Scheper, J. et al. Environmental factors driving the effectiveness of European agri-environmental measures in mitigating pollinator loss—a meta-analysis. Ecol. Lett. 16, 912–920. https://doi.org/10.1111/ele.12128 (2013).
Google Scholar
Holzschuh, A., Steffan-Dewenter, I. & Tscharntke, T. How do landscape composition and configuration, organic farming and fallow strips affect the diversity of bees, wasps and their parasitoids?. J. Anim. Ecol. 79, 491–500 (2010).
Google Scholar
Mwangi, D. et al. Diversity and abundance of native bees foraging on hedgerow plants in the Kakamega farmlands, western Kenya. J. Apic. Res. 51, 298–305. https://doi.org/10.3896/ibra.1.51.4.02 (2012).
Google Scholar
Rollin, O. et al. Weed-insect pollinator networks as bio-indicators of ecological sustainability in agriculture. A review. Agronomy Sustain. Develop. 36, 8. https://doi.org/10.1007/s13593-015-0342-x (2016).
Google Scholar
Bianchi, F. J. J. A., Booij, C. J. H. & Tscharntke, T. Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc. Royal Soc. B Biol. Sci. 273, 1715–1727 (2006).
Google Scholar
Landis, D. A., Wratten, S. D. & Gurr, G. M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45, 175–201. https://doi.org/10.1146/annurev.ento.45.1.175 (2000).
Google Scholar
Pollier, A., Tricault, Y., Plantegenest, M. & Bischoff, A. Sowing of margin strips rich in floral resources improves herbivore control in adjacent crop fields. Agric. For. Entomol. 21, 119–129. https://doi.org/10.1111/afe.12318 (2019).
Google Scholar
Marshall, E. J. P., West, T. M. & Kleijn, D. Impacts of an agri-environment field margin prescription on the flora and fauna of arable farmland in different landscapes. Agr. Ecosyst. Environ. 113, 36–44. https://doi.org/10.1016/j.agee.2005.08.036 (2006).
Google Scholar
Karp, D. S. et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl. Acad. Sci. 115, E7863. https://doi.org/10.1073/pnas.1800042115 (2018).
Google Scholar
Elisante, F. et al. Insect pollination is important in a smallholder bean farming system. PeerJ 8, e10102 (2020).
Google Scholar
Karanja, R., Njoroge, G., Gikungu, M. & Newton, L. Bee interactions with wild flora around organic and conventional coffee farms in Kiambu district, central Kenya. J. Pollination Ecol. 2, 7–12. https://doi.org/10.26786/1920-7603(2010)5 (2010).
Google Scholar
Koji, S., Khan, Z. R. & Midega, C. A. O. Field boundaries of Panicum maximum as a reservoir for predators and a sink for Chilo partellus. J. Appl. Entomol. 131, 186–196. https://doi.org/10.1111/j.1439-0418.2006.01131.x (2007).
Google Scholar
Nel, L. et al. Exotic plants growing in crop field margins provide little support to mango crop flower visitors. Agric. Ecosyst. Environ. 250, 72–80. https://doi.org/10.1016/j.agee.2017.09.002 (2017).
Google Scholar
Gaigher, R., Pryke, J. S. & Samways, M. J. High parasitoid diversity in remnant natural vegetation, but limited spillover into the agricultural matrix in South African vineyard agroecosystems. Biol. Cons. 186, 69–74. https://doi.org/10.1016/j.biocon.2015.03.003 (2015).
Google Scholar
Vogel, C., Chunga, T. L., Sun, X., Poveda, K. & Steffan-Dewenter, I. Higher bee abundance, but not pest abundance, in landscapes with more agriculture on a late-flowering legume crop in tropical smallholder farms. PeerJ 9, e10732. https://doi.org/10.7717/peerj.10732 (2021).
Google Scholar
Tscharntke, T. et al. When natural habitat fails to enhance biological pest control—Five hypotheses. Biol. Cons. 204, 449–458. https://doi.org/10.1016/j.biocon.2016.10.001 (2016).
Google Scholar
Griffiths, G. J. K., Holland, J. M., Bailey, A. & Thomas, M. B. Efficacy and economics of shelter habitats for conservation biological control. Biol. Control 45, 200–209. https://doi.org/10.1016/j.biocontrol.2007.09.002 (2008).
Google Scholar
Albrecht, M., Duelli, P., Schmid, B. & Müller, C. B. Interaction diversity within quantified insect food webs in restored and adjacent intensively managed meadows. J. Anim. Ecol. 76, 1015–1025. https://doi.org/10.1111/j.1365-2656.2007.01264.x (2007).
Google Scholar
Lemessa, D., Hambäck, P. A. & Hylander, K. Arthropod but not bird predation in Ethiopian homegardens is higher in tree-poor than in tree-rich landscapes. PLoS ONE 10, e0126639. https://doi.org/10.1371/journal.pone.0126639 (2015).
Google Scholar
Urbanowicz, C., Muñiz, P. A. & McArt, S. H. Honey bees and wild pollinators differ in their preference for and use of introduced floral resources. Ecol. Evol. 10, 6741–6751 (2020).
Google Scholar
Seitz, N., van Engelsdorp, D. & Leonhardt, S. D. Are native and non-native pollinator friendly plants equally valuable for native wild bee communities?. Ecol. Evol. 10, 12838–12850. https://doi.org/10.1002/ece3.6826 (2020).
Google Scholar
Vaudo, A. D., Tooker, J. F., Grozinger, C. M. & Patch, H. M. Bee nutrition and floral resource restoration. Current Opinion Insect Sci. 10, 133–141. https://doi.org/10.1016/j.cois.2015.05.008 (2015).
Google Scholar
Delaney, A. et al. Local-scale tree and shrub diversity improves pollination services to shea trees in tropical West African parklands. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.13640 (2020).
Google Scholar
Miller, D., Muñoz-Mora, J. C. & Christiaensen, L. in Agriculture in Africa: Telling Myths from Facts (eds L. Christiaensen & L. Demery) Ch. 13, 115–121 (The World Bank Group, 2018).
Meijer, S. S., Catacutan, D., Sileshi, G. W. & Nieuwenhuis, M. Tree planting by smallholder farmers in Malawi: Using the theory of planned behaviour to examine the relationship between attitudes and behaviour. J. Environ. Psychol. 43, 1–12. https://doi.org/10.1016/j.jenvp.2015.05.008 (2015).
Google Scholar
Otieno, M. et al. Enhancing legume crop pollination and natural pest regulation for improved food security in changing African landscapes. Glob. Food Sec. 26, 100394. https://doi.org/10.1016/j.gfs.2020.100394 (2020).
Google Scholar
Masiga, R. et al. Do French beans (Phaseolus vulgaris) grown in proximity to Mt Kenya forest in Kenya experience pollination deficit?. J. Pollination Ecol. 14, 255–260 (2014).
Google Scholar
Liaw, A. & Wiener, M. Classification and regression by random. Forest R news 2, 18–22 (2002).
R Core Team. R: A language and environment for statistical computing. https://www.R-project.org/. (2020).
ggplot2: Elegant graphics for data analysis (Springer-Verlag New York, 2016).
Hagen, M. & Kraemer, M. Agricultural surroundings support flower–visitor networks in an Afrotropical rain forest. Biol. Cons. 143, 1654–1663. https://doi.org/10.1016/j.biocon.2010.03.036 (2010).
Google Scholar
Rezende, M. Q., Venzon, M., Perez, A. L., Cardoso, I. M. & Janssen, A. Extrafloral nectaries of associated trees can enhance natural pest control. Agric. Ecosyst. Environ. 188, 198–203. https://doi.org/10.1016/j.agee.2014.02.024 (2014).
Google Scholar
Letourneau, D. K. et al. Does plant diversity benefit agroecosystems? A synthetic review. Ecol. Appl. 21, 9–21 (2011).
Google Scholar
Classen, A. et al. Complementary ecosystem services provided by pest predators and pollinators increase quantity and quality of coffee yields. Proc. Royal Soc. B Biol. Sci. 281, 20133148. https://doi.org/10.1098/rspb.2013.3148 (2014).
Google Scholar
Letourneau, D. K., Jedlicka, J. A., Bothwell, S. G. & Moreno, C. R. Effects of natural enemy biodiversity on the suppression of arthropod herbivores in terrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst. 40, 573–592. https://doi.org/10.1146/annurev.ecolsys.110308.120320 (2009).
Google Scholar
Paredes, D., Karp, D. S., Chaplin-Kramer, R., Benítez, E. & Campos, M. Natural habitat increases natural pest control in olive groves: economic implications. J. Pest. Sci. 92, 1111–1121 (2019).
Google Scholar
Gurr, G. M. et al. Multi-country evidence that crop diversification promotes ecological intensification of agriculture. Nat. Plants 2, 1–4 (2016).
Google Scholar
Frankie, G. et al. Native and non-native plants attract diverse bees to urban gardens in California. J. Pollination Ecol. 25, 16–23 (2019).
Mkenda, P. et al. Extracts from field margin weeds provide economically viable and environmentally benign pest control compared to synthetic pesticides. PLoS ONE 10, e0143530. https://doi.org/10.1371/journal.pone.0143530 (2015).
Google Scholar
Rioba, N. B. & Stevenson, P. C. Ageratum conyzoides L. for the management of pests and diseases by small holder farmers. Ind. Crops Prod. 110, 22–29. https://doi.org/10.1016/j.indcrop.2017.06.068 (2017).
Google Scholar
Mwangi, D. M. & Wambugu, C. Adoption of forage legumes: the case of Desmodium intortum and Calliandra calothyrsus in central Kenya. Tropical Grasslands 37, 227–238 (2003).
Chaplin-Kramer, R. et al. Global malnutrition overlaps with pollinator-dependent micronutrient production. Proc. Royal Soc. B Biol. Sci. 281, 20141799. https://doi.org/10.1098/rspb.2014.1799 (2014).
Google Scholar
Mkindi, A. et al. Invasive weeds with pesticidal properties as potential new crops. Ind. Crops Prod. 110, 113–122. https://doi.org/10.1016/j.indcrop.2017.06.002 (2017).
Google Scholar
Njovu, H. K. et al. Leaf traits mediate changes in invertebrate herbivory along broad environmental gradients on Mt. Kilimanjaro. Tanzania. J. Animal Ecol. 88, 1777–1788. https://doi.org/10.1111/1365-2656.13058 (2019).
Google Scholar
Elisante, F. et al. Enhancing knowledge among smallholders on pollinators and supporting field margins for sustainable food security. J. Rural. Stud. 70, 75–86. https://doi.org/10.1016/j.jrurstud.2019.07.004 (2019).
Google Scholar
Ensslin, A. et al. Effects of elevation and land use on the biomass of trees, shrubs and herbs at Mount Kilimanjaro. Ecosphere 6, art45. https://doi.org/10.1890/ES14-00492.1 (2015).
Google Scholar
Mkenda, P. A. et al. Field margin vegetation in tropical African bean systems harbours diverse natural enemies for biological pest control in adjacent crops. Sustainability 11, 6399. https://doi.org/10.3390/su11226399 (2019).
Google Scholar
Matechou, E., Freeman, S. N. & Comont, R. Caste-specific demography and phenology in bumblebees: Modelling BeeWalk data. J. Agric. Biol. Environ. Stat. 23, 427–445. https://doi.org/10.1007/s13253-018-0332-y (2018).
Google Scholar
Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).
Google Scholar
Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27(379–423), 623–656 (1948).
Google Scholar
Ulrich, H. Predation by adult Dolichopodidae (Diptera): a review of literature with an annotated prey-predator list. Studia Dipterologica 11, 369–403 (2004).
Negro, M. et al. Effects of forest management on ground beetle diversity in alpine beech (Fagus sylvatica L.) stands. Forest Ecol. Manage. 328, 300–309. https://doi.org/10.1016/j.foreco.2014.05.049 (2014).
Google Scholar
Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. Royal Statistic. Soc. Ser. B Statistic. Methodol. 73, 3–36 (2011).
Google Scholar
Dormann, C. F., Gruber, B. & Fruend, J. Introducing the bipartite package: analysing ecological networks. R news 8(2), 8–11 (2008).
Source: Ecology - nature.com