in

Barrier crossings and winds shape daily travel schedules and speeds of a flight generalist

  • 1.

    Newton, I. The Migration Ecology of Birds (Academic Press, Cambridge, 2008).

    Google Scholar 

  • 2.

    Akesson, S. & Helm, B. Endogenous programs and flexibility in bird migration. Front. Ecol. Evol. 8, 78 (2020).

    Article 

    Google Scholar 

  • 3.

    Nathan, R. et al. A movement ecology paradigm for unifying organismal movement research. Proc. Natl. Acad. Sci. USA 105, 19052–19059 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 4.

    Alerstam, T. Optimal bird migration revisited. J. Ornithol. 152, 5–23 (2011).

    Article 

    Google Scholar 

  • 5.

    Mellone, U., López-López, P., Limiñana, R., Piasevoli, G. & Urios, V. The trans-equatorial loop migration system of Eleonora’s falcon: Differences in migration patterns between age classes, regions and seasons. J. Avian Biol. 44, 417–426 (2013).

    Google Scholar 

  • 6.

    Sur, M. et al. Relevance of individual and environmental drivers of movement of Golden Eagles. Ibis 162, 381–399 (2020).

    Article 

    Google Scholar 

  • 7.

    Nilsson, C., Klaassen, R. H. G. & Alerstam, T. Differences in speed and duration of bird migration between pre-breeding and post-breeding. Am. Nat. 181, 837–845 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 8.

    Vansteelant, W. M. G. et al. Regional and seasonal flight speeds of soaring migrants and the role of weather conditions at hourly and daily scales. J. Avian Biol. 46, 25–39 (2015).

    Article 

    Google Scholar 

  • 9.

    Mueller, T., O’Hara, R. B., Converse, S. J., Urbanek, R. P. & Fagan, W. F. Social learning of migratory performance. Science 341, 999–1002 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 10.

    Miller, T. A. et al. Limitations and mechanisms influencing the migratory performance of soaring birds. Ibis 158, 116–134 (2016).

    Article 

    Google Scholar 

  • 11.

    Shamoun-Baranes, J. et al. The effect of wind, season and latitude on the migration speed of white storks Ciconia ciconia, along the eastern migration route. J. Avian Biol. 34, 97–104 (2003).

    Article 

    Google Scholar 

  • 12.

    Dodge, S. et al. Environmental drivers of variability in the movement ecology of turkey vultures (Cathartes aura) in North and South America. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 1471–2970 (2014).

    Article 

    Google Scholar 

  • 13.

    Nourani, E., Yamaguchi, N. M., Manda, A. & Higuchi, H. Wind conditions facilitate the seasonal water-crossing behaviour of Oriental Honey-buzzards Pernis ptilorhynchus over the East China Sea. Ibis 158, 506–518 (2016).

    Article 

    Google Scholar 

  • 14.

    Rus, A. I., Duerr, A. E., Miller, T. A., Belthoff, J. R. & Katzner, T. E. Counterintuitive roles of experience and weather on migratory performance. Auk 134, 485–497 (2017).

    Article 

    Google Scholar 

  • 15.

    Thorup, K., Alerstam, T., Hake, M. & Kjellén, N. Bird orientation: Compensation for wind drift in migrating raptors is age dependent. Proc. R. Soc. Lond. B Biol. Sci. 270, S8–S11 (2003).

    Article 

    Google Scholar 

  • 16.

    Sergio, F. et al. Individual improvements and selective mortality shape lifelong migratory performance. Nature 515, 410–413 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 17.

    Vansteelant, W. M. G., Kekoonen, J. & Byholm, P. Wind conditions and geography shape the first outbound migration of juvenile honey buzzards and their distribution across sub-saharan africa. Proc. R. Soc. Lond. B Biol. Sci. 284, 20170387 (2017).

    Google Scholar 

  • 18.

    Mellone, U. et al. Seasonal differences in migration patterns of a soaring bird in relation to environmental conditions: A multi-scale approach. Behav. Ecol. Sociobiol. 69, 75–82 (2015).

    Article 

    Google Scholar 

  • 19.

    Rotics, S. et al. Early arrival at breeding grounds: Causes, costs and a trade off with overwintering latitude. J. Anim. Ecol. 87, 1627–1638 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 20.

    Shamoun-Baranes, J., Bouten, W., vanLoon, E. E., Meijer, C. & Camphuysen, C. J. Flap or soar? How a flight generalist responds to its aerial environment. Philos. Trans. R. Soc. B 371, 20150395 (2016).

    Article 

    Google Scholar 

  • 21.

    Bildstein, K. L. Migrating Raptors of the World: Their Ecology and Conservation (Cornell Univ, 2006).

    Google Scholar 

  • 22.

    Klaassen, R. H. G., Ens, B. J., Shamoun-Baranes, J., Exo, K. M. & Bairlein, F. Migration strategy of a flight generalist, the Lesser Black-backed Gull Larus fuscus. Behav. Ecol. 23, 58–68 (2012).

    Article 

    Google Scholar 

  • 23.

    Klaassen, R. H. G., Schlaich, A. E., Bouten, W. & Koks, B. J. Migrating Montagu’s harriers frequently interrupt daily flights in both Europe and Africa. J. Avian Biol. 48, 180–190 (2017).

    Article 

    Google Scholar 

  • 24.

    Shamoun-Baranes, J., Liechti, F. & Vansteelant, W. M. G. Atmospheric conditions create freeways, detours and tailbacks for migrating birds. J. Comp. Physiol. A. 203, 509–529 (2017).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Spaar, R. & Bruderer, B. Migration by flapping or soaring: Flight strategies of Marsh, Montagu’s and Pallid Harriers in southern Israel. Condor 99, 458–469 (1997).

    Article 

    Google Scholar 

  • 26.

    Duriez, O., Peron, G., Gremillet, D., Sforzi, A. & Monti, F. Migrating ospreys use thermal uplift over the open sea. Biol. Lett. 14, 20180687 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Nourani, E. et al. Sea-crossing along migratory flyways is limited more strongly by wind than by lack of uplift. bioRxiv (2020).

  • 28.

    Alerstam, T. Flight by night or day? Optimal daily timing of bird migration. J. Theor. Biol. 258, 530–536 (2009).

    MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 

  • 29.

    Strandberg, R. & Alerstam, T. The strategy of fly-and-forage migration, illustrated for the osprey (Pandion haliaetus). Behav. Ecol. Sociobiol. 61, 1865–1875 (2007).

    Article 

    Google Scholar 

  • 30.

    Strandberg, R., Klaassen, R. H. G., Olofsson, P. & Alerstam, T. Daily travel schedules of adult Eurasian hobbies Falco subbuteo—variability in flight hours and migration speed along the route. Ardea 97, 287–295 (2009).

    Article 

    Google Scholar 

  • 31.

    Hadjikyriakou, T. G., Nwankwo, E. C., Virani, M. Z. & Kirschel, A. N. Habitat availability influences migration speed, refueling patterns and seasonal flyways of a fly-and-forage migrant. Mov. Ecol. 8, 10 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Mellone, U., Limiñana, R., López-López, P. & Urios, V. Regional and age-dependent differences in the effect of wind on the migratory routes of Eleonora’s Falcon. Curr. Zool. 61, 428–434 (2015).

    Article 

    Google Scholar 

  • 33.

    Cramp, S. & Simmons, K. E. L. The Birds of the Western Palaearctic Vols. 1–5 (Oxford University Press, 1977–1988).

  • 34.

    López-López, P., Limiñana, R., Mellone, U. & Urios, V. From the Mediterranean Sea to Madagascar: Are there ecological barriers for the long-distance migrant Eleonora’s falcon?. Landsc. Ecol. 25, 803–813 (2010).

    Article 

    Google Scholar 

  • 35.

    Kemp, M. U., Shamoun-Baranes, J., van Gasteren, H., Bouten, W. & van Loon, E. E. Can wind help explain seasonal differences in avian migration speed?. J. Avian Biol. 41, 672–677 (2010).

    Article 

    Google Scholar 

  • 36.

    Kokko, H. Competition for early arrival in birds. J. Anim. Ecol. 68, 940–950 (1999).

    Article 

    Google Scholar 

  • 37.

    Karlsson, H., Nilsson, C., Bäckman, J. & Alerstam, T. Nocturnal passerine migrants fly faster in pre-breeding than in post-breeding: A test of the time minimisation hypothesis. Anim. Behav. 83, 87–93 (2012).

    Article 

    Google Scholar 

  • 38.

    Pennycuick, C. J. Modelling the Flying Bird (Elsevier, Amsterdam, 2008).

    Google Scholar 

  • 39.

    Morbey, Y. E. & Ydenberg, R. C. Protandrous arrival timing to breeding areas: A review. Ecol. Lett. 4, 663–673 (2001).

    Article 

    Google Scholar 

  • 40.

    Sarà, M. et al. Broadfront migration leads to strong migratory connectivity in the lesser kestrel (Falco naumanni). J. Biogeogr. 46, 2663–2677 (2019).

    Article 

    Google Scholar 

  • 41.

    Limiñana, R., Romero, M., Mellone, U. & Urios, V. Is there a different response to winds during migration between soaring and flapping raptors? An example with the Montagu’s harrier and the lesser kestrel. Behav. Ecol. Sociobiol. 67, 823–835 (2013).

    Article 

    Google Scholar 

  • 42.

    Mellone, U., López-López, P., Limiñana, R. & Urios, V. Weather conditions promote route flexibility during open ocean crossing in a long-distance migratory raptor. Int. J. Biometeorol. 55, 463–468 (2011).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    Negro, J. J., De la Riva, M. & Bustamante, J. Patterns of winter distribution and abundance of lesser kestrels (Falco naumanni) in Spain. J. Raptor Res. 25, 31 (1991).

    Google Scholar 

  • 44.

    Hubner, C. E. The importance of pre-breeding areas for the arctic barnacle goose Branta leucopsis. Ardea 94, 701–713 (2006).

    Google Scholar 

  • 45.

    Klaassen, R. H. G., Strandberg, R., Hake, M. & Alerstam, T. Flexibility in daily travel routines causes regional variation in bird migration speed. Behav. Ecol. Sociobiol. 62, 1427–1432 (2008).

    Article 

    Google Scholar 

  • 46.

    Whitworth, D., Newman, S. H., Mundkur, T. & Harris, P. Wild Birds and Avian Influenza: An Introduction to Applied Field Research and Disease Sampling Techniques, FAO Animal Production and Health Manual, No. 5 (FAO, Rome, (2007).

  • 47.

    Percie du Sert, N. et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. Br. J. Pharmacol. 40, 1769–1777 (2020).

    Google Scholar 

  • 48.

    Barron, D. G., Brawn, J. D. & Weatherhead, P. J. Meta-analysis of transmitter effects on avian behaviour and ecology. Methods Ecol. Evol. 1, 180–187 (2010).

    Article 

    Google Scholar 

  • 49.

    Vavrek Matthew, J. Fossil: Palaeoecological and palaeogeographical analysis tools. Palaeontol. Electron. 14, 1–16 (2011).

    Google Scholar 

  • 50.

    QGIS Development Team. QGIS Geographic Information System (Open Source Geospatial Foundation Project, 2020).

  • 51.

    Klaassen, R. H., Hake, M., Strandberg, R. & Alerstam, T. Geographical and temporal flexibility in the response to crosswinds by migrating raptors. Proc. R. Soc. Lond. B: Biol. Sci. 278, 1339–1346 (2010).

    Google Scholar 

  • 52.

    Shamoun-Baranes, J., Burant, J. B., van Loon, E. E., Bouten, W. & Camphuysen, C. J. Short distance migrants travel as far as long distance migrants in lesser black-backed gulls Larus fuscus. J. Avian Biol. 48, 49–57 (2017).

    Article 

    Google Scholar 

  • 53.

    Limiñana, R., Romero, M., Mellone, U. & Urios, V. Mapping the migratory routes and wintering areas of Lesser Kestrels Falco naumanni: New insights from satellite telemetry. Ibis 154, 389–399 (2012).

    Article 

    Google Scholar 

  • 54.

    Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on earth. Bioscience 51, 933–938 (2001).

    Article 

    Google Scholar 

  • 55.

    Sefick, S. Jr. Stream Metabolism-A Package for Calculating Single Station Metabolism from Diurnal OXYGEN Curves. R package version 1.2 (2016).

  • 56.

    Dodge, S. et al. The environmental-data automated track annotation (Env-DATA) system: Linking animal tracks with environmental data. Mov. Ecol. 1, 3 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 57.

    R Development Core TEAM. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. http://www.r-project.org/ (2020).

  • 58.

    Russell, L. emmeans: Estimated Marginal Means, Aka Least-Squares Means. R package version 1.4.5 https://CRAN.R-project.org/package=emmeans (2020).

  • 59.

    Zeileis, A. & Jackman, S. Regression models for count data in R. J. Stat. Softw. 27, 1–25 (2008).

    Google Scholar 

  • 60.

    Hothorn, T., Bretz, F., Westfall, P., Heibergeer, R. M. & Schuetzenmeister A. Simultaneous Inference in General Parametric Models, package “Multcomp”. http://cran.r-project.org/web/packages/multcomp/multcomp.pdf (2014).

  • 61.

    Bartoń, K. MuMIn: Multi-model Inference. R Package Version 1.43.6. https://CRAN.R-project.org/package=MuMIn (2019).

  • 62.

    Cade, B. S. Model averaging and muddled multimodel inferences. Ecology 96(9), 2370–2382 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 63.

    Buchan, C. et al. Carryover effects of long-distance avian migration are weaker than effects of breeding environment in a partially migratory bird. Sci. Rep. 11, 935 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    Kuznetsova, A., Brockhof, P. B. & Christensen, R. H. B. lmerTest: Tests in Linear Mixed Efects Models. R package version 2.0-32 (2017).

  • 65.

    Nakagawa, S. & Hanson, P. J. A general and simple method for obtaining R2 from generalised linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).

    Article 

    Google Scholar 

  • 66.

    Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).

    Article 

    Google Scholar 

  • 67.

    Eager, C.D. Standardize: Tools for Standardising Variables for Regression in R. R package version 0.2.1. Retrieved from https://CRAN.R-project.org/package=standardize (2017).

  • 68.

    Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, 2011).

    Google Scholar 

  • 69.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2014).

    Google Scholar 

  • 70.

    Meyer, D., Zeileis, A. & Hornik, K. vcd: Visualising Categorical Data. R package version 1.4-4 (2017).


  • Source: Ecology - nature.com

    Unleashing capacity at Heineken México with systems thinking from MIT

    MITEI researchers build a supply chain model to support the hydrogen economy