Nobel, P. S. Physicochemical and Environmental Plant Physiology (Academic Press, 2005).
Hsiao, T. C. Plant responses to water stress. Annu. Rev. Plant Physiol. 24, 519–570 (1973).
Google Scholar
Schönherr, J. Resistance of plant surfaces to water loss : transport properties of cutin, suberin and associated lipids. In Encyclopedia Plant Physiology, NS Vol. 12B (eds Lange, O. L. et al.) 154–179 (Springer, 1982).
Lendzian, K. J. Gas permeability of plant cuticles: oxygen permeability. Planta 155, 310–315 (1982).
Google Scholar
Langenfeld-Heyser, R. Physiological functions of lenticels. In Trees—Contributions to Modern Tree Physiology (eds Rennenberg, H. et al.) 43–56 (Backhuys, 1997).
Riederer, M. & Schreiber, L. Protecting against water loss: analysis of the barrier properties of plant cuticles. J. Exp. Bot. 52, 2023–2032 (2001).
Google Scholar
Kerstiens, G. Parameterization, comparison, and validation of models quantifying relative change of cuticular permeability with physicochemical properties of diffusants. J. Exp. Bot. 57, 2525–2533 (2006).
Google Scholar
Schönherr, J. Characterization of aqueous pores in plant cuticles and permeation of ionic solutes. J. Exp. Bot. 57, 2471–2491 (2006).
Google Scholar
Groh, B., Hübner, C. & Lendzian, K. J. Water and oxygen permeance of phellems isolated from trees: the role of waxes and lenticels. Planta 215, 794–801 (2002).
Google Scholar
Lendzian, K. J. Survival strategies of plants during secondary growth: barrier properties of phellems and lenticels towards water, oxygen, and carbon dioxide. J. Exp. Bot. 57, 2535–2546 (2006).
Google Scholar
Renault, H. et al. (2017) A phenol-enriched cuticle is ancestral to lignin evolution in land plants. Nat. Commun. 8, 14713 (2017).
Google Scholar
Haas, K. Phytochemische und rasterelektronenmikroskopische Untersuchungen zum Oberflächenwachs von Laubmoosen (Bryatae) (Grauer, 1999).
Clémençon, H., Emmett, V. & Emmett, E. E. Cytology and Plectology of the Hymenomycetes (J Cramer, 2012).
Moore, D., Gange, A. C., Gange, E. G. & Boddy, L. Fruit bodies: their production and development in relation to environment. In Ecology of Saprotrophic Basidiomycetes (eds Boddy, L. et al.) 79–103 (Elsevier Academic Press, 2008).
Halbwachs, H., Simmel, J. & Bässler, C. Tales and mysteries of fungal fruiting: how morphological and physiological traits affect a pileate lifestyle. Fungal Biol. Rev. 30, 36–61 (2016).
Google Scholar
Sakamoto, Y. Influences of environmental factors on fruiting body induction, development and maturation in mushroom-forming fungi. Fungal Biol. Rev. 32, 236–248 (2018).
Google Scholar
Straatsma, G., Ayer, F. & Egli, S. Species richness, abundance, and phenology of fungal fruit bodies over 21 years in a Swiss forest plot. Mycol. Res. 105(5), 515–523 (2001).
Google Scholar
Kües, U. & Liu, Y. Fruiting body production in basidiomycetes. Appl. Microbiol. Biotechnol. 54, 141–152 (2000).
Google Scholar
Beluhan, S. & Ranogajec, A. Chemical composition and non-volatile components of Croatian wild edible mushrooms. Food Chem. 124, 1076–1082 (2011).
Google Scholar
Beecher, T. M., Magan, N. & Burton, K. S. Water potentials and soluble carbohydrate concentrations in tissues of freshly harvested and stored mushrooms (Agaricusbisporus). Postharvest Biol. Technol. 22, 121–131 (2001).
Google Scholar
Bonnier G, Mangin L (1884) Recherches sur la respiration et la transpiration des champignons. Ann. Sc. Natur., sér. VI, t. XVII:210–305
Moser, M. Transpirationsschutz bei höheren Pilzen. Schweizerische Zeitschrift für Pilzkunde 42(4), 50–54 (1964).
Pieschel, E. Über die Transpiration und die Wasserversorgung der Hymenomyceten. Bot. Archiv. VIII, 64–104 (1924).
Seybold, A. Weitere Beiträge zur Transpirationsanalyse. IV. Über die Transpiration der Hutpilze. Planta 16, 518–525 (1932).
Google Scholar
Becker, M., Kerstiens, G. & Schönherr, J. Water permeability of plant cuticles: permeance, diffusion and partition coefficients. Trees 1, 54–60 (1986).
Google Scholar
Schreiber, L. & Schönherr, J. Water and Solute Permeability of Plant Cuticles. Measurement and Data Analysis (Springer, 2009).
Schönherr, J. & Lendzian, K. J. A simple and inexpensive method of measuring water permeability of isolated plant cuticular membranes. Z Pflanzenphysiol 102, 321–327 (1981).
Google Scholar
Weast, R. C. CRC Handbook of Chemistry and Physics: Humidity Constant (CRC Press, 1983).
Riederer, M. & Schneider, G. Comparative study of the composition of waxes extracted from isolated leaf cuticules and from whole leaves of Citrus: evidence for selective extraction. Physiol. Plant 77, 373–384 (1989).
Google Scholar
Lendzian, K. J. & Kerstiens, G. Sorption and transport of gases and vapors in plant cuticles. Rev. Environ. Cont. Tox. 121, 65–128 (1991).
Google Scholar
Kerstiens, G., Federholzner, R. & Lendzian, K. J. Dry deposition and cuticular uptake of pollutant gases. Agric. Ecosyst. Environ. 42, 239–253 (1992).
Google Scholar
Metzler, H. & Krause, B. Angewandte Statistik (Dt Verlag Wiss, 1983).
Baur, P. Lognormal distribution of water permeability and organic solute mobility in plant cuticles. Plant Cell Environ. 20, 167–177 (1997).
Google Scholar
Stamets, P. Growing Gourmet and Medicinal Mushrooms (Ten Speed Press, 1993).
Moser, M. Fungal growth and fructification under stress conditions. Ukrainian Botanical J. 50, 5–12 (1993).
Pinna, S., Gevry, M. F., Côté, M. & Sirois, L. Factors influencing fructification phenology of edible mushrooms in a boreal mixed forest of Eastern Canada. For. Ecol. Manag. 260(3), 294–301 (2010).
Google Scholar
Buller, A. H. R. Researches on Fungi. II. Further Investigations Upon the Production and Liberation of Spores in Hymenomyctes (Hafner Publishing Co, 1922).
Kües, U. Life history and developmental processes in the basidiomycete Coprinus cinereus. Microbiol. Mol. Biol. Rev. 64, 316–353 (2000).
Google Scholar
Money, N. More g’s than the space shuttle: ballistospore discharge. Mycologia 90, 547–558 (1998).
Google Scholar
Husher, J. et al. Evaporative cooling of mushrooms. Mycologia 91, 351–352 (1999).
Google Scholar
Dressaire, E., Yamada, L., Song, B. & Roper, M. Mushrooms use convectively created airflows to disperse their spores. Proc. Natl. Acad. Sci. U. S. A. 113, 2833–2838 (2016).
Google Scholar
De Groot, P. W., Schaap, P. J., Sonnenberg, A. S., Visser, J. & Van Griensven, L. J. The Agaricus bisporus hypAgene encodes a hydrophobin and specifically accumulates in peel tissue of mushroom caps during fruit body development. J. Mol. Biol. 257, 1008–1018 (1996).
Google Scholar
Wösten, H. A. B. & Wessels, J. G. H. The emergence of fruiting bodies in basidiomycetes. In Growth, Differentiation and Sexuality. The Mycota (A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research), Vol. 1 (eds. Kües, U. & Fischer, R.) (Springer, 2006).
Itoh, Y. H., Sugai, A., Uda, I. & Itoh, T. The evolution of lipids. Adv. Space Res. 28, 719–724 (2001).
Google Scholar
Segré, D., Ben-Eli, D., Deamer, D. W. & Lancet, D. The lipid world. Origins Life Evol. Biosphere 31, 119–145 (2001).
Google Scholar
Samson, R. A., Stalpers, J. A. & Verkerke, W. A simplified technique to prepare fungal specimens for scanning electronmicroscopy. Cytobios 24, 7–11 (1979).
Google Scholar
Source: Ecology - nature.com