in

Bat responses to changes in forest composition and prey abundance depend on landscape matrix and stand structure

  • 1.

    Watling, J. I. et al. Support for the habitat amount hypothesis from a global synthesis of species density studies. Ecol. Lett. 23, 674–681 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Song, X.-P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Hanski, I. Metapopulation dynamics. Nature 396, 41–49 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 4.

    Ćosović, M., Bugalho, M. N., Thom, D. & Borges, J. G. Stand structural characteristics are the most practical biodiversity indicators for forest management planning in Europe. Forests 11, 343 (2020).

    Article 

    Google Scholar 

  • 5.

    Bouvet, A. et al. Effects of forest structure, management and landscape on bird and bat communities. Environ. Conserv. 43, 148–160 (2016).

    Article 

    Google Scholar 

  • 6.

    Froidevaux, J. S., Zellweger, F., Bollmann, K., Jones, G. & Obrist, M. K. From field surveys to LiDAR: shining a light on how bats respond to forest structure. Remote Sens. Environ. 175, 242–250 (2016).

    ADS 
    Article 

    Google Scholar 

  • 7.

    Fuentes-Montemayor, E. et al. Species mobility and landscape context determine the importance of local and landscape-level attributes. Ecol. Appl. 27, 1541–1554 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Jung, K., Kaiser, S., Böhm, S., Nieschulze, J. & Kalko, E. K. Moving in three dimensions: effects of structural complexity on occurrence and activity of insectivorous bats in managed forest stands. J. Appl. Ecol. 49, 523–531 (2012).

    Article 

    Google Scholar 

  • 9.

    Langridge, J., Pisanu, B., Laguet, S., Archaux, F. & Tillon, L. The role of complex vegetation structures in determining hawking bat activity in temperate forests. For. Ecol. Manag. 448, 559–571 (2019).

    Article 

    Google Scholar 

  • 10.

    Müller, J. et al. From ground to above canopy—Bat activity in mature forests is driven by vegetation density and height. For. Ecol. Manag. 306, 179–184 (2013).

    Article 

    Google Scholar 

  • 11.

    Renner, S. C. et al. Divergent response to forest structure of two mobile vertebrate groups. For. Ecol. Manag. 415, 129–138 (2018).

    Article 

    Google Scholar 

  • 12.

    Fuentes-Montemayor, E., Goulson, D., Cavin, L., Wallace, J. M. & Park, K. J. Fragmented woodlands in agricultural landscapes: the influence of woodland character and landscape context on bats and their insect prey. Agr. Ecosyst. Environ. 172, 6–15 (2013).

    Article 

    Google Scholar 

  • 13.

    Rachwald, A., Boratyński, J. S., Krawczyk, J., Szurlej, M. & Nowakowski, W. K. Natural and anthropogenic factors influencing the bat community in commercial tree stands in a temperate lowland forest of natural origin (Białowieża Forest). For. Ecol. Manag. 479, 118544 (2021).

    Article 

    Google Scholar 

  • 14.

    Alder, D., Poore, A., Norrey, J., Newson, S. & Marsden, S. Irregular silviculture positively influences multiple bat species in a lowland temperate broadleaf woodland. For. Ecol. Manag. 118786, 1613 (2020).

    Google Scholar 

  • 15.

    Carr, A., Zeale, M. R., Weatherall, A., Froidevaux, J. S. & Jones, G. Ground-based and LiDAR-derived measurements reveal scale-dependent selection of roost characteristics by the rare tree-dwelling bat Barbastella barbastellus. For. Ecol. Manag. 417, 237–246 (2018).

    Article 

    Google Scholar 

  • 16.

    Kortmann, M. et al. Beauty and the beast: how a bat utilizes forests shaped by outbreaks of an insect pest. Anim. Conserv. 21, 21–30 (2018).

    Article 

    Google Scholar 

  • 17.

    Ruczyński, I., Nicholls, B., MacLeod, C. & Racey, P. Selection of roosting habitats by Nyctalus noctula and Nyctalus leisleri in Białowieża Forest—adaptive response to forest management?. For. Ecol. Manag. 259, 1633–1641 (2010).

    Article 

    Google Scholar 

  • 18.

    Ober, H. K. & Hayes, J. P. Influence of forest riparian vegetation on abundance and biomass of nocturnal flying insects. For. Ecol. Manag. 256, 1124–1132 (2008).

    Article 

    Google Scholar 

  • 19.

    Russo, D. et al. Identifying key research objectives to make European forests greener for bats. Front. Ecol. Evol. 4, 87 (2016).

    Article 

    Google Scholar 

  • 20.

    Kaňuch, P. et al. Relating bat species presence to habitat features in natural forests of Slovakia (Central Europe). Mamm. Biol. 73, 147–155 (2008).

    Article 

    Google Scholar 

  • 21.

    Kirkpatrick, L. et al. Bat use of commercial coniferous plantations at multiple spatial scales: management and conservation implications. Biol. Cons. 206, 1–10 (2017).

    Article 

    Google Scholar 

  • 22.

    Vasko, V. et al. Within-season changes in habitat use of forest-dwelling boreal bats. Ecol. Evol. 10, 4164–4174 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    Węgiel, A. et al. The foraging activity of bats in managed pine forests of different ages. Eur. J. Forest Res. 138, 383–396 (2019).

    Article 

    Google Scholar 

  • 24.

    Bender, M. J., Castleberry, S. B., Miller, D. A. & Wigley, T. B. Site occupancy of foraging bats on landscapes of managed pine forest. For. Ecol. Manag. 336, 1–10 (2015).

    Article 

    Google Scholar 

  • 25.

    Apoznański, G. et al. Use of coniferous plantations by bats in western Poland during summer. Balt. For. 26, 232 (2020).

    Article 

    Google Scholar 

  • 26.

    Buchholz, S., Kelm, V. & Ghanem, S. J. Mono-specific forest plantations are valuable bat habitats: implications for wind energy development. Eur. J. Wildl. Res. 67, 1–12 (2021).

    Article 

    Google Scholar 

  • 27.

    Charbonnier, Y. et al. Deciduous trees increase bat diversity at stand and landscape scales in mosaic pine plantations. Landscape Ecol. 31, 291–300 (2016).

    Article 

    Google Scholar 

  • 28.

    Arroyo‐Rodríguez, V. et al. Designing optimal human‐modified landscapes for forest biodiversity conservation. Ecol. Lett. In Press. (2020).

  • 29.

    Dunning, J. B., Danielson, B. J. & Pulliam, H. R. Ecological processes that affect populations in complex landscapes. Oikos 15, 169–175 (1992).

    Article 

    Google Scholar 

  • 30.

    Hatfield, J. H. et al. Mediation of area and edge effects in forest fragments by adjacent land use. Conserv. Biol. 34, 395–404 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    Barbaro, L. et al. Biotic predictors complement models of bat and bird responses to climate and tree diversity in European forests. Proc. R. Soc. B 286, 20182193 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Ethier, K. & Fahrig, L. Positive effects of forest fragmentation, independent of forest amount, on bat abundance in eastern Ontario, Canada. Landsc. Ecol. 26, 865–876 (2011).

    Article 

    Google Scholar 

  • 33.

    Rodríguez-San Pedro, A. & Simonetti, J. A. The relative influence of forest loss and fragmentation on insectivorous bats: does the type of matrix matter?. Landsc. Ecol. 30, 1561–1572 (2015).

    Article 

    Google Scholar 

  • 34.

    Charbonnier, Y. M. et al. Bat and bird diversity along independent gradients of latitude and tree composition in European forests. Oecologia 182, 529–537 (2016).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 35.

    Dietz, C., Nill, D. & von Helversen, O. Bats of Britain, Europe and Northwest Africa. (A & C Black, 2009).

  • 36.

    Law, B., Park, K. J. & Lacki, M. J. in Bats in the Anthropocene: conservation of bats in a changing world (eds Christian C Voigt & T Kingston) 105–150 (Springer, 2016).

  • 37.

    Carr, A., Weatherall, A. & Jones, G. The effects of thinning management on bats and their insect prey in temperate broadleaved woodland. For. Ecol. Manag. 457, 117682 (2020).

    Article 

    Google Scholar 

  • 38.

    Müller, J. et al. Aggregative response in bats: prey abundance versus habitat. Oecologia 169, 673–684 (2012).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Ware, R. L., Garrod, B., Macdonald, H. & Allaby, R. G. Guano morphology has the potential to inform conservation strategies in British bats. PLoS ONE 15, e0230865 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Kirkpatrick, L., Bailey, S. & Park, K. J. Negative impacts of felling in exotic spruce plantations on moth diversity mitigated by remnants of deciduous tree cover. For. Ecol. Manag. 404, 306–315 (2017).

    Article 

    Google Scholar 

  • 41.

    Fuentes-Montemayor, E., Goulson, D., Cavin, L., Wallace, J. M. & Park, K. J. Factors influencing moth assemblages in woodland fragments on farmland: implications for woodland management and creation schemes. Biol. Cons. 153, 265–275 (2012).

    Article 

    Google Scholar 

  • 42.

    Rainho, A., Augusto, A. M. & Palmeirim, J. M. Influence of vegetation clutter on the capacity of ground foraging bats to capture prey. J. Appl. Ecol. 47, 850–858 (2010).

    Article 

    Google Scholar 

  • 43.

    Blakey, R. V., Law, B. S., Kingsford, R. T. & Stoklosa, J. Terrestrial laser scanning reveals below-canopy bat trait relationships with forest structure. Remote Sens. Environ. 198, 40–51 (2017).

    ADS 
    Article 

    Google Scholar 

  • 44.

    Laforge, A. et al. Landscape composition and life-history traits influence bat movement and space use: analysis of 30 years of published telemetry data. (Submitted).

  • 45.

    Tews, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J. Biogeogr. 31, 79–92 (2004).

    Article 

    Google Scholar 

  • 46.

    Summerville, K. S. & Crist, T. O. Contrasting effects of habitat quantity and quality on moth communities in fragmented landscapes. Ecography 27, 3–12 (2004).

    Article 

    Google Scholar 

  • 47.

    Vinet, O., Sane, F. & Chaigne, A. Radiopistage de la barbastelle (Barbastella barbastellus) en forêt domaniale de l’Aigoual. (Nimes, France, 2013).

  • 48.

    Obrist, M. K. et al. Response of bat species to sylvo-pastoral abandonment. For. Ecol. Manag. 261, 789–798 (2011).

    Article 

    Google Scholar 

  • 49.

    Norberg, U. M. & Rayner, J. M. Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 316, 335–427 (1987).

    ADS 
    Article 

    Google Scholar 

  • 50.

    Swift, S. & Racey, P. Gleaning as a foraging strategy in Natterer’s bat Myotis nattereri. Behav. Ecol. Sociobiol. 52, 408–416 (2002).

    Article 

    Google Scholar 

  • 51.

    Brigham, R., Grindal, S., Firman, M. & Morissette, J. The influence of structural clutter on activity patterns of insectivorous bats. Can. J. Zool. 75, 131–136 (1997).

    Article 

    Google Scholar 

  • 52.

    Bender, M. J., Perea, S., Castleberry, S. B., Miller, D. A. & Wigley, T. B. Influence of insect abundance and vegetation structure on site-occupancy of bats in managed pine forests. For. Ecol. Manag. 482, 118839 (2021).

    Article 

    Google Scholar 

  • 53.

    Ancillotto, L. et al. The importance of non-forest landscapes for the conservation of forest bats: lessons from barbastelles (Barbastella barbastellus). Biodivers. Conserv. 24, 171–185 (2015).

    Article 

    Google Scholar 

  • 54.

    Plank, M., Fiedler, K. & Reiter, G. Use of forest strata by bats in temperate forests. J. Zool. 286, 154–162 (2012).

    Article 

    Google Scholar 

  • 55.

    Kusch, J., Weber, C., Idelberger, S. & Koob, T. Foraging habitat preferences of bats in relation to food supply and spatial vegetation structures in a western European low mountain range forest. Folia Zool. 53, 113–128 (2004).

    Google Scholar 

  • 56.

    Siemers, B. M. & Schnitzler, H.-U. Natterer’s bat (Myotis nattereri Kuhl, 1818) hawks for prey close to vegetation using echolocation signals of very broad bandwidth. Behav. Ecol. Sociobiol. 47, 400–412 (2000).

    Article 

    Google Scholar 

  • 57.

    Arrizabalaga-Escudero, A. et al. Trophic requirements beyond foraging habitats: the importance of prey source habitats in bat conservation. Biol. Conserv. 191, 512–519 (2015).

    Article 

    Google Scholar 

  • 58.

    Carr, A. et al. Moths consumed by the Barbastelle Barbastella barbastellus require larval host plants that occur within the bat’s foraging habitats. Acta Chiropterologica 22, 257–269 (2021).

    Google Scholar 

  • 59.

    van der Plas, F. et al. Continental mapping of forest ecosystem functions reveals a high but unrealised potential for forest multifunctionality. Ecol. Lett. 21, 31–42 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 60.

    Lindenmayer, D., Franklin, J. & Fischer, J. General management principles and a checklist of strategies to guide forest biodiversity conservation. Biol. Conserv. 131, 433–445 (2006).

    Article 

    Google Scholar 

  • 61.

    Wolters, V., Bengtsson, J. & Zaitsev, A. S. Relationship among the species richness of different taxa. Ecology 87, 1886–1895 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Larrieu, L. et al. Cost-efficiency of cross-taxon surrogates in temperate forests. Ecol. Ind. 87, 56–65 (2018).

    Article 

    Google Scholar 

  • 63.

    Westgate, M. J., Tulloch, A. I., Barton, P. S., Pierson, J. C. & Lindenmayer, D. B. Optimal taxonomic groups for biodiversity assessment: a meta-analytic approach. Ecography 40, 539–548 (2017).

    Article 

    Google Scholar 

  • 64.

    Larrieu, L. et al. Assessing the potential of routine stand variables from multi-taxon data as habitat surrogates in European temperate forests. Ecol. Ind. 104, 116–126 (2019).

    Article 

    Google Scholar 

  • 65.

    Bitterlich, W. The relascope idea. Relative measurements in forestry. Farnham Royal: Commonwealth Agricultural Bureaux, Slough. (1984).

  • 66.

    Bachelot, B. Sky: canopy openness analyzer package. R package version 1.0. https://cran.r-project.org/web/packages/Sky/index.html. (2016).

  • 67.

    R Development Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. (2019).

  • 68.

    Blondel, J. & Cuvillier, R. Une méthode simple et rapide pour décrire les habitats d’oiseaux: le stratiscope. Oikos 29, 326–331 (1977).

    Article 

    Google Scholar 

  • 69.

    Hesselbarth, M. H., Sciaini, M., With, K. A., Wiegand, K. & Nowosad, J. landscapemetrics: an open-source R tool to calculate landscape metrics. Ecography 42, 1648–1657 (2019).

    Article 

    Google Scholar 

  • 70.

    Froidevaux, J. S., Zellweger, F., Bollmann, K. & Obrist, M. K. Optimizing passive acoustic sampling of bats in forests. Ecol. Evol. 4, 4690–4700 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 71.

    Bas, Y., Bas, D. & Julien, J.-F. Tadarida: a toolbox for animal detection on acoustic recordings. J. Open Res. Softw. 5, 6 (2017).

    Article 

    Google Scholar 

  • 72.

    Barré, K. et al. Accounting for automated identification errors in acoustic surveys. Methods Ecol. Evol. 10, 1171–1188 (2019).

    Article 

    Google Scholar 

  • 73.

    Russo, D., Ancillotto, L. & Jones, G. Bats are still not birds in the digital era: echolocation call variation and why it matters for bat species identification. Can. J. Zool. 96, 63–78 (2018).

    Article 

    Google Scholar 

  • 74.

    Obrist, M. K., Boesch, R. & Flückiger, P. F. Variability in echolocation call design of 26 Swiss bat species: consequences, limits and options for automated field identification with a synergetic pattern recognition approach. Mammalia 68, 307–322 (2004).

    Article 

    Google Scholar 

  • 75.

    Barataud, M. Acoustic ecology of european bats: species identification, study of their habitats and foraging behaviour. Paris: Muséum national d’Histoire naturelle & Mèze: Biotope (Inventaires & biodiversité) 352, 115 (2015).

    Google Scholar 

  • 76.

    Truxa, C. & Fiedler, K. Attraction to light-from how far do moths (Lepidoptera) return to weak artificial sources of light?. Eur. J. Entomol. 109, 1053 (2012).

    Article 

    Google Scholar 

  • 77.

    Froidevaux, J. S., Fialas, P. C. & Jones, G. Catching insects while recording bats: impacts of light trapping on acoustic sampling. Remote Sens. Ecol. Conserv. 4, 240–247 (2018).

    Article 

    Google Scholar 

  • 78.

    Andreas, M., Reiter, A., Cepáková, E. & Uhrin, M. Body size as an important factor determining trophic niche partitioning in three syntopic rhinolophid bat species. Biologia 68, 170–175 (2013).

    Article 

    Google Scholar 

  • 79.

    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R J. 9, 378–400 (2017).

    Article 

    Google Scholar 

  • 80.

    Burnham, K. P. & Anderson, D. R. A practical information-theoretic approach. Model Sel. Multimodel Inference 2, 15 (2002).

    MATH 

    Google Scholar 

  • 81.

    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).

    Article 

    Google Scholar 

  • 82.

    Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.3.2.0. https://cran.r-project.org/web/packages/DHARMa/index.html. (2017).

  • 83.

    Mazerolle, M. J. AICcmodavg. R package version 2.3-1. https://cran.r-project.org/web/packages/AICcmodavg/index.html. (2020).

  • 84.

    Grueber, C., Nakagawa, S., Laws, R. & Jamieson, I. Multimodel inference in ecology and evolution: challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 85.

    Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82, 591–605 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 86.

    Arnold, T. W. Uninformative parameters and model selection using Akaike’s Information Criterion. J. Wildl. Manag. 74, 1175–1178 (2010).

    Article 

    Google Scholar 

  • 87.

    Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.5.0. https://cran.r-project.org/web/packages/emmeans/index.html. (2020).


  • Source: Ecology - nature.com

    Ozone-depleting chemicals may spend less time in the atmosphere than previously thought

    Susan Solomon, scholar of atmospheric chemistry and environmental policy, delivers Killian Lecture