in

Benefit of woodland and other natural environments for adolescents’ cognition and mental health

  • 1.

    Giles-Corti, B. et al. City planning and population health: a global challenge. Lancet 388, 2912–2924 (2016).

    Article 

    Google Scholar 

  • 2.

    World Urbanization Prospects: The 2018 Revision ST/ESA/SER.A/420 (UN DESA, 2019).

  • 3.

    Okkels, N., Kristiansen, C. B., Munk-Jørgensen, P. & Sartorius, N. Urban mental health. Curr. Opin. Psychiatry 31, 258–264 (2018).

    Article 

    Google Scholar 

  • 4.

    Robbins, R. N., Scott, T., Joska, J. A. & Gouse, H. Impact of urbanization on cognitive disorders. Curr. Opin. Psychiatry 32, 210–217 (2019).

    Article 

    Google Scholar 

  • 5.

    Sarkar, C., Webster, C. & Gallacher, J. Residential greenness and prevalence of major depressive disorders: a cross-sectional, observational, associational study of 94 879 adult UK Biobank participants. Lancet Planet. Health 2, e162–e173 (2018).

    Article 

    Google Scholar 

  • 6.

    Engemann, K. et al. Residential green space in childhood is associated with lower risk of psychiatric disorders from adolescence into adulthood. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/PNAS.1807504116 (2019).

  • 7.

    Dadvand, P. et al. Green spaces and cognitive development in primary schoolchildren. Proc. Natl Acad. Sci. USA 112, 7937–7942 (2015).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Franco, L. S., Shanahan, D. F. & Fuller, R. A. A review of the benefits of nature experiences: more than meets the eye. Int. J. Environ. Res. Public Health 14, 864 (2017).

    Article 

    Google Scholar 

  • 9.

    Cox, D. T. C. et al. Skewed contributions of individual trees to indirect nature experiences. Landsc. Urban Plan. 185, 28–34 (2019).

    Article 

    Google Scholar 

  • 10.

    Irvine, K. N. et al. Green space, soundscape and urban sustainability: an interdisciplinary, empirical study. Local Environ. 14, 155–172 (2009).

    Article 

    Google Scholar 

  • 11.

    Weber, S. T. & Heuberger, E. The impact of natural odors on affective states in humans. Chem. Senses 33, 441–447 (2008).

    Article 

    Google Scholar 

  • 12.

    Li, Q. Effect of forest bathing trips on human immune function. Environ. Health Prev. Med. 15, 9–17 (2010).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Rook, G. A., Raison, C. L. & Lowry, C. A. Can we vaccinate against depression? Drug Discov. Today 17, 451–458 (2012).

    Article 

    Google Scholar 

  • 14.

    Markevych, I. et al. Access to urban green spaces and behavioural problems in children: results from the GINIplus and LISAplus studies. Environ. Int. 71, 29–35 (2014).

    Article 

    Google Scholar 

  • 15.

    Taylor, M. S., Wheeler, B. W., White, M. P., Economou, T. & Osborne, N. J. Research note: urban street tree density and antidepressant prescription rates—a cross-sectional study in London, UK. Landsc. Urban Plan. 136, 174–179 (2015).

  • 16.

    Akpinar, A., Barbosa-Leiker, C. & Brooks, K. R. Does green space matter? Exploring relationships between green space type and health indicators. Urban For. Urban Green. 20, 407–418 (2016).

    Article 

    Google Scholar 

  • 17.

    Cox, D. T. C., Shanahan, D. F., Hudson, H. L., Fuller, R. A. & Gaston, K. J. The impact of urbanisation on nature dose and the implications for human health. Landsc. Urban Plan. 179, 72–80 (2018).

    Article 

    Google Scholar 

  • 18.

    Amoly, E. et al. Green and blue spaces and behavioral development in Barcelona schoolchildren: the BREATHE Project. Environ. Health Perspect. 122, 1351–1358 (2014).

    Article 

    Google Scholar 

  • 19.

    Astell-Burt, T. & Feng, X. Association of urban green space with mental health and general health among adults in Australia. JAMA Netw. Open 2, e198209 (2019).

    Article 

    Google Scholar 

  • 20.

    Barton, J. & Pretty, J. What is the best dose of nature and green exercise for improving mental health? A multi-study analysis. Environ. Sci. Technol. 44, 3947–3955 (2010).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Gascon, M. et al. Mental health benefits of long-term exposure to residential green and blue spaces: a systematic review. Int. J. Environ. Res. Public Health 12, 4354–4379 (2015).

    Article 

    Google Scholar 

  • 22.

    The Mental Health of Children and Young People in London (PHE, 2016).

  • 23.

    Bijnens, E. M., Derom, C., Thiery, E., Weyers, S. & Nawrot, T. S. Residential green space and child intelligence and behavior across urban, suburban, and rural areas in Belgium: a longitudinal birth cohort study of twins. PLoS Med. 17, e1003213 (2020).

    Article 

    Google Scholar 

  • 24.

    Milligan, C. & Bingley, A. Restorative places or scary spaces? The impact of woodland on the mental well-being of young adults. Health Place 13, 799–811 (2007).

    Article 

    Google Scholar 

  • 25.

    Toledano, M. B. et al. Cohort profile: the study of cognition, adolescents and mobile phones (SCAMP). Int. J. Epidemiol. 48, 25–26l (2018).

    Article 

    Google Scholar 

  • 26.

    Afifi, M. Gender differences in mental health. Singapore Med. J. 48, 385–391 (2007).

    CAS 

    Google Scholar 

  • 27.

    Guhn, M., Emerson, S. D., Mahdaviani, D. & Gadermann, A. M. Associations of birth factors and socio-economic status with indicators of early emotional development and mental health in childhood: a population-based linkage study. Child Psychiatry Hum. Dev. 51, 80–93 (2020).

    Article 

    Google Scholar 

  • 28.

    Morita, E. et al. Psychological effects of forest environments on healthy adults: shinrin-yoku (forest-air bathing, walking) as a possible method of stress reduction. Public Health 121, 54–63 (2007).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Thompson, C. W. et al. Health impacts of environmental and social interventions designed to increase deprived communities’ access to urban woodlands: a mixed-methods study. Public Health Res. 27, 1–172 (2019).

    Article 

    Google Scholar 

  • 30.

    Hedblom, M., Heyman, E., Antonsson, H. & Gunnarsson, B. Bird song diversity influences young people’s appreciation of urban landscapes. Urban For. Urban Green. 13, 469–474 (2014).

    Article 

    Google Scholar 

  • 31.

    Liao, J. et al. Residential exposure to green space and early childhood neurodevelopment. Environ. Int. 128, 70–76 (2019).

    Article 

    Google Scholar 

  • 32.

    Picavet, H. S. J. et al. Greener living environment healthier people? Exploring green space, physical activity and health in the Doetinchem Cohort Study. Prev. Med. 89, 7–14 (2016).

    Article 

    Google Scholar 

  • 33.

    Francis, J., Wood, L. J., Knuiman, M. & Giles-Corti, B. Quality or quantity? Exploring the relationship between public open space attributes and mental health in Perth, Western Australia. Soc. Sci. Med. 74, 1570–1577 (2012).

    Article 

    Google Scholar 

  • 34.

    Nutsford, D., Pearson, A. L., Kingham, S. & Reitsma, F. Residential exposure to visible blue space (but not green space) associated with lower psychological distress in a capital city. Health Place 39, 70–78 (2016).

    Article 

    Google Scholar 

  • 35.

    Little, S. & Derr, V. in Research Handbook on Childhoodnature (eds Cutter-Mackenzie-Knowles, A. et al.) 151–178 (Springer, 2020).

  • 36.

    Bell, S. L., Phoenix, C., Lovell, R. & Wheeler, B. W. Seeking everyday wellbeing: the coast as a therapeutic landscape. Soc. Sci. Med. 142, 56–67 (2015).

    Article 

    Google Scholar 

  • 37.

    Bratman, G. N. et al. Nature and mental health: an ecosystem service perspective. Sci. Adv. 5, 903–927 (2019).

    Article 

    Google Scholar 

  • 38.

    Hartig, T., Mitchell, R., de Vries, S. & Frumkin, H. Nature and health. Annu. Rev. Public Health 35, 207–228 (2014).

    Article 

    Google Scholar 

  • 39.

    Tarling, R. & Roger, R. D. Socio-economic determinants of crime rates: modelling local area police-recorded crime. Howard J. Crime Justice 55, 207–225 (2016).

    Article 

    Google Scholar 

  • 40.

    Rose, D., Pevalin, D. J. & O’Reilly, K. The National Statistics Socio-economic Classification: Origins, Development and Use (Palgrave MacMillan, 2005).

  • 41.

    Carstairs, V. & Morris, R. Deprivation and health in Scotland. Health Bull. 48, 162–175 (1990).

    CAS 

    Google Scholar 

  • 42.

    2011 Census Aggregate Data (Office of National Statistics, 2012); https://www.ons.gov.uk/census/2011census

  • 43.

    Luciana, M. & Nelson, C. A. Assessment of neuropsychological function through use of the Cambridge Neuropsychological Testing Automated Battery: performance in 4- to 12-year-old children. Dev. Neuropsychol. 22, 595–624 (2002).

    Article 

    Google Scholar 

  • 44.

    Tombaugh, T. N. Trail Making Test A and B: Normative data stratified by age and education. Arch. Clin. Neuropsychol. 19, 203–214 (2004).

    Article 

    Google Scholar 

  • 45.

    Wechsler, D. The Measurement of Adult Intelligence (Williams & Wilkins, 1944).

  • 46.

    Burgess, P. W. in Methodology of Frontal and Executive Function (ed. Rabbitt, P.) 79–113 (Taylor and Francis, 2004).

  • 47.

    Goodman, R., Meltzer, H. & Bailey, V. The Strengths and Difficulties Questionnaire: a pilot study on the validity of the self-report version. Int. Rev. Psychiatry 15, 173–177 (2003).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Cronbach, L. J. Coefficient alpha and the internal structure of tests. Psychometrika 16, 297–334 (1951).

    Article 

    Google Scholar 

  • 49.

    The KIDSCREEN Group Europe The Kidscreen Questionnaires: Quality of Life Questionnaires for Children and Adolescents (Pabst Science, 2006).

  • 50.

    Berman, A. H., Liu, B., Ullman, S., Jadbäck, I. & Engström, K. Children’s quality of life based on the KIDSCREEN-27: child self-report, parent ratings and child–parent agreement in a Swedish random population sample. PLoS ONE 11, e0150545 (2016).

    Article 
    CAS 

    Google Scholar 

  • 51.

    Sentinel-2 User Handbook (ESA, 2015).

  • 52.

    Gascon, M. et al. Normalized Difference Vegetation Index (NDVI) as a marker of surrounding greenness in epidemiological studies: the case of Barcelona city. Urban For. Urban Green. 19, 88–94 (2016).

    Article 

    Google Scholar 

  • 53.

    Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).

    Article 

    Google Scholar 

  • 54.

    Open Map—Local (Ordnance Survey, 2019); http://os.uk

  • 55.

    Miura, N. & Jones, S. D. Characterizing forest ecological structure using pulse types and heights of airborne laser scanning. Remote Sens. Environ. 114, 1069–1076 (2010).

    Article 

    Google Scholar 

  • 56.

    Dadvand, P. et al. The association between greenness and traffic-related air pollution at schools. Sci. Total Environ. 523, 59–63 (2015).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Sunyer, J. et al. Association between traffic-related air pollution in schools and cognitive development in primary school children: a prospective cohort study. PLoS Med. 12, e1001792 (2015).

    Article 
    CAS 

    Google Scholar 

  • 58.

    Roberts, S. et al. Exploration of NO2 and PM2.5 air pollution and mental health problems using high-resolution data in London-based children from a UK longitudinal cohort study. Psychiatry Res. 272, 8–17 (2019).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Tzivian, L. et al. Effect of long-term outdoor air pollution and noise on cognitive and psychological functions in adults. Int. J. Hyg. Environ. Health 218, 1–11 (2015).

    Article 

    Google Scholar 

  • 60.

    Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. B 71, 319–392 (2009).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    MIT.nano receives American Institute of Architects’s Top Ten Award for sustainable design

    Push to make supply chains more sustainable continues to gain momentum