 2115–2128 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 118.

    Strzepek, R. F., Maldonado, M. T., Hunter, K. A., Frew, R. D. & Boyd, P. W. Adaptive strategies by Southern Ocean phytoplankton to lessen iron limitation: uptake of organically complexed iron and reduced cellular iron requirements. Limnol. Oceanogr. 56, 1983–2002 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 119.

    Quigg, A. et al. The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature 425, 291–294 (2003).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 120.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis 2nd edn (Springer, 2016).

  • 121.

    Lockyer, C. Body weights of some species of large whales. ICES J. Mar. Sci. 36, 259–273 (1976).

    Article 

    Google Scholar 

  • 122.

    Blix, A. S. & Folkow, L. P. Daily energy expenditure in free living minke whales (Balaenoptera acutorostrata). Acta Physiol. Scand. 153, 61–66 (1995).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 123.

    Nordoy, E. S., Folkow, L. P., Martensson, P. & Blix, A. S. Food requirements of Northeast Atlantic minke whales. Dev. Mar. Biol. 4, 307–317 (1995).

    Article 

    Google Scholar 

  • 124.

    Murase, H., Tamura, T., Matsuoka, K. & Hakamada, T. First attempt of estimation of feeding impact on krill standing stock by three baleen whale species (Antarctic minke, humpback and fin whales) in Areas IV and V using JARPA dat. Inst. Cetacean Res. Rep. SC/D06/J22 (2006).

  • 125.

    Southall, B. L. et al. Behavioral responses of individual blue whales (Balaenoptera musculus) to mid-frequency military sonar. J. Exp. Biol. 222, jeb190637 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 126.

    Goldbogen, J. A. et al. Blue whales respond to simulated mid-frequency military sonar. Proc. R. Soc. B 280, 20130657 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 127.

    Stimpert, A. K. et al. Sound production and associated behavior of tagged fin whales (Balaenoptera physalus) in the Southern California Bight. Anim. Biotelemetry 3, 1–12 (2015).

    Article 

    Google Scholar 

  • 128.

    Goldbogen, J. A. et al. Foraging behavior of humpback whales: kinematic and respiratory patterns suggest a high cost for a lunge. J. Exp. Biol. 211, 3712–3719 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 129.

    Wiley, D. et al. Underwater components of humpback whale bubble-net feeding behaviour. Behaviour 148, 575–602 (2011).

    Article 

    Google Scholar 

  • 130.

    Friedlaender, A. S., Tyson, R. B., Stimpert, A. K., Read, A. J. & Nowacek, D. P. Extreme diel variation in the feeding behavior of humpback whales along the western Antarctic Peninsula during autumn. Mar. Ecol. Prog. Ser. 494, 281–289 (2013).

    ADS 
    Article 

    Google Scholar 

  • 131.

    Kahane-Rapport, S. R. et al. Lunge filter feeding biomechanics constrain rorqual foraging ecology across scale. J. Exp. Biol. 223, jeb224196 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 132.

    Friedlaender, A. S. et al. Feeding rates and under-ice foraging strategies of the smallest lunge filter feeder, the Antarctic minke whale (Balaenoptera bonaerensis). J. Exp. Biol. 217, 2851–2854 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 133.

    Domenici, P., Batty, R. S. & Similä, T. Spacing of wild schooling herring while encircled by killer whales. J. Fish Biol. 57, 831–836 (2000).

    Article 

    Google Scholar 

  • 134.

    Tamura, T. et al. Some examinations of uncertainties in the prey consumption estimates of common minke, sei and Bryde’s whales in the western North Pacific. (2009).

  • 135.

    Innes, S., Lavigne, D. M., Earle, W. M. & Kovacs, K. M. Estimating feeding rates of marine mammals from heart mass to body mass ratios. Mar. Mammal Sci. 2, 227–229 (1986).

    Article 

    Google Scholar 

  • 136.

    Armstrong, A. J. & Siegfried, W. R. Consumption of Antarctic krill by minke whales (Balaenoptera acutorostrata). Antarct. Sci. 3(1)13-18. 1991. 3, 13–18 (1991).

    Google Scholar 

  • 137.

    Reilly, S. et al. Biomass and energy transfer to baleen whales in the South Atlantic sector of the Southern Ocean. Deep. Res. Part II Top. Stud. Oceanogr. 51, 1397–1409 (2004).

    ADS 
    Article 

    Google Scholar 

  • 138.

    Read, A. J. & Brownstein, C. R. Considering other consumers: Fisheries, predators, and Atlantic herring in the Gulf of Maine. Conserv. Ecol. 7 (2003).

  • 139.

    Nagy, K. Food requirements of wild animals: predictive equations for free-living mammals, reptiles, and birds. Nutr. Abstr. Rev. Ser. B 71, 21R–31R (2001).

    Google Scholar 

  • 140.

    Stevick, P. T. et al. Trophic relationships and oceanography on and around a small offshore bank. Mar. Ecol. Prog. Ser. 363, 15–28 (2008).

    ADS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Bird population declines and species turnover are changing the acoustic properties of spring soundscapes

    MIT collaborates with Biogen on three-year, $7 million initiative to address climate, health, and equity