in

Beneficial insects are associated with botanically rich margins with trees on small farms

  • 1.

    Scheper, J. et al. Environmental factors driving the effectiveness of European agri-environmental measures in mitigating pollinator loss—a meta-analysis. Ecol. Lett. 16, 912–920. https://doi.org/10.1111/ele.12128 (2013).

    Article 
    PubMed 

    Google Scholar 

  • 2.

    Holzschuh, A., Steffan-Dewenter, I. & Tscharntke, T. How do landscape composition and configuration, organic farming and fallow strips affect the diversity of bees, wasps and their parasitoids?. J. Anim. Ecol. 79, 491–500 (2010).

    Article 

    Google Scholar 

  • 3.

    Mwangi, D. et al. Diversity and abundance of native bees foraging on hedgerow plants in the Kakamega farmlands, western Kenya. J. Apic. Res. 51, 298–305. https://doi.org/10.3896/ibra.1.51.4.02 (2012).

    Article 

    Google Scholar 

  • 4.

    Rollin, O. et al. Weed-insect pollinator networks as bio-indicators of ecological sustainability in agriculture. A review. Agronomy Sustain. Develop. 36, 8. https://doi.org/10.1007/s13593-015-0342-x (2016).

    Article 

    Google Scholar 

  • 5.

    Bianchi, F. J. J. A., Booij, C. J. H. & Tscharntke, T. Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc. Royal Soc. B Biol. Sci. 273, 1715–1727 (2006).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Landis, D. A., Wratten, S. D. & Gurr, G. M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45, 175–201. https://doi.org/10.1146/annurev.ento.45.1.175 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 7.

    Pollier, A., Tricault, Y., Plantegenest, M. & Bischoff, A. Sowing of margin strips rich in floral resources improves herbivore control in adjacent crop fields. Agric. For. Entomol. 21, 119–129. https://doi.org/10.1111/afe.12318 (2019).

    Article 

    Google Scholar 

  • 8.

    Marshall, E. J. P., West, T. M. & Kleijn, D. Impacts of an agri-environment field margin prescription on the flora and fauna of arable farmland in different landscapes. Agr. Ecosyst. Environ. 113, 36–44. https://doi.org/10.1016/j.agee.2005.08.036 (2006).

    Article 

    Google Scholar 

  • 9.

    Karp, D. S. et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl. Acad. Sci. 115, E7863. https://doi.org/10.1073/pnas.1800042115 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Elisante, F. et al. Insect pollination is important in a smallholder bean farming system. PeerJ 8, e10102 (2020).

    Article 

    Google Scholar 

  • 11.

    Karanja, R., Njoroge, G., Gikungu, M. & Newton, L. Bee interactions with wild flora around organic and conventional coffee farms in Kiambu district, central Kenya. J. Pollination Ecol. 2, 7–12. https://doi.org/10.26786/1920-7603(2010)5 (2010).

    Article 

    Google Scholar 

  • 12.

    Koji, S., Khan, Z. R. & Midega, C. A. O. Field boundaries of Panicum maximum as a reservoir for predators and a sink for Chilo partellus. J. Appl. Entomol. 131, 186–196. https://doi.org/10.1111/j.1439-0418.2006.01131.x (2007).

    Article 

    Google Scholar 

  • 13.

    Nel, L. et al. Exotic plants growing in crop field margins provide little support to mango crop flower visitors. Agric. Ecosyst. Environ. 250, 72–80. https://doi.org/10.1016/j.agee.2017.09.002 (2017).

    Article 

    Google Scholar 

  • 14.

    Gaigher, R., Pryke, J. S. & Samways, M. J. High parasitoid diversity in remnant natural vegetation, but limited spillover into the agricultural matrix in South African vineyard agroecosystems. Biol. Cons. 186, 69–74. https://doi.org/10.1016/j.biocon.2015.03.003 (2015).

    Article 

    Google Scholar 

  • 15.

    Vogel, C., Chunga, T. L., Sun, X., Poveda, K. & Steffan-Dewenter, I. Higher bee abundance, but not pest abundance, in landscapes with more agriculture on a late-flowering legume crop in tropical smallholder farms. PeerJ 9, e10732. https://doi.org/10.7717/peerj.10732 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Tscharntke, T. et al. When natural habitat fails to enhance biological pest control—Five hypotheses. Biol. Cons. 204, 449–458. https://doi.org/10.1016/j.biocon.2016.10.001 (2016).

    Article 

    Google Scholar 

  • 17.

    Griffiths, G. J. K., Holland, J. M., Bailey, A. & Thomas, M. B. Efficacy and economics of shelter habitats for conservation biological control. Biol. Control 45, 200–209. https://doi.org/10.1016/j.biocontrol.2007.09.002 (2008).

    Article 

    Google Scholar 

  • 18.

    Albrecht, M., Duelli, P., Schmid, B. & Müller, C. B. Interaction diversity within quantified insect food webs in restored and adjacent intensively managed meadows. J. Anim. Ecol. 76, 1015–1025. https://doi.org/10.1111/j.1365-2656.2007.01264.x (2007).

    Article 
    PubMed 

    Google Scholar 

  • 19.

    Lemessa, D., Hambäck, P. A. & Hylander, K. Arthropod but not bird predation in Ethiopian homegardens is higher in tree-poor than in tree-rich landscapes. PLoS ONE 10, e0126639. https://doi.org/10.1371/journal.pone.0126639 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Urbanowicz, C., Muñiz, P. A. & McArt, S. H. Honey bees and wild pollinators differ in their preference for and use of introduced floral resources. Ecol. Evol. 10, 6741–6751 (2020).

    Article 

    Google Scholar 

  • 21.

    Seitz, N., van Engelsdorp, D. & Leonhardt, S. D. Are native and non-native pollinator friendly plants equally valuable for native wild bee communities?. Ecol. Evol. 10, 12838–12850. https://doi.org/10.1002/ece3.6826 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Vaudo, A. D., Tooker, J. F., Grozinger, C. M. & Patch, H. M. Bee nutrition and floral resource restoration. Current Opinion Insect Sci. 10, 133–141. https://doi.org/10.1016/j.cois.2015.05.008 (2015).

    Article 

    Google Scholar 

  • 23.

    Delaney, A. et al. Local-scale tree and shrub diversity improves pollination services to shea trees in tropical West African parklands. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.13640 (2020).

    Article 

    Google Scholar 

  • 24.

    Miller, D., Muñoz-Mora, J. C. & Christiaensen, L. in Agriculture in Africa: Telling Myths from Facts (eds L. Christiaensen & L. Demery) Ch. 13, 115–121 (The World Bank Group, 2018).

  • 25.

    Meijer, S. S., Catacutan, D., Sileshi, G. W. & Nieuwenhuis, M. Tree planting by smallholder farmers in Malawi: Using the theory of planned behaviour to examine the relationship between attitudes and behaviour. J. Environ. Psychol. 43, 1–12. https://doi.org/10.1016/j.jenvp.2015.05.008 (2015).

    Article 

    Google Scholar 

  • 26.

    Otieno, M. et al. Enhancing legume crop pollination and natural pest regulation for improved food security in changing African landscapes. Glob. Food Sec. 26, 100394. https://doi.org/10.1016/j.gfs.2020.100394 (2020).

    Article 

    Google Scholar 

  • 27.

    Masiga, R. et al. Do French beans (Phaseolus vulgaris) grown in proximity to Mt Kenya forest in Kenya experience pollination deficit?. J. Pollination Ecol. 14, 255–260 (2014).

    Article 

    Google Scholar 

  • 28.

    Liaw, A. & Wiener, M. Classification and regression by random. Forest R news 2, 18–22 (2002).

    Google Scholar 

  • 29.

    R Core Team. R: A language and environment for statistical computing. https://www.R-project.org/. (2020).

  • 30.

    ggplot2: Elegant graphics for data analysis (Springer-Verlag New York, 2016).

  • 31.

    Hagen, M. & Kraemer, M. Agricultural surroundings support flower–visitor networks in an Afrotropical rain forest. Biol. Cons. 143, 1654–1663. https://doi.org/10.1016/j.biocon.2010.03.036 (2010).

    Article 

    Google Scholar 

  • 32.

    Rezende, M. Q., Venzon, M., Perez, A. L., Cardoso, I. M. & Janssen, A. Extrafloral nectaries of associated trees can enhance natural pest control. Agric. Ecosyst. Environ. 188, 198–203. https://doi.org/10.1016/j.agee.2014.02.024 (2014).

    Article 

    Google Scholar 

  • 33.

    Letourneau, D. K. et al. Does plant diversity benefit agroecosystems? A synthetic review. Ecol. Appl. 21, 9–21 (2011).

    Article 

    Google Scholar 

  • 34.

    Classen, A. et al. Complementary ecosystem services provided by pest predators and pollinators increase quantity and quality of coffee yields. Proc. Royal Soc. B Biol. Sci. 281, 20133148. https://doi.org/10.1098/rspb.2013.3148 (2014).

    Article 

    Google Scholar 

  • 35.

    Letourneau, D. K., Jedlicka, J. A., Bothwell, S. G. & Moreno, C. R. Effects of natural enemy biodiversity on the suppression of arthropod herbivores in terrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst. 40, 573–592. https://doi.org/10.1146/annurev.ecolsys.110308.120320 (2009).

    Article 

    Google Scholar 

  • 36.

    Paredes, D., Karp, D. S., Chaplin-Kramer, R., Benítez, E. & Campos, M. Natural habitat increases natural pest control in olive groves: economic implications. J. Pest. Sci. 92, 1111–1121 (2019).

    Article 

    Google Scholar 

  • 37.

    Gurr, G. M. et al. Multi-country evidence that crop diversification promotes ecological intensification of agriculture. Nat. Plants 2, 1–4 (2016).

    Article 

    Google Scholar 

  • 38.

    Frankie, G. et al. Native and non-native plants attract diverse bees to urban gardens in California. J. Pollination Ecol. 25, 16–23 (2019).

  • 39.

    Mkenda, P. et al. Extracts from field margin weeds provide economically viable and environmentally benign pest control compared to synthetic pesticides. PLoS ONE 10, e0143530. https://doi.org/10.1371/journal.pone.0143530 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Rioba, N. B. & Stevenson, P. C. Ageratum conyzoides L. for the management of pests and diseases by small holder farmers. Ind. Crops Prod. 110, 22–29. https://doi.org/10.1016/j.indcrop.2017.06.068 (2017).

    Article 

    Google Scholar 

  • 41.

    Mwangi, D. M. & Wambugu, C. Adoption of forage legumes: the case of Desmodium intortum and Calliandra calothyrsus in central Kenya. Tropical Grasslands 37, 227–238 (2003).

    Google Scholar 

  • 42.

    Chaplin-Kramer, R. et al. Global malnutrition overlaps with pollinator-dependent micronutrient production. Proc. Royal Soc. B Biol. Sci. 281, 20141799. https://doi.org/10.1098/rspb.2014.1799 (2014).

    Article 

    Google Scholar 

  • 43.

    Mkindi, A. et al. Invasive weeds with pesticidal properties as potential new crops. Ind. Crops Prod. 110, 113–122. https://doi.org/10.1016/j.indcrop.2017.06.002 (2017).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Njovu, H. K. et al. Leaf traits mediate changes in invertebrate herbivory along broad environmental gradients on Mt. Kilimanjaro. Tanzania. J. Animal Ecol. 88, 1777–1788. https://doi.org/10.1111/1365-2656.13058 (2019).

    Article 

    Google Scholar 

  • 45.

    Elisante, F. et al. Enhancing knowledge among smallholders on pollinators and supporting field margins for sustainable food security. J. Rural. Stud. 70, 75–86. https://doi.org/10.1016/j.jrurstud.2019.07.004 (2019).

    Article 

    Google Scholar 

  • 46.

    Ensslin, A. et al. Effects of elevation and land use on the biomass of trees, shrubs and herbs at Mount Kilimanjaro. Ecosphere 6, art45. https://doi.org/10.1890/ES14-00492.1 (2015).

    Article 

    Google Scholar 

  • 47.

    Mkenda, P. A. et al. Field margin vegetation in tropical African bean systems harbours diverse natural enemies for biological pest control in adjacent crops. Sustainability 11, 6399. https://doi.org/10.3390/su11226399 (2019).

    Article 

    Google Scholar 

  • 48.

    Matechou, E., Freeman, S. N. & Comont, R. Caste-specific demography and phenology in bumblebees: Modelling BeeWalk data. J. Agric. Biol. Environ. Stat. 23, 427–445. https://doi.org/10.1007/s13253-018-0332-y (2018).

    MathSciNet 
    Article 
    MATH 

    Google Scholar 

  • 49.

    Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).

    Article 

    Google Scholar 

  • 50.

    Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27(379–423), 623–656 (1948).

    MathSciNet 
    Article 

    Google Scholar 

  • 51.

    Ulrich, H. Predation by adult Dolichopodidae (Diptera): a review of literature with an annotated prey-predator list. Studia Dipterologica 11, 369–403 (2004).

    Google Scholar 

  • 52.

    Negro, M. et al. Effects of forest management on ground beetle diversity in alpine beech (Fagus sylvatica L.) stands. Forest Ecol. Manage. 328, 300–309. https://doi.org/10.1016/j.foreco.2014.05.049 (2014).

    Article 

    Google Scholar 

  • 53.

    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. Royal Statistic. Soc. Ser. B Statistic. Methodol. 73, 3–36 (2011).

    MathSciNet 
    Article 

    Google Scholar 

  • 54.

    Dormann, C. F., Gruber, B. & Fruend, J. Introducing the bipartite package: analysing ecological networks. R news 8(2), 8–11 (2008).

    Google Scholar 


  • Source: Ecology - nature.com

    A material difference

    Comparative assessment of amino acids composition in two types of marine fish silage