Li, Z. Y., Ma, Z. W., van der Kuijp, T. J., Yuan, Z. W. & Huang, L. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci. Total Environ. 468, 843–853 (2014).
Google Scholar
Zhou, C. et al. Evaluation of different types and amounts of amendments on soil Cd immobilization and its uptake to wheat. Environ. Manag. 65, 818–828 (2020).
Google Scholar
He, Z. et al. Heavy metal contamination of soils: sources, indicators, and assessment. J. Environ. Indic. 9, 17–18 (2015).
Rodríguez-Eugenio, N., McLaughlin, M., Pennock, D. Soil Pollution: A Hidden Reality. Rome, FAO (2018).
Lin, C.-F., Lo, S.-S., Lin, H.-Y. & Lee, Y. Stabilization of cadmium contaminated soils using synthesized zeolite. J. Hazard. Mater. 60(3), 217–226 (1998).
Google Scholar
Aransiola, S. A., Ijah, U. J. J., Abioye, O. P. & Bala, J. D. Microbial-aided phytoremediation of heavy metals contaminated soil: a review. Eur. J. Biol. Res. 9(2), 104–125. https://doi.org/10.5281/zenodo.3244176 (2019).
Google Scholar
Porter, S. K., Scheckel, K. G., Impellitteri, C. A. & Ryan, J. A. Toxic metals in the environment: thermodynamic considerations for possible immobilization strategies for Pb, Cd, As and Hg. Crit. Rev. Environ. Sci. Technol. 34, 495–604 (2004).
Google Scholar
Contin, M., Miho, L., Pellegrini, E., Gjoka, F. & Shkurta, E. Effects of natural zeolites on ryegrass growth and bioavailability of Cd, Ni, Pb, and Zn in an Albanian contaminated soil. J. Soils Sedim. 19, 4052–4062. https://doi.org/10.1007/s11368-019-02359-7 (2019).
Google Scholar
Bashir, S. et al. Effective role of biochar, zeolite and steel slag on leaching behavior of Cd and its fractionations in soil column study. Bull. Environ. Contam. Toxicol. 102, 567–572. https://doi.org/10.1007/s00128-019-02573-6 (2019).
Google Scholar
Lahori, A. H. et al. Direct and residual impacts of zeolite on the remediation of harmful elements in multiple contaminated soils using cabbage in rotation with corn. Chemosphere 250, 126317 (2020).
Google Scholar
Mahabadi, A. A., Hajabbasi, M. A., Khademi, H. & Kazemian, H. Soil cadmium stabilization using an Iranian natural zeolite. Geoderma 137(3–4), 388–393 (2007).
Google Scholar
Yi, N., Wu, Y., Fan, L. & Hu, S. Remediating Cd-contaminated soils using natural and chitosan-introduced zeolite, bentonite, and activated carbon. Pol. J. Environ. Stud. 28(3), 1461–1468 (2019).
Google Scholar
Park, J. H., Choppala, G. K., Bolan, N. S., Chung, J. W. & Chuasavathi, T. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 348, 439. https://doi.org/10.1007/s11104-011-0948-y (2011).
Google Scholar
Atkinson, C. J., Fitzgerald, J. D. & Hipps, N. A. Potential mechanisms for achieving agricultural benefits from biochar application to temperature soils: a review. Plant Soil 337, 1–18 (2010).
Google Scholar
Peake, L. R., Reid, G. J. & Tang, X. Quantifying the influence of biochar on the physical and hydrological properties of dissimilar soils. Geoderma 235–236, 182–190 (2014).
Google Scholar
Mukherjee, A. & Lal, R. Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy 3(2), 313–339 (2013).
Google Scholar
Głąb, T., Palmowska, J., Zaleski, T. & Gondek, K. Effect of biochar application on soil hydrological properties and physical quality of sandy soil. Geoderma 281, 11–20 (2016).
Google Scholar
Li, H. et al. Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere 178, 466–478 (2017).
Google Scholar
Jadia, C. D. & Fuleka, M. H. Phytotoxicity and remediation of heavy metals by fibrous root grass (sorghum). J. Appl. Biosci. 10, 491–499 (2008).
Bandura, L., Franus, M., Józefaciuk, G. & Franus, W. Synthetic zeolites from fly ash as effective mineral sorbents for land-based petroleum spills cleanup. Fuel 147, 100–107 (2015).
Google Scholar
International Biochar Initiative. Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil (aka IBI Biochar Standards), Version 2.0, IBI-STD-2.0 (2014).
Gondek, K. & Mierzwa-Hersztek, M. Effect of low-temperature biochar derived from pig manure and poultry litter on mobile and organic matter-bound forms of Cu, Cd, Pb and Zn in sandy soil. Soil Use Manag. 32, 357–367 (2016).
Google Scholar
Brunauer, S., Emmett, P. H. & Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319. https://doi.org/10.1021/ja01269a023 (1938).
Google Scholar
Barrett, E. P., Joyner, L. G. & Halenda, P. P. The determination of pore volume and area distributions in porous substances II. J. Am. Chem. Soc. 73, 373–380. https://doi.org/10.1021/ja01145a126 (1951).
Google Scholar
Smucker, A. J. M., McBurney, S. L. & Srivastava, A. K. Quantitative separation ofroots from compacted soil profiles by the hydropneumatic elutriation system. Agron. J. 74, 500–503 (1982).
Google Scholar
Bauhus, J. & Messier, C. Evaluation of fine root length and diametermeasurements obtained using RHIZO image analysis. Agron. J. 91, 142–147 (1999).
Google Scholar
Głąb, T., Gondek, K. & Mierzwa-Hersztek, M. Pyrolysis improves the effect of straw amendment on the productivity of perennial ryegrass (Lolium perenne L.). Agronomy 10, 1455 (2020).
Google Scholar
Karthik, A., Hussainy, S. A. H. & Rajasekar, M. Effect of biochar on the growth and yield of cotton and maize: a review. Int. J. Chem. Stud. 8(3), 572–578 (2020).
Google Scholar
Fiaz, K. et al. Drought impact on Pb/Cd toxicity remediated by biochar in Brassica campestris. J. Soil Sci. Plant Nutr. 14, 4. https://doi.org/10.4067/S0718-95162014005000067 (2014).
Google Scholar
Rehman, M. Z. et al. Effect of acidified biochar on bioaccumulation of cadmium (Cd) and rice growth in contaminated soil. Environ. Technol. Innov. 19, 101015 (2020).
Google Scholar
Xu, P. et al. The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil. Ecotoxicol. Environ. Saf. 132, 94–100. https://doi.org/10.1016/j.ecoenv.2016.05.031 (2016).
Google Scholar
Rehman, M. Z. et al. Contrasting effects of biochar, compost and farm manure on alleviation of nickel toxicity in maize (Zea mays L.) in relation to plant growth, photosynthesis and metal uptake. Ecotoxicol. Environ. Saf. 133, 218–225. https://doi.org/10.1016/j.ecoenv.2016.07.023 (2016).
Google Scholar
Butorac, A. et al. Crop response to the application of special natural amendments based on zeolite tuff. Rostlinná Výroba 48, 118–124 (2002).
Wang, S. B. & Peng, Y. L. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. 156, 11–24 (2010).
Google Scholar
Nakhli, S. A. A., Delkash, M., Bakhshayesh, B. E. & Kazemian, H. Application of zeolites for sustainable agriculture: a review on water and nutrient retention. Water Air Soil Pollut. 228, 464. https://doi.org/10.1007/s11270-017-3649-1 (2017).
Google Scholar
Ozbahce, A., Tari, A. F., Gönülal, E., Simsekli, N. & Padem, H. The effect of zeolite applications on yield components and nutrient uptake of common bean under water stress. Arch. Agron. Soil Sci. 61(5), 615–626. https://doi.org/10.1080/03650340.2014.946021 (2015).
Google Scholar
De Smedt, C., Someus, E. & Spanoghe, P. Potential and actual uses of zeolites in crop protection. Pest Manag. Sci. 71, 1355–1367. https://doi.org/10.1002/ps.3999 (2015).
Google Scholar
Rees, F., Sterckeman, T. & Morel, J. L. Root development of non-accumulating and hyperaccumulating plants in metal-contaminated soils amended with biochar. Chemosphere 142, 48–55. https://doi.org/10.1016/j.chemosphere.2015.03.068 (2016).
Google Scholar
Houben, D., Evrard, L. & Sonnet, P. Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.). Biomass Bioenergy 57, 196–204. https://doi.org/10.1016/j.biombioe.2013.07.019 (2013).
Google Scholar
Reibe, K., Götz, K. P., Döring, T. F., Ros, C. L. & Ellmer, F. Impact of hydro-/biochars on root morphology of spring wheat. Arch. Agron. Soil Sci. 61(8), 1041–1054. https://doi.org/10.1080/03650340.2014.983090 (2015).
Google Scholar
Shahbaz, A. K. et al. Improvement in productivity, nutritional quality, and antioxidative defence mechanisms of sunflower (Helianthus annuus L.) and maize (Zea mays L.) in nickel contaminated soil amended with different biochar and zeolite ratios. J. Environ. Manag. 218, 256–270 (2018).
Google Scholar
Xiang, Y., Deng, Q., Duan, H. & Guo, Y. Effects of biochar application on root traits: a meta-analysis. GCB Bioenergy 9, 1563–1572. https://doi.org/10.1111/gcbb.12449 (2017).
Google Scholar
Olmo, M., Villar, R., Salazar, P. & Alburquerque, J. A. Changes in soil nutrient availability explain biochar’s impact on wheat root development. Plant Soil 399, 333–343. https://doi.org/10.1007/s11104-015-2700-5 (2016).
Google Scholar
McCarthy, M. C. & Enquist, B. J. Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Funct. Ecol. 21, 713–720 (2007).
Google Scholar
Bonifas, K. D., Walters, D. T., Cassman, K. G. & Lindquist, J. L. Nitrogen supply affects root:shoot ratio in corn and velvetleaf (Abutilon theophrasti). Weed Sci. 53, 670–675 (2005).
Google Scholar
Agren, G. I. & Franklin, O. Root:shoot ratios, optimization and nitrogen productivity. Ann. Bot. 92(6), 795–800 (2003).
Google Scholar
Palazzo, A. J., Cary, T. J., Hardy, S. E. & Lee, C. R. Root growth and metal uptake in four grasses grown on zinc-contaminated soils. J. Environ. Qual. 32, 834–840. https://doi.org/10.2134/jeq2003.8340 (2003).
Google Scholar
Source: Ecology - nature.com