in

Bayesian analysis of Enceladus’s plume data to assess methanogenesis

[adace-ad id="91168"]
  • 1.

    Spilker, L. Cassini-Huygens’ exploration of the Saturn system: 13 years of discovery. Science 364, 1046–1051 (2019).

    ADS 
    Article 

    Google Scholar 

  • 2.

    Thomas, P. et al. Enceladus’s measured physical libration requires a global subsurface ocean. Icarus 264, 37–47 (2016).

    ADS 
    Article 

    Google Scholar 

  • 3.

    Waite, J. H. et al. Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes. Science 356, 155–159 (2017).

    ADS 
    Article 

    Google Scholar 

  • 4.

    Nathues, A. et al. Recent cryovolcanic activity at Occator crater on Ceres. Nat. Astron. 4, 794–801 (2020).

    ADS 
    Article 

    Google Scholar 

  • 5.

    Schmidt, B. et al. Post-impact cryo-hydrologic formation of small mounds and hills in Ceres’s Occator crater. Nat. Geosci. 13, 605–610 (2020).

    ADS 
    Article 

    Google Scholar 

  • 6.

    Reynolds, R. T., Squyres, S. W., Colburn, D. S. & McKay, C. P. On the habitability of Europa. Icarus 56, 246–254 (1983).

    ADS 
    Article 

    Google Scholar 

  • 7.

    Martin, A. & McMinn, A. Sea ice, extremophiles and life on extra-terrestrial ocean worlds. Int. J. Astrobiol. 17, 1–16 (2018).

    ADS 
    Article 

    Google Scholar 

  • 8.

    McCollom, T. M. Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa. J. Geophys. Res. Planets 104, 30729–30742 (1999).

    ADS 
    Article 

    Google Scholar 

  • 9.

    Hsu, H.-W. et al. Ongoing hydrothermal activities within Enceladus. Nature 519, 207–210 (2015).

    ADS 
    Article 

    Google Scholar 

  • 10.

    Glein, C. R., Baross, J. A. & Waite, J. H. Jr The pH of Enceladus’ ocean. Geochim. Cosmochim. Acta 162, 202–219 (2015).

    ADS 
    Article 

    Google Scholar 

  • 11.

    Choblet, G. et al. Powering prolonged hydrothermal activity inside Enceladus. Nat. Astron. 1, 841–847 (2017).

    ADS 
    Article 

    Google Scholar 

  • 12.

    Kleerebezem, R. & Van Loosdrecht, M. C. A generalized method for thermodynamic state analysis of environmental systems. Crit. Rev. Environ. Sci. Technol. 40, 1–54 (2010).

    Article 

    Google Scholar 

  • 13.

    Mousis, O. et al. Formation conditions of Enceladus and origin of its methane reservoir. Astrophys. J. Lett. 701, L39 (2009).

    ADS 
    Article 

    Google Scholar 

  • 14.

    McKay, C., Khare, B. N., Amin, R., Klasson, M. & Kral, T. A. Possible sources for methane and C2–C5 organics in the plume of Enceladus. Planet. Space Sci. 71, 73–79 (2012).

    ADS 
    Article 

    Google Scholar 

  • 15.

    Jannasch, H. W. & Mottl, M. J. Geomicrobiology of deep-sea hydrothermal vents. Science 229, 717–725 (1985).

    ADS 
    Article 

    Google Scholar 

  • 16.

    Schrenk, M. O., Kelley, D. S., Bolton, S. A. & Baross, J. A. Low archaeal diversity linked to subseafloor geochemical processes at the Lost City Hydrothermal Field, Mid-Atlantic Ridge. Environ. Microbiol. 6, 1086–1095 (2004).

    Article 

    Google Scholar 

  • 17.

    Hedderich, R. & Whitman, W. B. in The Prokaryotes: Prokaryotic Physiology and Biochemistry (eds Rosenberg, E. et al.) 635–662 (Springer, 2013).

  • 18.

    Travis, B. & Schubert, G. Keeping Enceladus warm. Icarus 250, 32–42 (2015).

    ADS 
    Article 

    Google Scholar 

  • 19.

    Martin, W., Baross, J., Kelley, D. & Russell, M. J. Hydrothermal vents and the origin of life. Nat. Rev. Microbiol. 6, 805–814 (2008).

    Article 

    Google Scholar 

  • 20.

    Taubner, R.-S. et al. Biological methane production under putative Enceladus-like conditions. Nat. Commun. 9, 748 (2018).

    ADS 
    Article 

    Google Scholar 

  • 21.

    McKay, C. P., Porco, C. C., Altheide, T., Davis, W. L. & Kral, T. A. The possible origin and persistence of life on Enceladus and detection of biomarkers in the plume. Astrobiology 8, 909–919 (2008).

    ADS 
    Article 

    Google Scholar 

  • 22.

    Catling, D. C. et al. Exoplanet biosignatures: a framework for their assessment. Astrobiology 18, 709–738 (2018).

    ADS 
    Article 

    Google Scholar 

  • 23.

    Lorenz, R. D. A. Bayesian approach to biosignature detection on ocean worlds. Nat. Astron. 3, 466–467 (2019).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Bouquet, A., Mousis, O., Waite, J. H. & Picaud, S. Possible evidence for a methane source in Enceladus’ ocean. Geophys. Res. Lett. 42, 1334–1339 (2015).

    ADS 
    Article 

    Google Scholar 

  • 25.

    Neveu, M. & Rhoden, A. R. Evolution of Saturn’s mid-sized moons. Nat. Astron. 3, 543–552 (2019).

    ADS 
    Article 

    Google Scholar 

  • 26.

    Prialnik, D. & Merk, R. Growth and evolution of small porous icy bodies with an adaptive-grid thermal evolution code: I. Application to Kuiper belt objects and Enceladus. Icarus 197, 211–220 (2008).

    ADS 
    Article 

    Google Scholar 

  • 27.

    Roberts, J. H. The fluffy core of Enceladus. Icarus 258, 54–66 (2015).

    ADS 
    Article 

    Google Scholar 

  • 28.

    Goodman, J. C., Collins, G. C., Marshall, J. & Pierrehumbert, R. T. Hydrothermal plume dynamics on Europa: implications for chaos formation. J. Geophys. Res. Planets 109, E03008 (2004).

    ADS 
    Article 

    Google Scholar 

  • 29.

    Goodman, J. C. & Lenferink, E. Numerical simulations of marine hydrothermal plumes for Europa and other icy worlds. Icarus 221, 970–983 (2012).

    ADS 
    Article 

    Google Scholar 

  • 30.

    Topçuoğlu, B. D. et al. Hydrogen limitation and syntrophic growth among natural assemblages of thermophilic methanogens at deep-sea hydrothermal vents. Front. Microbiol. 7, 1240 (2016).

    Article 

    Google Scholar 

  • 31.

    Daniel, R. M. et al. The molecular basis of the effect of temperature on enzyme activity. Biochem. J. 425, 353–360 (2010).

    Article 

    Google Scholar 

  • 32.

    Tijhuis, L., Van Loosdrecht, M. C. & Heijnen, J. A thermodynamically based correlation for maintenance Gibbs energy requirements in aerobic and anaerobic chemotrophic growth. Biotechnol. Bioeng. 42, 509–519 (1993).

    Article 

    Google Scholar 

  • 33.

    Sleep, N., Meibom, A., Fridriksson, T., Coleman, R. & Bird, D. H2-rich fluids from serpentinization: geochemical and biotic implications. Proc. Natl. Acad. Sci. USA 101, 12818–12823 (2004).

    ADS 
    Article 

    Google Scholar 

  • 34.

    McCollom, T. M. Abiotic methane formation during experimental serpentinization of olivine. Proc. Natl Acad. Sci. USA 113, 13965–13970 (2016).

    ADS 
    Article 

    Google Scholar 

  • 35.

    Pudlo, P. et al. Reliable ABC model choice via random forests. Bioinformatics 32, 859–866 (2015).

    Article 

    Google Scholar 

  • 36.

    Krissansen-Totton, J., Olson, S. & Catling, D. C. Disequilibrium biosignatures over Earth history and implications for detecting exoplanet life. Sci. Adv. 4, eaao5747 (2018).

    ADS 
    Article 

    Google Scholar 

  • 37.

    Russell, M. J. et al. The drive to life on wet and icy worlds. Astrobiology 14, 308–343 (2014).

    ADS 
    Article 

    Google Scholar 

  • 38.

    Sasselov, D. D., Grotzinger, J. P. & Sutherland, J. D. The origin of life as a planetary phenomenon. Sci. Adv. 6, eaax3419 (2020).

    ADS 
    Article 

    Google Scholar 

  • 39.

    Takai, K. et al. Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc. Natl Acad. Sci. USA 105, 10949–10954 (2008).

    ADS 
    Article 

    Google Scholar 

  • 40.

    Kalirai, J. Scientific discovery with the James Webb Space Telescope. Contemp. Phys. 59, 251–290 (2018).

    ADS 
    Article 

    Google Scholar 

  • 41.

    Phillips, C. B. & Pappalardo, R. T. Europa Clipper mission concept: exploring Jupiter’s ocean moon. Eos 95, 165–167 (2014).

    ADS 
    Article 

    Google Scholar 

  • 42.

    Eigenbrode, J., Gold, R. E., McKay, C. P., Hurford, T. & Davila, A. Searching for life in an ocean world: the Enceladus Life Signatures and Habitability (ELSAH) mission concept. In Proc. 42nd COSPAR Scientific Assembly abstr. F3.6–3-18 (2018).

  • 43.

    Cable, M. L. et al. Enceladus Life Finder: The Search for Life in a Habitable Moon (NASA, JPL, 2016); https://trs.jpl.nasa.gov/handle/2014/45905

  • 44.

    Mitri, G. et al. Explorer of Enceladus and Titan (E2T): investigating ocean worlds’ evolution and habitability in the solar system. Planet. Space Sci. 155, 73–90 (2018).

    ADS 
    Article 

    Google Scholar 

  • 45.

    Sauterey, B., Charnay, B., Affholder, A., Mazevet, S. & Ferrière, R. Co-evolution of primitive methane-cycling ecosystems and early Earth’s atmosphere and climate. Nat. Commun. 11, 2705 (2020).

    ADS 
    Article 

    Google Scholar 

  • 46.

    Lever, M. A. et al. Life under extreme energy limitation: a synthesis of laboratory-and field-based investigations. FEMS Microbiol. Rev. 39, 688–728 (2015).

    Article 

    Google Scholar 

  • 47.

    Connolly, J. P. & Coffin, R. B. Model of carbon cycling in planktonic food webs. J. Environ. Eng. 121, 682–690 (1995).

    Article 

    Google Scholar 

  • 48.

    Krissansen-Totton, J. & Catling, D. C. Constraining climate sensitivity and continental versus seafloor weathering using an inverse geological carbon cycle model. Nat. Commun. 8, 15423 (2017).

    ADS 
    Article 

    Google Scholar 

  • 49.

    Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Article 

    Google Scholar 

  • 50.

    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).

    ADS 
    Article 

    Google Scholar 

  • 51.

    Csilléry, K., Blum, M. G., Gaggiotti, O. E. & François, O. Approximate Bayesian computation (ABC) in practice. Trends Ecol. Evol. 25, 410–418 (2010).

    Article 

    Google Scholar 

  • 52.

    Sisson, S. A., Fan, Y. & Beaumont, M. Handbook of Approximate Bayesian Computation (Chapman and Hall/CRC, 2018).

  • 53.

    Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    MathSciNet 
    MATH 

    Google Scholar 

  • 54.

    Tutolo, B. M., Seyfried, W. E. & Tosca, N. J. A seawater throttle on H2 production in Precambrian serpentinizing systems. Proc. Natl Acad. Sci. USA 117, 14756–14763 (2020).

    Article 

    Google Scholar 

  • 55.

    Glein, C. R. & Waite, J. H. The carbonate geochemistry of Enceladus’ ocean. Geophys. Res. Lett. 47, e2019GL085885 (2020).

    ADS 
    Article 

    Google Scholar 

  • 56.

    Charlou, J., Donval, J., Fouquet, Y., Jean-Baptiste, P. & Holm, N. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14’ N, MAR). Chem. Geol. 191, 345–359 (2002).

    ADS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Beating in on a stable partnership

    Tiny particles power chemical reactions