in

Biogeography of acoustic biodiversity of NW Mediterranean coralligenous reefs

  • 1.

    Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 2.

    Worm, B. et al. Impacts of biodiversity loss on ocean ecosystem services. Science (80-.) 31, 787–790 (2006).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 3.

    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 4.

    Pandolfi, J. M. et al. Global trajectories of the long-term decline of coral reef ecosystems. Science (80-.) 301, 955–958 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 5.

    Teixidó, N., Casas, E., Cebrián, E., Linares, C. & Garrabou, J. Impacts on coralligenous outcrop biodiversity of a dramatic coastal storm. PLoS ONE 8, e53742 (2013).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 6.

    Martin, C. S. et al. Coralligenous and maërl habitats: Predictive modelling to identify their spatial distributions across the Mediterranean Sea. Sci. Rep. 4, 1–9 (2014).

    Article 
    CAS 

    Google Scholar 

  • 7.

    Bianchi, C. N. Bioconstruction in marine ecosystems and Italian marine biology. Biol. Mar. Medit. 8, 112–130 (2001).

    Google Scholar 

  • 8.

    Garrabou, J. & Ballesteros, E. Growth of Mesophyllum alternans and Lithophyllum frondosum (Corallinales, Rhodophyta) in the northwestern Mediterranean. Eur. J. Phycol. 35, 1–10 (2000).

    Article 

    Google Scholar 

  • 9.

    Ballesteros, E., Avançats, E. & Csic, D. B. Mediterannean coralligenous assemblages: A synthesis of present knowledge. Oceanogr. Mar. Biol. Annu. Rev. 44, 123–195 (2006).

    Google Scholar 

  • 10.

    Guidetti, P., Terlizzi, A., Fraschetti, S. & Boero, F. Spatio-temporal variability in fish assemblages associated with coralligenous formations in south eastern Apulia (SE Italy). Ital. J. Zool. 69, 325–331 (2002).

    Article 

    Google Scholar 

  • 11.

    Casellato, S. & Stefanon, A. Coralligenous habitat in the northern Adriatic Sea: An overview. Mar. Ecol. 29, 321–341 (2008).

    ADS 
    Article 

    Google Scholar 

  • 12.

    Bavestrello, G., Cerrano, C., Zanzi, D. & Cattaneo-Vietti, R. Damage by fishing activities to the Gorgonian coral Paramuricea clavata in the Ligurian Sea. Aquat. Conserv. Mar. Freshw. Ecosyst. 7, 253–262 (1997).

    Article 

    Google Scholar 

  • 13.

    Piazzi, L., Gennaro, P. & Balata, D. Effects of nutrient enrichment on macroalgal coralligenous assemblages. Mar. Pollut. Bull. 62, 1830–1835 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Sala, E., Garrabou, J. & Zabala, M. Effects of diver frequentation on Mediterranean sublittoral populations of the bryozoan Pentapora fascialis. Mar. Biol. 126, 451–459 (1996).

    Article 

    Google Scholar 

  • 15.

    García-Rubies, A. & Zabalai Limousin, M. Effects of total fishing prohibition on the Mediterranean), rocky fish assemblages of Medes Islands marine reserve (NW Mediterranean). Sci. Mar. 54, 317–328 (1990).

    Google Scholar 

  • 16.

    Martin, S. & Gattuso, J.-P. Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Glob. Change Biol. 15, 2089–2100 (2009).

    ADS 
    Article 

    Google Scholar 

  • 17.

    Zapata-Ramírez, P. A. et al. Innovative study methods for the Mediterranean coralligenous habitats. Adv. Oceanogr. Limnol. 4, 102–119 (2013).

    Article 

    Google Scholar 

  • 18.

    Gatti, G., Bianchi, C. N., Morri, C., Montefalcone, M. & Sartoretto, S. Coralligenous reefs state along anthropized coasts: Application and validation of the COARSE index, based on a rapid visual assessment (RVA) approach. Ecol. Indic. 52, 567–576 (2015).

    Article 

    Google Scholar 

  • 19.

    Kipson, S. et al. Rapid biodiversity assessment and monitoring method for highly diverse benthic communities: A case study of Mediterranean coralligenous outcrops. PLoS ONE 6, e27103 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Sartoretto, S. et al. An integrated method to evaluate and monitor the conservation state of coralligenous habitats: The INDEX-COR approach. Mar. Pollut. Bull. 120, 222–231 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Deter, J., Descamp, P., Ballesta, L., Boissery, P. & Holon, F. A preliminary study toward an index based on coralligenous assemblages for the ecological status assessment of Mediterranean French coastal waters. Ecol. Indic. 20, 345–352 (2012).

    Article 

    Google Scholar 

  • 22.

    Deter, J., Descamp, P., Boissery, P., Ballesta, L. & Holon, F. A rapid photographic method detects depth gradient in coralligenous assemblages. J. Exp. Mar. Bio. Ecol. 418–419, 75–82 (2012).

    Article 

    Google Scholar 

  • 23.

    Gibb, R., Browning, E., Glover-Kapfer, P. & Jones, K. E. Emerging opportunities and challenges for passive acoustics in ecological assessment and monitoring. Methods Ecol. Evol. 10, 169–185 (2019).

    Article 

    Google Scholar 

  • 24.

    Mooney, T. A. et al. Listening forward: Approaching marine biodiversity assessments using acoustic methods. R. Soc. Open Sci. 7, (2020).

  • 25.

    Di Iorio, L. et al.Posidonia meadows calling’: A ubiquitous fish sound with monitoring potential. Remote Sens. Ecol. Conserv. 4, 248–263 (2018).

    Article 

    Google Scholar 

  • 26.

    Parsons, M. J. G., Salgado Kent, C. P., Recalde-Salas, A. & McCauley, R. D. Fish choruses off Port Hedland Western, Australia. Bioacoustics 26, 135–152 (2017).

    Article 

    Google Scholar 

  • 27.

    Ladich, F. Sound Communication In Fishes (Springer, 2015).

    Book 

    Google Scholar 

  • 28.

    Amorim, M. C. P. Diversity of sound production in fish. Diversity 1, 71–105 (2006).

    Google Scholar 

  • 29.

    Carriço, R. et al. Temporal dynamics in diversity patterns of fish sound production in the Condor seamount (Azores, NE Atlantic). Deep Sea Res. Part I Oceanogr. Res. Pap. 164, 103357 (2020).

    Article 

    Google Scholar 

  • 30.

    Desiderà, E. et al. Acoustic fish communities: Sound diversity of rocky habitats reflects fish species diversity and beyond?. Mar. Ecol. Prog. Ser. 608, 183–197 (2019).

    ADS 
    Article 

    Google Scholar 

  • 31.

    Ladich, F. Acoustic communication in fishes: Temperature plays a role. Fish Fish. 19, 598–612 (2018).

    Article 

    Google Scholar 

  • 32.

    Rabin, L. A. & Greene, C. M. Changes to acoustic communication systems in human-altered environments. J. Comp. Psychol. 116, 137–141 (2002).

    PubMed 
    Article 

    Google Scholar 

  • 33.

    Sueur, J., Krause, B. & Farina, A. Climate change is breaking earth’s beat. Trends Ecol. Evol. 34, 971–973 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Whittaker, R. J. et al. Conservation biogeography: Assessment and prospect. Divers. Distrib. 11, 3–23 (2005).

    Article 

    Google Scholar 

  • 35.

    Frainer, A. et al. Climate-driven changes in functional biogeography of Arctic marine fish communities. Proc. Natl. Acad. Sci. U.S.A. 114, 12202–12207 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Olden, J. D. et al. Conservation biogeography of freshwater fishes: Recent progress and future challenges. Divers. Distrib. 16, 496–513 (2010).

    Article 

    Google Scholar 

  • 37.

    Lomolino, M. V., Pijanowski, B. C. & Gasc, A. The silence of biogeography. J. Biogeogr. 42, 1187–1196 (2015).

    Article 

    Google Scholar 

  • 38.

    Kéver, L., Lejeune, P., Michel, L. N. & Parmentier, E. Passive acoustic recording of Ophidion rochei calling activity in Calvi Bay (France). Mar. Ecol. 37, 1315–1324 (2016).

    ADS 
    Article 

    Google Scholar 

  • 39.

    Picciulin, M. et al. Diagnostics of noctural calls of Sciena umbra (L., fam. Sciaenidae) in a nearshore Mediterranean marine reserve. Bioacoustics 22, 109–120 (2012).

    Article 

    Google Scholar 

  • 40.

    Bolgan, M., Picciulin, M., Di Iorio, L. & Parmentier, E. Passive acoustic monitoring of fishes in the Mediterranean Sea: from single species to whole communities monitoring. Ecoacoustics Congress, Urbino (Italy) (2021).

    Google Scholar 

  • 41.

    Tricas, T. C. & Boyle, K. S. Acoustic behaviors in Hawaiian coral reef fish communities. Mar. Ecol. Prog. Ser. 511, 1–16 (2014).

    ADS 
    Article 

    Google Scholar 

  • 42.

    Bertucci, F. et al. Local sonic activity reveals potential partitioning in a coral reef fish community. Oecologia 193, 125–134 (2020).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    Virgilio, M. & Airoldi, Æ. L. Spatial and temporal variations of assemblages in a Mediterranean coralligenous reef and relationships with surface orientation. Coral Reefs 25, 265–272 (2006).

    ADS 
    Article 

    Google Scholar 

  • 44.

    Doxa, A. et al. Mapping biodiversity in three-dimensions challenges marine conservation strategies: The example of coralligenous assemblages in North-Western Mediterranean Sea. Ecol. Indic. 61, 1042–1054 (2015).

    Google Scholar 

  • 45.

    Casas-Güell, E. et al. Structure and biodiversity of coralligenous assemblages dominated by the precious red coral Corallium rubrum over broad spatial scales. Sci. Rep. 6, (2016).

  • 46.

    Sartoretto, S., Verlaque, M. & Laborel, J. Age of settlement and accumulation rate of submarine ‘coralligène’ (−10 to −60 m) of the northwestern Mediterranean Sea; relation to Holocene rise in sea level. Mar. Geol. 130, 317–331 (1996).

    ADS 
    Article 

    Google Scholar 

  • 47.

    Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. In Ecosystem Management (eds Samson, F. B. & Knopf, F. L.) 130–147 (Springer, 1994).

    Chapter 

    Google Scholar 

  • 48.

    Rossi, S. & Bramanti, L. Perspectives on the Marine Animal Forests of the World (Springer, 2020).

    Book 

    Google Scholar 

  • 49.

    Bolgan, M. et al. Fish biophony in a Mediterranean submarine canyon. J. Acoust. Soc. Am. 147, 2466–2477 (2020).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 50.

    Sebastianutto, L., Picciulin, M., Costantini, M., Rocca, M. & Ferrero, E. A. Four type of sounds for one winner: vocalizations during territorial behavior in the red-mouthed goby Gobius cruentatus (Pisces Gobiidae). Acta Ethol. 11, 115–121 (2008).

    Article 

    Google Scholar 

  • 51.

    Bertucci, F., Lejeune, P., Payrot, J. & Parmentier, E. Sound production by dusky grouper Epinephelus marginatus at spawning aggregation sites. J. Fish Biol. 87, 400–421 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    Kéver, L. et al. Sexual dimorphism of sonic apparatus and extreme intersexual variation of sounds in Ophidion rochei (Ophidiidae): First evidence of a tight relationship between morphology and sound characteristics in Ophidiidae. Front. Zool. 9, 1–16 (2012).

    Article 

    Google Scholar 

  • 53.

    Ladich, F. Ontogenetic Development of Sound Communication in Fishes 127–148 (Springer, 2015).

    Google Scholar 

  • 54.

    Bolgan, M. et al. Sea chordophones make the mysterious /Kwa/ sound: Identification of the emitter of the dominant fish sound in Mediterranean seagrass meadows. J. Exp. Biol. 222, jeb196931 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Picciulin, M., Costantini, M., Hawkins, A. D. & Ferrero, E. A. Sound emissions of Mediterranean damselfish Chromis chromis (Pomacentraidae). Bioacoustics 12, 236–238 (2002).

    Article 

    Google Scholar 

  • 56.

    Dufossé, M. Recherches sur les bruits et les sons expressifs que font entendre les poissons d’Europe et sur les organes producteurs de ces phénomènes acoustiques ainsi que sur les appareils de l’audition de plusieurs de ces animaux. Ann. Sci. Nat. 20, 1–134 (1874).

    Google Scholar 

  • 57.

    Pardini, R., De Souza, S. M., Braga-Neto, R. & Metzger, J. P. The role of forest structure, fragment size and corridors in maintaining small mammal abundance and diversity in an Atlantic forest landscape. Biol. Conserv. 124, 253–266 (2005).

    Article 

    Google Scholar 

  • 58.

    Brokovich, E., Einbinder, S., Shashar, N., Kiflawi, M. & Kark, S. Descending to the twilight-zone: Changes in coral reef fish assemblages along a depth gradient down to 65 m. Mar. Ecol. Prog. Ser. 371, 253–262 (2008).

    ADS 
    Article 

    Google Scholar 

  • 59.

    Jain, M. & Balakrishnan, R. Does acoustic adaptation drive vertical stratification? A test in a tropical cricket assemblage. Behav. Ecol. 23, 343–354 (2012).

    Article 

    Google Scholar 

  • 60.

    Rodriguez, A. et al. Temporal and spatial variability of animal sound within a neotropical forest. Ecol. Inform. 21, 133–143 (2014).

    Article 

    Google Scholar 

  • 61.

    Jankowski, M., Graham, N. & Jones, G. Depth gradients in diversity, distribution and habitat specialisation in coral reef fishes: Implications for the depth-refuge hypothesis. Mar. Ecol. Prog. Ser. 540, 203–215 (2015).

    ADS 
    Article 

    Google Scholar 

  • 62.

    Garrabou, J., Ballesteros, E. & Zabala, M. Structure and dynamics of north-western Mediterranean rocky benthic communities along a depth gradient. Estuar. Coast. Shelf Sci. 55, 493–508 (2002).

    ADS 
    Article 

    Google Scholar 

  • 63.

    Gervaise, C., Lossent, J., Di Iorio, L. & Boissery, P. Réseau CALME Caractérisation Acoustique du Littoral Méditerranéen et de ses Ecosystèmes Synthèse des travaux réalisés pour la période [01/01/2015–01/08/2018] 1–109 (Rapp. Sci. Agence l’Eau Rhône, 2019).

    Google Scholar 

  • 64.

    McCauley, R. D. & Cato, D. H. Patterns of fish calling in a nearshore environment in the Great Barrier Reef. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 355, 1289–1293 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 65.

    Ladich, F. Acoustic communication in fishes: Temperature plays a role. Fish Fish. 19, 598–612 (2018).

    Article 

    Google Scholar 

  • 66.

    Desiderà, E. Reproductive behaviours of groupers (Epinephelidae) in the Tavolara-Punta Coda Cavallo Marine protected area (NW Mediterranean Sea). (PhD thesis 2019). http://paduaresearch.cab.unipd.it/12786/.

  • 67.

    Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Austral Ecol. 18, 117–143 (1993).

    Article 

    Google Scholar 

  • 68.

    Bray, J. R. & Curtis, J. T. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27, 325–349 (1957).

    Article 

    Google Scholar 

  • 69.

    ter Braak, C. J. F. Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology 67, 1167–1179 (1986).

    Article 

    Google Scholar 

  • 70.

    Chambers, J. M. Linear models. In Statistical Models in S (eds Chambers, J. M. & Hastie, T. J.) (Wadsworth & Brooks/Cole, 1992).

    MATH 

    Google Scholar 

  • 71.

    Lepareur F. Evaluation de l’état de conservation des habi,tats naturels marins à l’échelle d’un site Natura 2000 – Guide méthodologique – Version 1. Février 2011. (Rapport SPN 2011 / 3, MNHN, Paris, 2011). http://spn.mnhn.fr/spn_rapports/archivage_rapports/2011/SPN%202011%20-%203%20-%20Rapport_EC_habmar_V1final2.pdf.

  • 72.

    Anderson, M. J. Permutational multivariate analysis of variance (PERMANOVA). In Wiley StatsRef: Statistics Reference Online (eds Balakrishnan, N. et al.) 1–15 (Wiley, 2017).

    Google Scholar 


  • Source: Ecology - nature.com

    A peculiar state of matter in layers of semiconductors

    Solutions in microbiome engineering: prioritizing barriers to organism establishment