in

Benthic estuarine communities' contribution to bioturbation under the experimental effect of marine heatwaves

  • 1.

    Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 2.

    Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1–12 (2018).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).

    ADS 
    Article 

    Google Scholar 

  • 4.

    Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).

    ADS 
    Article 

    Google Scholar 

  • 5.

    Dee, L. E. E. et al. Temperature variability alters the stability and thresholds for collapse of interacting species. Philos. Trans. R. Soc. Biol. Sci. 375, 20190457 (2020).

    Article 

    Google Scholar 

  • 6.

    Leung, J. Y. S., Russell, B. D. & Connell, S. D. Adaptive responses of marine gastropods to heatwaves. One Earth 1, 374–381 (2019).

    Article 

    Google Scholar 

  • 7.

    Whiteley, N. M. & Mackenzie, C. L. Physiological responses of marine invertebrates to thermal stress. in Stressors in the Marine Environment (eds. Solan, M. & Whiteley, N. M.) 56–72 (Oxford University Press, 2016). https://doi.org/10.1093/acprof:oso/9780198718826.003.0004.

  • 8.

    Lonhart, S. I., Jeppesen, R., Beas-luna, R., Crooks, J. A. & Lorda, J. Shifts in the distribution and abundance of coastal marine species along the eastern Pacific Ocean during marine heatwaves from 2013 to 2018. Mar. Biodivers. Rec. 8, 1–15 (2019).

    Google Scholar 

  • 9.

    Smale, D. A. & Wernberg, T. Extreme climatic event drives range contraction of a habitat-forming species. Proc. R. Soc. B Biol. Sci. 280, 20122829 (2013).

    Article 

    Google Scholar 

  • 10.

    Garrabou, J. et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: Effects of the 2003 heat wave. Glob. Change Biol. 15, 1090–1103 (2009).

    ADS 
    Article 

    Google Scholar 

  • 11.

    Frölicher, T. L. & Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 9, 2015–2018 (2018).

    Article 
    CAS 

    Google Scholar 

  • 12.

    Cheung, W. W. L. & Frölicher, T. L. Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific. Sci. Rep. 10, 1–10. https://doi.org/10.1038/s41598-020-63650-z (2020).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Caputi, N. et al. Management adaptation of invertebrate fisheries to an extreme marine heat wave event at a global warming hot spot. Ecol. Evolut. https://doi.org/10.1002/ece3.2137 (2016).

    Article 

    Google Scholar 

  • 14.

    Verdelhos, T., Marques, J. C. & Anastácio, P. Behavioral and mortality responses of the bivalves Scrobicularia plana and Cerastoderma edule to temperature, as indicator of climate change’s potential impacts. Ecol. Indic. 58, 95–103 (2015).

    Article 

    Google Scholar 

  • 15.

    Shanks, A. L. et al. Marine heat waves, climate change, and failed spawning by coastal invertebrates. Limnol. Oceanogr. 65, 627–636 (2020).

    ADS 
    Article 

    Google Scholar 

  • 16.

    Morgan, E. A., Brown, A., Ciotti, B. J. & Panton, A. Effects of temperature stress on ecological processes. in Stressors in the Marine Environment (eds. Solan, M. & Whiteley, N. M.) 213–227 (Oxford University Press, 2016). https://doi.org/10.1093/acprof:oso/9780198718826.003.0012.

  • 17.

    Beukema, J. J. & Dekker, R. Winters not too cold, summers not too warm: long-term effects of climate change on the dynamics of a dominant species in the Wadden Sea: the cockle Cerastoderma edule L. Mar. Biol. 167, 1–8 (2020).

    Article 

    Google Scholar 

  • 18.

    Sousa, R. et al. Die-offs of the endangered pearl mussel Margaritifera margaritifera during an extreme drought. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 1244–1248 (2018).

    Article 

    Google Scholar 

  • 19.

    Smale, D. A., Yunnie, A. L. E., Vance, T. & Widdicombe, S. Disentangling the impacts of heat wave magnitude, duration and timing on the structure and diversity of sessile marine assemblages. PeerJ 2015, 1–23 (2015).

    Google Scholar 

  • 20.

    McLusky, D. S. & Elliott, M. The Estuarine Ecosystem: Ecology (Threats and Management. Oxford Press, 2004).

    Book 

    Google Scholar 

  • 21.

    Johnson, R. G. Temperature variation in the infaunal environment of a sand flat. Limnol. Oceanogr. 10, 114–120 (1965).

    ADS 
    Article 

    Google Scholar 

  • 22.

    Amorim, V. E. et al. Immunological and oxidative stress responses of the bivalve Scrobicularia plana to distinct patterns of heatwaves. Fish Shellfish Immunol. 106, 1067–1077 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 23.

    Grilo, T. F. F., Cardoso, P. G. G., Dolbeth, M., Bordalo, M. D. D. & Pardal, M. Â. A. Effects of extreme climate events on the macrobenthic communities’ structure and functioning of a temperate estuary. Mar. Pollut. Bull. 62, 303–311 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 24.

    Dolbeth, M. et al. Long-term changes in the production by estuarine macrobenthos affected by multiple stressors. Estuar. Coast. Shelf Sci. 92, 10–18 (2011).

    ADS 
    Article 

    Google Scholar 

  • 25.

    Ouellette, D. et al. Effects of temperature on in vitro sediment reworking processes by a gallery biodiffusor, the polychaete Neanthes virens. Mar. Ecol. Prog. Ser. 266, 185–193 (2004).

    ADS 
    Article 

    Google Scholar 

  • 26.

    Nagelkerken, I. & Munday, P. L. Animal behaviour shapes the ecological effects of ocean acidification and warming: Moving from individual to community-level responses. Glob. Chang. Biol. 22, 974–989 (2016).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 27.

    Solan, M., Bennett, E. M., Mumby, P. J., Leyland, J. & Godbold, J. A. Benthic-based contributions to climate change mitigation and adaptation. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190107 (2020).

    Article 

    Google Scholar 

  • 28.

    Kristensen, E. & Kostka, J. E. Macrofaunal burrows and irrigation in marine sediment: Microbiological and biogeochemical interactions. in Interactions Between Macro‐ and Microorganisms in Marine Sediments (eds. Kristensen, E., Haese, R. R. & Kostka, J. E.), 125–157 (American Geophysical Union, 2013). https://doi.org/10.1029/CE060p0125.

  • 29.

    Cozzoli, F. et al. Biological and physical drivers of bio-mediated sediment resuspension: A flume study on Cerastoderma edule. Estuar. Coast. Shelf Sci. 241, 106824 (2020).

    Article 

    Google Scholar 

  • 30.

    Soissons, L. M. et al. Sandification vs. muddification of tidal flats by benthic organisms: A flume study. Estuar. Coast. Shelf Sci. 228, 106355 (2019).

    Article 

    Google Scholar 

  • 31.

    Fernandes, S., Sobral, P. & Costa, M. H. Nereis diversicolor effect on the stability of cohesive intertidal sediments. Aquat. Ecol. 40, 567–579 (2006).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Paramor, O. A. L. & Hughes, R. G. The effects of bioturbation and herbivory by the polychaete Nereis diversicolor on loss of saltmarsh in south-east England. J. Appl. Ecol. 41, 449–463 (2004).

    Article 

    Google Scholar 

  • 33.

    Dolbeth, M., Crespo, D., Leston, S. & Solan, M. Realistic scenarios of environmental disturbance lead to functionally important changes in benthic species-environment interactions. Mar. Environ. Res. 150, 104770 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 34.

    Godbold, J. A. & Solan, M. Long-term effects of warming and ocean acidification are modified by seasonal variation in species responses and environmental conditions. Philos. Trans. R. Soc. B Biol. Sci. 368, 20130186 (2013).

    Article 
    CAS 

    Google Scholar 

  • 35.

    Godbold, J. A., Hale, R., Wood, C. L. & Solan, M. Vulnerability of macronutrients to the concurrent effects of enhanced temperature and atmospheric pCO2 in representative shelf sea sediment habitats. Biogeochemistry 135, 89–102 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Sorte, C. J. B., Fuller, A. & Bracken, M. E. S. Impacts of a simulated heat wave on composition of a marine community. Oikos 119, 1909–1918 (2010).

    Article 

    Google Scholar 

  • 37.

    Pansch, C. et al. Heat waves and their significance for a temperate benthic community: A near-natural experimental approach. Glob. Change Biol. 24, 4357–4367 (2018).

    ADS 
    Article 

    Google Scholar 

  • 38.

    Queirós, A. M. et al. A bioturbation classification of European marine infaunal invertebrates. Ecol. Evol. 3, 3958–3985 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Wrede, A., Beermann, J., Dannheim, J., Gutow, L. & Brey, T. Organism functional traits and ecosystem supporting services—A novel approach to predict bioirrigation. Ecol. Indic. 91, 737–743 (2018).

    Article 

    Google Scholar 

  • 40.

    Crespo, D. et al. New climatic targets against global warming: Will the maximum 2 °C temperature rise affect estuarine benthic communities. Sci. Rep. 7, 1–14 (2017).

    Article 
    CAS 

    Google Scholar 

  • 41.

    Galasso, H. L., Richard, M., Lefebvre, S., Aliaume, C. & Callier, M. D. Body size and temperature effects on standard metabolic rate for determining metabolic scope for activity of the polychaete Hediste (Nereis) diversicolor. PeerJ 6, e5675 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 42.

    Kristensen, E. Ventilation and oxygen uptake by three species of Nereis (Annelida: Polychaeta). I. Effects of hypoxia. Mar. Ecol. Prog. Ser. 12, 289–297 (1983).

    ADS 
    Article 

    Google Scholar 

  • 43.

    Cozzoli, F. et al. The combined influence of body size and density on cohesive sediment resuspension by bioturbators. Sci. Rep. 8, 1–12 (2018).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Cozzoli, F. et al. A process based model of cohesive sediment resuspension under bioturbators’ influence. Sci. Total Environ. 670, 18–30 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Scaps, P. A review of the biology, ecology and potential use of the common ragworm Hediste diversicolor (O.F. Müller) (Annelida: Polychaeta). Hydrobiologia 470, 203–218 (2002).

    Article 

    Google Scholar 

  • 46.

    Cassidy, C., Grange, L. J., Garcia, C., Bolam, S. G. & Godbold, J. A. Species interactions and environmental context affect intraspecific behavioural trait variation and ecosystem function. Proc. R. Soc. B Biol. Sci. 287, 20192143 (2020).

    Article 

    Google Scholar 

  • 47.

    Thomsen, M. S. et al. Compensatory responses can alter the form of the biodiversity—function relation curve. Philos. Trans. R. Soc. B 286, 20190287 (2019).

    CAS 

    Google Scholar 

  • 48.

    Hale, R. et al. Mediation of macronutrients and carbon by post-disturbance shelf sea sediment communities. Biogeochemistry 135, 121–133 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 49.

    Karlson, K., Bonsdorff, E. & Rosenberg, R. The impact of benthic macrofauna for nutrient fluxes from Baltic Sea sediments. Ambio 36, 161–167 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Thomsen, M. S. et al. Compensatory responses can alter the form of the biodiversity-function relation curve. Proc. R. Soc. B Biol. Sci. 286, 20190287 (2019).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Wohlgemuth, D., Solan, M. & Godbold, J. A. Species contributions to ecosystem process and function can be population dependent and modified by biotic and abiotic setting. Proc. R. Soc. B: Biol. Sci. 284, 20162805 (2017).

    Article 

    Google Scholar 

  • 52.

    Lillebø, A. I., Neto, J. M., Flindt, M. R., Marques, J. C. & Pardal, M. A. Phosphorous dynamics in a temperate intertidal estuary. Estuar. Coast. Shelf Sci. 61, 101–109 (2004).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 53.

    Lillebø, A. I. et al. Management of a shallow temperate estuary to control eutrophication: The effect of hydrodynamics on the system’s nutrient loading. Estuar. Coast. Shelf Sci. 65, 697–707 (2005).

    ADS 
    Article 

    Google Scholar 

  • 54.

    Verdelhos, T., Cardoso, P. G., Dolbeth, M. & Pardal, M. A. Recovery trends of Scrobicularia plana populations after restoration measures, affected by extreme climate events. Mar. Environ. Res. 98, 39–48 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 55.

    Hale, R., Mavrogordato, M. N., Tolhurst, T. J. & Solan, M. Characterizations of how species mediate ecosystem properties require more comprehensive functional effect descriptors. Sci. Rep. 4, 1–6 (2014).

    Google Scholar 

  • 56.

    Benton, T. G., Solan, M., Travis, J. M. J. & Sait, S. M. Microcosm experiments can inform global ecological problems. Trends Ecol. Evol. 22, 516–521 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 57.

    Bento, E. G. et al. Climate influence on juvenile European sea bass (Dicentrarchus labrax, L.) populations in an estuarine nursery: A decadal overview. Mar. Environ. Res. 122, 93–104 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Martinho, F. et al. The influence of an extreme drought event in the fish community of a southern Europe temperate estuary. Estuar. Coast. Shelf Sci. 75, 537–546 (2007).

    ADS 
    Article 

    Google Scholar 

  • 59.

    Solan, M. et al. In situ quantification of bioturbation using time-lapse fluorescent sediment profile imaging (f-SPI), luminophore tracers and model simulation. Mar. Ecol. Prog. Ser. 271, 1–12 (2004).

    ADS 
    Article 

    Google Scholar 

  • 60.

    Schiffers, K., Teal, L. R., Travis, J. M. J. & Solan, M. An open source simulation model for soil and sediment bioturbation. PLoS ONE 6, e28028 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 61.

    Grasshoff, K., Kremling, K. & Ehrhardt, M. Methods of Seawater Analysis (Verlag Chemie, 1983).

    Google Scholar 

  • 62.

    Jones, M. N. Nitrate reduction by shaking with cadmium. Alternative to cadmium columns. Water Res. 18, 643–646 (1984).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 63.

    Hayward, P. J. & Ryland, J. S. Handbook of the Marine Fauna of North-West Europe. (Oxford University Press, 2017). https://doi.org/10.1093/acprof:oso/9780199549443.001.0001.

  • 64.

    Anderson, M. J., Gorley, R. N. & Clarke, K. R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. 214 (PRIMER-E Ltd., Plymouth, UK, 2008).

  • 65.

    Ricotta, C. & Moretti, M. CWM and Rao’s quadratic diversity: A unified framework for functional ecology. Oecologia 167, 181–188 (2011).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 66.

    Zuur, A. F. & Ieno, E. N. A protocol for conducting and presenting results of regression-type analyses. Methods Ecol. Evol. 7, 636–645 (2016).

    Article 

    Google Scholar 

  • 67.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna,
    Austria. (2019) https://www.R-project.org/.

  • 68.

    Oksanen, J. et al. vegan: Community Ecology Package. R package 2.5-6. (2019). https://CRAN.Rproject.org/package=vegan.

  • 69.

    Laliberté, E., Legendre, P. & Shipley, B. FD: Measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12. (2014).

  • 70.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

    MATH 
    Book 

    Google Scholar 


  • Source: Ecology - nature.com

    The land use–food–coronavirus nexus

    A performance evaluation of despiking algorithms for eddy covariance data