in

Biological effects of biochar and zeolite used for remediation of soil contaminated with toxic heavy metals

  • 1.

    Li, Z. Y., Ma, Z. W., van der Kuijp, T. J., Yuan, Z. W. & Huang, L. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci. Total Environ. 468, 843–853 (2014).

    ADS 
    Article 

    Google Scholar 

  • 2.

    Zhou, C. et al. Evaluation of different types and amounts of amendments on soil Cd immobilization and its uptake to wheat. Environ. Manag. 65, 818–828 (2020).

    Article 

    Google Scholar 

  • 3.

    He, Z. et al. Heavy metal contamination of soils: sources, indicators, and assessment. J. Environ. Indic. 9, 17–18 (2015).

    Google Scholar 

  • 4.

    Rodríguez-Eugenio, N., McLaughlin, M., Pennock, D. Soil Pollution: A Hidden Reality. Rome, FAO (2018).

  • 5.

    Lin, C.-F., Lo, S.-S., Lin, H.-Y. & Lee, Y. Stabilization of cadmium contaminated soils using synthesized zeolite. J. Hazard. Mater. 60(3), 217–226 (1998).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Aransiola, S. A., Ijah, U. J. J., Abioye, O. P. & Bala, J. D. Microbial-aided phytoremediation of heavy metals contaminated soil: a review. Eur. J. Biol. Res. 9(2), 104–125. https://doi.org/10.5281/zenodo.3244176 (2019).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Porter, S. K., Scheckel, K. G., Impellitteri, C. A. & Ryan, J. A. Toxic metals in the environment: thermodynamic considerations for possible immobilization strategies for Pb, Cd, As and Hg. Crit. Rev. Environ. Sci. Technol. 34, 495–604 (2004).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Contin, M., Miho, L., Pellegrini, E., Gjoka, F. & Shkurta, E. Effects of natural zeolites on ryegrass growth and bioavailability of Cd, Ni, Pb, and Zn in an Albanian contaminated soil. J. Soils Sedim. 19, 4052–4062. https://doi.org/10.1007/s11368-019-02359-7 (2019).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Bashir, S. et al. Effective role of biochar, zeolite and steel slag on leaching behavior of Cd and its fractionations in soil column study. Bull. Environ. Contam. Toxicol. 102, 567–572. https://doi.org/10.1007/s00128-019-02573-6 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 10.

    Lahori, A. H. et al. Direct and residual impacts of zeolite on the remediation of harmful elements in multiple contaminated soils using cabbage in rotation with corn. Chemosphere 250, 126317 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 11.

    Mahabadi, A. A., Hajabbasi, M. A., Khademi, H. & Kazemian, H. Soil cadmium stabilization using an Iranian natural zeolite. Geoderma 137(3–4), 388–393 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 12.

    Yi, N., Wu, Y., Fan, L. & Hu, S. Remediating Cd-contaminated soils using natural and chitosan-introduced zeolite, bentonite, and activated carbon. Pol. J. Environ. Stud. 28(3), 1461–1468 (2019).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Park, J. H., Choppala, G. K., Bolan, N. S., Chung, J. W. & Chuasavathi, T. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 348, 439. https://doi.org/10.1007/s11104-011-0948-y (2011).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Atkinson, C. J., Fitzgerald, J. D. & Hipps, N. A. Potential mechanisms for achieving agricultural benefits from biochar application to temperature soils: a review. Plant Soil 337, 1–18 (2010).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Peake, L. R., Reid, G. J. & Tang, X. Quantifying the influence of biochar on the physical and hydrological properties of dissimilar soils. Geoderma 235–236, 182–190 (2014).

    ADS 
    Article 

    Google Scholar 

  • 16.

    Mukherjee, A. & Lal, R. Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy 3(2), 313–339 (2013).

    Article 

    Google Scholar 

  • 17.

    Głąb, T., Palmowska, J., Zaleski, T. & Gondek, K. Effect of biochar application on soil hydrological properties and physical quality of sandy soil. Geoderma 281, 11–20 (2016).

    ADS 
    Article 

    Google Scholar 

  • 18.

    Li, H. et al. Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere 178, 466–478 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 19.

    Jadia, C. D. & Fuleka, M. H. Phytotoxicity and remediation of heavy metals by fibrous root grass (sorghum). J. Appl. Biosci. 10, 491–499 (2008).

    Google Scholar 

  • 20.

    Bandura, L., Franus, M., Józefaciuk, G. & Franus, W. Synthetic zeolites from fly ash as effective mineral sorbents for land-based petroleum spills cleanup. Fuel 147, 100–107 (2015).

    CAS 
    Article 

    Google Scholar 

  • 21.

    International Biochar Initiative. Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil (aka IBI Biochar Standards), Version 2.0, IBI-STD-2.0 (2014).

  • 22.

    Gondek, K. & Mierzwa-Hersztek, M. Effect of low-temperature biochar derived from pig manure and poultry litter on mobile and organic matter-bound forms of Cu, Cd, Pb and Zn in sandy soil. Soil Use Manag. 32, 357–367 (2016).

    Article 

    Google Scholar 

  • 23.

    Brunauer, S., Emmett, P. H. & Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319. https://doi.org/10.1021/ja01269a023 (1938).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 24.

    Barrett, E. P., Joyner, L. G. & Halenda, P. P. The determination of pore volume and area distributions in porous substances II. J. Am. Chem. Soc. 73, 373–380. https://doi.org/10.1021/ja01145a126 (1951).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Smucker, A. J. M., McBurney, S. L. & Srivastava, A. K. Quantitative separation ofroots from compacted soil profiles by the hydropneumatic elutriation system. Agron. J. 74, 500–503 (1982).

    Article 

    Google Scholar 

  • 26.

    Bauhus, J. & Messier, C. Evaluation of fine root length and diametermeasurements obtained using RHIZO image analysis. Agron. J. 91, 142–147 (1999).

    Article 

    Google Scholar 

  • 27.

    Głąb, T., Gondek, K. & Mierzwa-Hersztek, M. Pyrolysis improves the effect of straw amendment on the productivity of perennial ryegrass (Lolium perenne L.). Agronomy 10, 1455 (2020).

    Article 

    Google Scholar 

  • 28.

    Karthik, A., Hussainy, S. A. H. & Rajasekar, M. Effect of biochar on the growth and yield of cotton and maize: a review. Int. J. Chem. Stud. 8(3), 572–578 (2020).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Fiaz, K. et al. Drought impact on Pb/Cd toxicity remediated by biochar in Brassica campestris. J. Soil Sci. Plant Nutr. 14, 4. https://doi.org/10.4067/S0718-95162014005000067 (2014).

    Article 

    Google Scholar 

  • 30.

    Rehman, M. Z. et al. Effect of acidified biochar on bioaccumulation of cadmium (Cd) and rice growth in contaminated soil. Environ. Technol. Innov. 19, 101015 (2020).

    Article 

    Google Scholar 

  • 31.

    Xu, P. et al. The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil. Ecotoxicol. Environ. Saf. 132, 94–100. https://doi.org/10.1016/j.ecoenv.2016.05.031 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 32.

    Rehman, M. Z. et al. Contrasting effects of biochar, compost and farm manure on alleviation of nickel toxicity in maize (Zea mays L.) in relation to plant growth, photosynthesis and metal uptake. Ecotoxicol. Environ. Saf. 133, 218–225. https://doi.org/10.1016/j.ecoenv.2016.07.023 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 33.

    Butorac, A. et al. Crop response to the application of special natural amendments based on zeolite tuff. Rostlinná Výroba 48, 118–124 (2002).

    Google Scholar 

  • 34.

    Wang, S. B. & Peng, Y. L. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. 156, 11–24 (2010).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Nakhli, S. A. A., Delkash, M., Bakhshayesh, B. E. & Kazemian, H. Application of zeolites for sustainable agriculture: a review on water and nutrient retention. Water Air Soil Pollut. 228, 464. https://doi.org/10.1007/s11270-017-3649-1 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 36.

    Ozbahce, A., Tari, A. F., Gönülal, E., Simsekli, N. & Padem, H. The effect of zeolite applications on yield components and nutrient uptake of common bean under water stress. Arch. Agron. Soil Sci. 61(5), 615–626. https://doi.org/10.1080/03650340.2014.946021 (2015).

    CAS 
    Article 

    Google Scholar 

  • 37.

    De Smedt, C., Someus, E. & Spanoghe, P. Potential and actual uses of zeolites in crop protection. Pest Manag. Sci. 71, 1355–1367. https://doi.org/10.1002/ps.3999 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 38.

    Rees, F., Sterckeman, T. & Morel, J. L. Root development of non-accumulating and hyperaccumulating plants in metal-contaminated soils amended with biochar. Chemosphere 142, 48–55. https://doi.org/10.1016/j.chemosphere.2015.03.068 (2016).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 39.

    Houben, D., Evrard, L. & Sonnet, P. Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.). Biomass Bioenergy 57, 196–204. https://doi.org/10.1016/j.biombioe.2013.07.019 (2013).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Reibe, K., Götz, K. P., Döring, T. F., Ros, C. L. & Ellmer, F. Impact of hydro-/biochars on root morphology of spring wheat. Arch. Agron. Soil Sci. 61(8), 1041–1054. https://doi.org/10.1080/03650340.2014.983090 (2015).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Shahbaz, A. K. et al. Improvement in productivity, nutritional quality, and antioxidative defence mechanisms of sunflower (Helianthus annuus L.) and maize (Zea mays L.) in nickel contaminated soil amended with different biochar and zeolite ratios. J. Environ. Manag. 218, 256–270 (2018).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Xiang, Y., Deng, Q., Duan, H. & Guo, Y. Effects of biochar application on root traits: a meta-analysis. GCB Bioenergy 9, 1563–1572. https://doi.org/10.1111/gcbb.12449 (2017).

    Article 

    Google Scholar 

  • 43.

    Olmo, M., Villar, R., Salazar, P. & Alburquerque, J. A. Changes in soil nutrient availability explain biochar’s impact on wheat root development. Plant Soil 399, 333–343. https://doi.org/10.1007/s11104-015-2700-5 (2016).

    CAS 
    Article 

    Google Scholar 

  • 44.

    McCarthy, M. C. & Enquist, B. J. Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Funct. Ecol. 21, 713–720 (2007).

    Article 

    Google Scholar 

  • 45.

    Bonifas, K. D., Walters, D. T., Cassman, K. G. & Lindquist, J. L. Nitrogen supply affects root:shoot ratio in corn and velvetleaf (Abutilon theophrasti). Weed Sci. 53, 670–675 (2005).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Agren, G. I. & Franklin, O. Root:shoot ratios, optimization and nitrogen productivity. Ann. Bot. 92(6), 795–800 (2003).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Palazzo, A. J., Cary, T. J., Hardy, S. E. & Lee, C. R. Root growth and metal uptake in four grasses grown on zinc-contaminated soils. J. Environ. Qual. 32, 834–840. https://doi.org/10.2134/jeq2003.8340 (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Design could enable longer lasting, more powerful lithium batteries

    Cooling homes without warming the planet