Spilker, L. Cassini-Huygens’ exploration of the Saturn system: 13 years of discovery. Science 364, 1046–1051 (2019).
Google Scholar
Thomas, P. et al. Enceladus’s measured physical libration requires a global subsurface ocean. Icarus 264, 37–47 (2016).
Google Scholar
Waite, J. H. et al. Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes. Science 356, 155–159 (2017).
Google Scholar
Nathues, A. et al. Recent cryovolcanic activity at Occator crater on Ceres. Nat. Astron. 4, 794–801 (2020).
Google Scholar
Schmidt, B. et al. Post-impact cryo-hydrologic formation of small mounds and hills in Ceres’s Occator crater. Nat. Geosci. 13, 605–610 (2020).
Google Scholar
Reynolds, R. T., Squyres, S. W., Colburn, D. S. & McKay, C. P. On the habitability of Europa. Icarus 56, 246–254 (1983).
Google Scholar
Martin, A. & McMinn, A. Sea ice, extremophiles and life on extra-terrestrial ocean worlds. Int. J. Astrobiol. 17, 1–16 (2018).
Google Scholar
McCollom, T. M. Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa. J. Geophys. Res. Planets 104, 30729–30742 (1999).
Google Scholar
Hsu, H.-W. et al. Ongoing hydrothermal activities within Enceladus. Nature 519, 207–210 (2015).
Google Scholar
Glein, C. R., Baross, J. A. & Waite, J. H. Jr The pH of Enceladus’ ocean. Geochim. Cosmochim. Acta 162, 202–219 (2015).
Google Scholar
Choblet, G. et al. Powering prolonged hydrothermal activity inside Enceladus. Nat. Astron. 1, 841–847 (2017).
Google Scholar
Kleerebezem, R. & Van Loosdrecht, M. C. A generalized method for thermodynamic state analysis of environmental systems. Crit. Rev. Environ. Sci. Technol. 40, 1–54 (2010).
Google Scholar
Mousis, O. et al. Formation conditions of Enceladus and origin of its methane reservoir. Astrophys. J. Lett. 701, L39 (2009).
Google Scholar
McKay, C., Khare, B. N., Amin, R., Klasson, M. & Kral, T. A. Possible sources for methane and C2–C5 organics in the plume of Enceladus. Planet. Space Sci. 71, 73–79 (2012).
Google Scholar
Jannasch, H. W. & Mottl, M. J. Geomicrobiology of deep-sea hydrothermal vents. Science 229, 717–725 (1985).
Google Scholar
Schrenk, M. O., Kelley, D. S., Bolton, S. A. & Baross, J. A. Low archaeal diversity linked to subseafloor geochemical processes at the Lost City Hydrothermal Field, Mid-Atlantic Ridge. Environ. Microbiol. 6, 1086–1095 (2004).
Google Scholar
Hedderich, R. & Whitman, W. B. in The Prokaryotes: Prokaryotic Physiology and Biochemistry (eds Rosenberg, E. et al.) 635–662 (Springer, 2013).
Travis, B. & Schubert, G. Keeping Enceladus warm. Icarus 250, 32–42 (2015).
Google Scholar
Martin, W., Baross, J., Kelley, D. & Russell, M. J. Hydrothermal vents and the origin of life. Nat. Rev. Microbiol. 6, 805–814 (2008).
Google Scholar
Taubner, R.-S. et al. Biological methane production under putative Enceladus-like conditions. Nat. Commun. 9, 748 (2018).
Google Scholar
McKay, C. P., Porco, C. C., Altheide, T., Davis, W. L. & Kral, T. A. The possible origin and persistence of life on Enceladus and detection of biomarkers in the plume. Astrobiology 8, 909–919 (2008).
Google Scholar
Catling, D. C. et al. Exoplanet biosignatures: a framework for their assessment. Astrobiology 18, 709–738 (2018).
Google Scholar
Lorenz, R. D. A. Bayesian approach to biosignature detection on ocean worlds. Nat. Astron. 3, 466–467 (2019).
Google Scholar
Bouquet, A., Mousis, O., Waite, J. H. & Picaud, S. Possible evidence for a methane source in Enceladus’ ocean. Geophys. Res. Lett. 42, 1334–1339 (2015).
Google Scholar
Neveu, M. & Rhoden, A. R. Evolution of Saturn’s mid-sized moons. Nat. Astron. 3, 543–552 (2019).
Google Scholar
Prialnik, D. & Merk, R. Growth and evolution of small porous icy bodies with an adaptive-grid thermal evolution code: I. Application to Kuiper belt objects and Enceladus. Icarus 197, 211–220 (2008).
Google Scholar
Roberts, J. H. The fluffy core of Enceladus. Icarus 258, 54–66 (2015).
Google Scholar
Goodman, J. C., Collins, G. C., Marshall, J. & Pierrehumbert, R. T. Hydrothermal plume dynamics on Europa: implications for chaos formation. J. Geophys. Res. Planets 109, E03008 (2004).
Google Scholar
Goodman, J. C. & Lenferink, E. Numerical simulations of marine hydrothermal plumes for Europa and other icy worlds. Icarus 221, 970–983 (2012).
Google Scholar
Topçuoğlu, B. D. et al. Hydrogen limitation and syntrophic growth among natural assemblages of thermophilic methanogens at deep-sea hydrothermal vents. Front. Microbiol. 7, 1240 (2016).
Google Scholar
Daniel, R. M. et al. The molecular basis of the effect of temperature on enzyme activity. Biochem. J. 425, 353–360 (2010).
Google Scholar
Tijhuis, L., Van Loosdrecht, M. C. & Heijnen, J. A thermodynamically based correlation for maintenance Gibbs energy requirements in aerobic and anaerobic chemotrophic growth. Biotechnol. Bioeng. 42, 509–519 (1993).
Google Scholar
Sleep, N., Meibom, A., Fridriksson, T., Coleman, R. & Bird, D. H2-rich fluids from serpentinization: geochemical and biotic implications. Proc. Natl. Acad. Sci. USA 101, 12818–12823 (2004).
Google Scholar
McCollom, T. M. Abiotic methane formation during experimental serpentinization of olivine. Proc. Natl Acad. Sci. USA 113, 13965–13970 (2016).
Google Scholar
Pudlo, P. et al. Reliable ABC model choice via random forests. Bioinformatics 32, 859–866 (2015).
Google Scholar
Krissansen-Totton, J., Olson, S. & Catling, D. C. Disequilibrium biosignatures over Earth history and implications for detecting exoplanet life. Sci. Adv. 4, eaao5747 (2018).
Google Scholar
Russell, M. J. et al. The drive to life on wet and icy worlds. Astrobiology 14, 308–343 (2014).
Google Scholar
Sasselov, D. D., Grotzinger, J. P. & Sutherland, J. D. The origin of life as a planetary phenomenon. Sci. Adv. 6, eaax3419 (2020).
Google Scholar
Takai, K. et al. Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc. Natl Acad. Sci. USA 105, 10949–10954 (2008).
Google Scholar
Kalirai, J. Scientific discovery with the James Webb Space Telescope. Contemp. Phys. 59, 251–290 (2018).
Google Scholar
Phillips, C. B. & Pappalardo, R. T. Europa Clipper mission concept: exploring Jupiter’s ocean moon. Eos 95, 165–167 (2014).
Google Scholar
Eigenbrode, J., Gold, R. E., McKay, C. P., Hurford, T. & Davila, A. Searching for life in an ocean world: the Enceladus Life Signatures and Habitability (ELSAH) mission concept. In Proc. 42nd COSPAR Scientific Assembly abstr. F3.6–3-18 (2018).
Cable, M. L. et al. Enceladus Life Finder: The Search for Life in a Habitable Moon (NASA, JPL, 2016); https://trs.jpl.nasa.gov/handle/2014/45905
Mitri, G. et al. Explorer of Enceladus and Titan (E2T): investigating ocean worlds’ evolution and habitability in the solar system. Planet. Space Sci. 155, 73–90 (2018).
Google Scholar
Sauterey, B., Charnay, B., Affholder, A., Mazevet, S. & Ferrière, R. Co-evolution of primitive methane-cycling ecosystems and early Earth’s atmosphere and climate. Nat. Commun. 11, 2705 (2020).
Google Scholar
Lever, M. A. et al. Life under extreme energy limitation: a synthesis of laboratory-and field-based investigations. FEMS Microbiol. Rev. 39, 688–728 (2015).
Google Scholar
Connolly, J. P. & Coffin, R. B. Model of carbon cycling in planktonic food webs. J. Environ. Eng. 121, 682–690 (1995).
Google Scholar
Krissansen-Totton, J. & Catling, D. C. Constraining climate sensitivity and continental versus seafloor weathering using an inverse geological carbon cycle model. Nat. Commun. 8, 15423 (2017).
Google Scholar
Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).
Google Scholar
Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).
Google Scholar
Csilléry, K., Blum, M. G., Gaggiotti, O. E. & François, O. Approximate Bayesian computation (ABC) in practice. Trends Ecol. Evol. 25, 410–418 (2010).
Google Scholar
Sisson, S. A., Fan, Y. & Beaumont, M. Handbook of Approximate Bayesian Computation (Chapman and Hall/CRC, 2018).
Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Google Scholar
Tutolo, B. M., Seyfried, W. E. & Tosca, N. J. A seawater throttle on H2 production in Precambrian serpentinizing systems. Proc. Natl Acad. Sci. USA 117, 14756–14763 (2020).
Google Scholar
Glein, C. R. & Waite, J. H. The carbonate geochemistry of Enceladus’ ocean. Geophys. Res. Lett. 47, e2019GL085885 (2020).
Google Scholar
Charlou, J., Donval, J., Fouquet, Y., Jean-Baptiste, P. & Holm, N. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14’ N, MAR). Chem. Geol. 191, 345–359 (2002).
Google Scholar
Source: Ecology - nature.com