Newton, I. The Migration Ecology of Birds (Academic Press, Cambridge, 2008).
Akesson, S. & Helm, B. Endogenous programs and flexibility in bird migration. Front. Ecol. Evol. 8, 78 (2020).
Google Scholar
Nathan, R. et al. A movement ecology paradigm for unifying organismal movement research. Proc. Natl. Acad. Sci. USA 105, 19052–19059 (2008).
Google Scholar
Alerstam, T. Optimal bird migration revisited. J. Ornithol. 152, 5–23 (2011).
Google Scholar
Mellone, U., López-López, P., Limiñana, R., Piasevoli, G. & Urios, V. The trans-equatorial loop migration system of Eleonora’s falcon: Differences in migration patterns between age classes, regions and seasons. J. Avian Biol. 44, 417–426 (2013).
Sur, M. et al. Relevance of individual and environmental drivers of movement of Golden Eagles. Ibis 162, 381–399 (2020).
Google Scholar
Nilsson, C., Klaassen, R. H. G. & Alerstam, T. Differences in speed and duration of bird migration between pre-breeding and post-breeding. Am. Nat. 181, 837–845 (2013).
Google Scholar
Vansteelant, W. M. G. et al. Regional and seasonal flight speeds of soaring migrants and the role of weather conditions at hourly and daily scales. J. Avian Biol. 46, 25–39 (2015).
Google Scholar
Mueller, T., O’Hara, R. B., Converse, S. J., Urbanek, R. P. & Fagan, W. F. Social learning of migratory performance. Science 341, 999–1002 (2013).
Google Scholar
Miller, T. A. et al. Limitations and mechanisms influencing the migratory performance of soaring birds. Ibis 158, 116–134 (2016).
Google Scholar
Shamoun-Baranes, J. et al. The effect of wind, season and latitude on the migration speed of white storks Ciconia ciconia, along the eastern migration route. J. Avian Biol. 34, 97–104 (2003).
Google Scholar
Dodge, S. et al. Environmental drivers of variability in the movement ecology of turkey vultures (Cathartes aura) in North and South America. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 1471–2970 (2014).
Google Scholar
Nourani, E., Yamaguchi, N. M., Manda, A. & Higuchi, H. Wind conditions facilitate the seasonal water-crossing behaviour of Oriental Honey-buzzards Pernis ptilorhynchus over the East China Sea. Ibis 158, 506–518 (2016).
Google Scholar
Rus, A. I., Duerr, A. E., Miller, T. A., Belthoff, J. R. & Katzner, T. E. Counterintuitive roles of experience and weather on migratory performance. Auk 134, 485–497 (2017).
Google Scholar
Thorup, K., Alerstam, T., Hake, M. & Kjellén, N. Bird orientation: Compensation for wind drift in migrating raptors is age dependent. Proc. R. Soc. Lond. B Biol. Sci. 270, S8–S11 (2003).
Google Scholar
Sergio, F. et al. Individual improvements and selective mortality shape lifelong migratory performance. Nature 515, 410–413 (2014).
Google Scholar
Vansteelant, W. M. G., Kekoonen, J. & Byholm, P. Wind conditions and geography shape the first outbound migration of juvenile honey buzzards and their distribution across sub-saharan africa. Proc. R. Soc. Lond. B Biol. Sci. 284, 20170387 (2017).
Mellone, U. et al. Seasonal differences in migration patterns of a soaring bird in relation to environmental conditions: A multi-scale approach. Behav. Ecol. Sociobiol. 69, 75–82 (2015).
Google Scholar
Rotics, S. et al. Early arrival at breeding grounds: Causes, costs and a trade off with overwintering latitude. J. Anim. Ecol. 87, 1627–1638 (2018).
Google Scholar
Shamoun-Baranes, J., Bouten, W., vanLoon, E. E., Meijer, C. & Camphuysen, C. J. Flap or soar? How a flight generalist responds to its aerial environment. Philos. Trans. R. Soc. B 371, 20150395 (2016).
Google Scholar
Bildstein, K. L. Migrating Raptors of the World: Their Ecology and Conservation (Cornell Univ, 2006).
Klaassen, R. H. G., Ens, B. J., Shamoun-Baranes, J., Exo, K. M. & Bairlein, F. Migration strategy of a flight generalist, the Lesser Black-backed Gull Larus fuscus. Behav. Ecol. 23, 58–68 (2012).
Google Scholar
Klaassen, R. H. G., Schlaich, A. E., Bouten, W. & Koks, B. J. Migrating Montagu’s harriers frequently interrupt daily flights in both Europe and Africa. J. Avian Biol. 48, 180–190 (2017).
Google Scholar
Shamoun-Baranes, J., Liechti, F. & Vansteelant, W. M. G. Atmospheric conditions create freeways, detours and tailbacks for migrating birds. J. Comp. Physiol. A. 203, 509–529 (2017).
Google Scholar
Spaar, R. & Bruderer, B. Migration by flapping or soaring: Flight strategies of Marsh, Montagu’s and Pallid Harriers in southern Israel. Condor 99, 458–469 (1997).
Google Scholar
Duriez, O., Peron, G., Gremillet, D., Sforzi, A. & Monti, F. Migrating ospreys use thermal uplift over the open sea. Biol. Lett. 14, 20180687 (2018).
Google Scholar
Nourani, E. et al. Sea-crossing along migratory flyways is limited more strongly by wind than by lack of uplift. bioRxiv (2020).
Alerstam, T. Flight by night or day? Optimal daily timing of bird migration. J. Theor. Biol. 258, 530–536 (2009).
Google Scholar
Strandberg, R. & Alerstam, T. The strategy of fly-and-forage migration, illustrated for the osprey (Pandion haliaetus). Behav. Ecol. Sociobiol. 61, 1865–1875 (2007).
Google Scholar
Strandberg, R., Klaassen, R. H. G., Olofsson, P. & Alerstam, T. Daily travel schedules of adult Eurasian hobbies Falco subbuteo—variability in flight hours and migration speed along the route. Ardea 97, 287–295 (2009).
Google Scholar
Hadjikyriakou, T. G., Nwankwo, E. C., Virani, M. Z. & Kirschel, A. N. Habitat availability influences migration speed, refueling patterns and seasonal flyways of a fly-and-forage migrant. Mov. Ecol. 8, 10 (2020).
Google Scholar
Mellone, U., Limiñana, R., López-López, P. & Urios, V. Regional and age-dependent differences in the effect of wind on the migratory routes of Eleonora’s Falcon. Curr. Zool. 61, 428–434 (2015).
Google Scholar
Cramp, S. & Simmons, K. E. L. The Birds of the Western Palaearctic Vols. 1–5 (Oxford University Press, 1977–1988).
López-López, P., Limiñana, R., Mellone, U. & Urios, V. From the Mediterranean Sea to Madagascar: Are there ecological barriers for the long-distance migrant Eleonora’s falcon?. Landsc. Ecol. 25, 803–813 (2010).
Google Scholar
Kemp, M. U., Shamoun-Baranes, J., van Gasteren, H., Bouten, W. & van Loon, E. E. Can wind help explain seasonal differences in avian migration speed?. J. Avian Biol. 41, 672–677 (2010).
Google Scholar
Kokko, H. Competition for early arrival in birds. J. Anim. Ecol. 68, 940–950 (1999).
Google Scholar
Karlsson, H., Nilsson, C., Bäckman, J. & Alerstam, T. Nocturnal passerine migrants fly faster in pre-breeding than in post-breeding: A test of the time minimisation hypothesis. Anim. Behav. 83, 87–93 (2012).
Google Scholar
Pennycuick, C. J. Modelling the Flying Bird (Elsevier, Amsterdam, 2008).
Morbey, Y. E. & Ydenberg, R. C. Protandrous arrival timing to breeding areas: A review. Ecol. Lett. 4, 663–673 (2001).
Google Scholar
Sarà, M. et al. Broadfront migration leads to strong migratory connectivity in the lesser kestrel (Falco naumanni). J. Biogeogr. 46, 2663–2677 (2019).
Google Scholar
Limiñana, R., Romero, M., Mellone, U. & Urios, V. Is there a different response to winds during migration between soaring and flapping raptors? An example with the Montagu’s harrier and the lesser kestrel. Behav. Ecol. Sociobiol. 67, 823–835 (2013).
Google Scholar
Mellone, U., López-López, P., Limiñana, R. & Urios, V. Weather conditions promote route flexibility during open ocean crossing in a long-distance migratory raptor. Int. J. Biometeorol. 55, 463–468 (2011).
Google Scholar
Negro, J. J., De la Riva, M. & Bustamante, J. Patterns of winter distribution and abundance of lesser kestrels (Falco naumanni) in Spain. J. Raptor Res. 25, 31 (1991).
Hubner, C. E. The importance of pre-breeding areas for the arctic barnacle goose Branta leucopsis. Ardea 94, 701–713 (2006).
Klaassen, R. H. G., Strandberg, R., Hake, M. & Alerstam, T. Flexibility in daily travel routines causes regional variation in bird migration speed. Behav. Ecol. Sociobiol. 62, 1427–1432 (2008).
Google Scholar
Whitworth, D., Newman, S. H., Mundkur, T. & Harris, P. Wild Birds and Avian Influenza: An Introduction to Applied Field Research and Disease Sampling Techniques, FAO Animal Production and Health Manual, No. 5 (FAO, Rome, (2007).
Percie du Sert, N. et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. Br. J. Pharmacol. 40, 1769–1777 (2020).
Barron, D. G., Brawn, J. D. & Weatherhead, P. J. Meta-analysis of transmitter effects on avian behaviour and ecology. Methods Ecol. Evol. 1, 180–187 (2010).
Google Scholar
Vavrek Matthew, J. Fossil: Palaeoecological and palaeogeographical analysis tools. Palaeontol. Electron. 14, 1–16 (2011).
QGIS Development Team. QGIS Geographic Information System (Open Source Geospatial Foundation Project, 2020).
Klaassen, R. H., Hake, M., Strandberg, R. & Alerstam, T. Geographical and temporal flexibility in the response to crosswinds by migrating raptors. Proc. R. Soc. Lond. B: Biol. Sci. 278, 1339–1346 (2010).
Shamoun-Baranes, J., Burant, J. B., van Loon, E. E., Bouten, W. & Camphuysen, C. J. Short distance migrants travel as far as long distance migrants in lesser black-backed gulls Larus fuscus. J. Avian Biol. 48, 49–57 (2017).
Google Scholar
Limiñana, R., Romero, M., Mellone, U. & Urios, V. Mapping the migratory routes and wintering areas of Lesser Kestrels Falco naumanni: New insights from satellite telemetry. Ibis 154, 389–399 (2012).
Google Scholar
Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on earth. Bioscience 51, 933–938 (2001).
Google Scholar
Sefick, S. Jr. Stream Metabolism-A Package for Calculating Single Station Metabolism from Diurnal OXYGEN Curves. R package version 1.2 (2016).
Dodge, S. et al. The environmental-data automated track annotation (Env-DATA) system: Linking animal tracks with environmental data. Mov. Ecol. 1, 3 (2013).
Google Scholar
R Development Core TEAM. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. http://www.r-project.org/ (2020).
Russell, L. emmeans: Estimated Marginal Means, Aka Least-Squares Means. R package version 1.4.5 https://CRAN.R-project.org/package=emmeans (2020).
Zeileis, A. & Jackman, S. Regression models for count data in R. J. Stat. Softw. 27, 1–25 (2008).
Hothorn, T., Bretz, F., Westfall, P., Heibergeer, R. M. & Schuetzenmeister A. Simultaneous Inference in General Parametric Models, package “Multcomp”. http://cran.r-project.org/web/packages/multcomp/multcomp.pdf (2014).
Bartoń, K. MuMIn: Multi-model Inference. R Package Version 1.43.6. https://CRAN.R-project.org/package=MuMIn (2019).
Cade, B. S. Model averaging and muddled multimodel inferences. Ecology 96(9), 2370–2382 (2015).
Google Scholar
Buchan, C. et al. Carryover effects of long-distance avian migration are weaker than effects of breeding environment in a partially migratory bird. Sci. Rep. 11, 935 (2021).
Google Scholar
Kuznetsova, A., Brockhof, P. B. & Christensen, R. H. B. lmerTest: Tests in Linear Mixed Efects Models. R package version 2.0-32 (2017).
Nakagawa, S. & Hanson, P. J. A general and simple method for obtaining R2 from generalised linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).
Google Scholar
Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).
Google Scholar
Eager, C.D. Standardize: Tools for Standardising Variables for Regression in R. R package version 0.2.1. Retrieved from https://CRAN.R-project.org/package=standardize (2017).
Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, 2011).
Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2014).
Meyer, D., Zeileis, A. & Hornik, K. vcd: Visualising Categorical Data. R package version 1.4-4 (2017).
Source: Ecology - nature.com