in

Body and wing size, but not wing shape, vary along a large-scale latitudinal gradient in a damselfly

  • 1.

    Brown, J. H., Stevens, G. C. & Kaufman, D. M. The geographic range: Size, shape, boundaries, and internal structure. Annu. Rev. Ecol. Syst. 27, 597–623 (1996).

    Article 

    Google Scholar 

  • 2.

    Gaston, K. J. Geographic range limits: Achieving synthesis. Proc. R. Soc. B 276, 1395–1406 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).

    Article 

    Google Scholar 

  • 4.

    Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40, 415–436 (2009).

    Article 

    Google Scholar 

  • 5.

    Cahill, A. E. et al. Causes of warm-edge range limits: Systematic review, proximate factors and implications for climate change. J. Biogeogr. 41, 429–442 (2014).

    Article 

    Google Scholar 

  • 6.

    Bridle, J. R. & Vines, T. H. Limits to evolution at range margins: When and why does adaptation fail?. Trends Ecol. Evol. 22, 140–147 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Chuang, A. & Peterson, C. R. Expanding population edges: Theories, traits, and trade-offs. Glob. Change Biol. 22, 494–512 (2016).

    ADS 
    Article 

    Google Scholar 

  • 8.

    Kubisch, A., Holt, R. D., Poethke, H. J. & Fronhofer, E. A. Where am I and why? Synthesizing range biology and the eco-evolutionary dynamics of dispersal. Oikos 123, 5–22 (2014).

    Article 

    Google Scholar 

  • 9.

    Shine, R., Brown, G. P. & Phillips, B. L. An evolutionary process that assembles phenotypes through space rather than through time. PNAS 108, 5708–5711 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Wolz, M. et al. Dispersal and life-history traits in a spider with rapid range expansion. Mov. Ecol. 8, 1–11 (2020).

    Article 

    Google Scholar 

  • 11.

    Hill, J. K., Griffiths, H. M. & Thomas, C. D. Climate change and evolutionary adaptations at species’ range margins. Annu. Rev. Entomol. 56(56), 143–159 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Kaluthota, C., Brinkman, B. E., Dos Santos, E. B. & Rendall, D. Transcontinental latitudinal variation in song performance and complexity in house Wrens (Troglodytes aedon). Proc. R. Soc. B 283, 1–8 (2016).

    Article 
    CAS 

    Google Scholar 

  • 13.

    Golab, M. J., Johansson, F. & Sniegula, S. Let’s mate here and now—seasonal constraints increase mating efficiency. Ecol. Entomol. 44, 623–629 (2019).

    Article 

    Google Scholar 

  • 14.

    Monteiro, N. et al. Parabolic variation in sexual selection intensity across the range of a cold-water pipefish: Implications for susceptibility to climate change. Glob. Change Biol. 23, 3600–3609 (2017).

    ADS 
    Article 

    Google Scholar 

  • 15.

    Hughes, C. L., Hill, J. K. & Dytham, C. Evolutionary trade-offs between reproduction and dispersal in populations at expanding range boundaries. Proc. R. Soc. B 270, S147–S150 (2003).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Dudaniec, R. Y. et al. Latitudinal clines in sexual selection, sexual size dimorphism, and sex‐specific genetic dispersal during a poleward range expansion. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13488 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    De Lisle, S. P., Goedert, D., Reedy, A. M. & Svensson, E. I. Climatic factors and species range position predict sexually antagonistic selection across taxa. Philos. Trans. R. Soc. B 373, 20170415 (2018).

    Article 

    Google Scholar 

  • 18.

    Holt, R. D. & Keitt, T. H. Species’ borders: A unifying theme in ecology. Oikos 108, 3–6 (2005).

    Article 

    Google Scholar 

  • 19.

    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Norberg, U. M. & Rayner, J. M. V. Ecological morphology and flight in bats (Mammalia; Chiroptera): Wing adaptations, flight performance, foraging strategy and echolocation. Philos. Trans. R. Soc. Lond. B 316, 335–427 (1987).

    ADS 
    Article 

    Google Scholar 

  • 21.

    Bowlin, M. S. & Wikelski, M. Pointed wings, low wingloading and calm air reduce migratory flight costs in songbirds. PLoS One 3, e2154 (2008).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 22.

    DeVries, P. J., Penz, C. M. & Hill, R. I. Vertical distribution, flight behaviour and evolution of wing morphology in Morpho butterflies. J. Anim. Ecol. 79, 1077–1085 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Le Roy, C., Debat, V. & Llaurens, V. Adaptive evolution of butterfly wing shape: From morphology to behaviour. Biol. Rev. 94, 1261–1281 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Cassel-Lundhagen, A., Tammaru, T., Windig, J. J., Ryrholm, N. & Nylin, S. Are peripheral populations special? Congruent patterns in two butterfly species. Ecography 32, 591–600 (2009).

    Article 

    Google Scholar 

  • 25.

    Taylor-Cox, E. D. et al. Wing morphological responses to latitude and colonisation in a range expanding butterfly. PeerJ 8, e10352 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Hassall, C., Thompson, D. J. & Harvey, I. F. Variation in morphology between core and marginal populations of three British damselflies. Aquat. Insect. 31, 187–197 (2009).

    Article 

    Google Scholar 

  • 27.

    Therry, L., Zawal, A., Bonte, D. & Stoks, R. What factors shape female phenotypes of a poleward-moving damselfly at the edge of its range?. Biol. J. Linn. Soc. 112, 556–568 (2014).

    Article 

    Google Scholar 

  • 28.

    Johansson, F. Latitudinal shifts in body size of Enallagma cyathigerum (Odonata). J. Biogeogr. 30, 29–34 (2003).

    Article 

    Google Scholar 

  • 29.

    Swaegers, J. et al. Ecological and evolutionary drivers of range size in Coenagrion damselflies. J. Evol. Biol. 27, 2386–2395 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Hickling, R., Roy, D. B., Hill, J. K. & Thomas, C. D. A northward shift of range margins in British Odonata. Glob. Change Biol. 11, 502–506 (2005).

    ADS 
    Article 

    Google Scholar 

  • 31.

    Termaat, T. et al. Distribution trends of European dragonflies under climate change. Divers. Distrib. 25, 936–950 (2019).

    Article 

    Google Scholar 

  • 32.

    Outomuro, D. et al. Antagonistic natural and sexual selection on wing shape in a scrambling damselfly. Evolution 70, 1582–1595 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Arambourou, H., Sanmartín-Villar, I. & Stoks, R. Wing shape-mediated carry-over effects of a heat wave during the larval stage on post-metamorphic locomotor ability. Oecologia 184, 279–291 (2017).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Therry, L., Nilsson-Örtman, V., Bonte, D. & Stoks, R. Rapid evolution of larval life history, adult immune function and flight muscles in a poleward-moving damselfly. J. Evol. Biol. 27, 141–152 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Dijkstra, K.-D.B. & Schröter, A. Field Guide to the Dragonflies of Britain and Europe 2nd edn. (Bloomsbury Wildlife, 2020).

    Google Scholar 

  • 36.

    Corbet, P. S., Suhling, F. & Soendgerath, D. Voltinism of odonata: A review. Int. J. Odonatol. 9, 1–44 (2006).

    Article 

    Google Scholar 

  • 37.

    Sniegula, S., Golab, M. J. & Johansson, F. A large-scale latitudinal pattern of life-history traits in a strictly univoltine damselfly. Ecol. Entomol. 41, 459–472 (2016).

    Article 

    Google Scholar 

  • 38.

    Stoks, R. Components of lifetime mating success and body size in males of a scrambling damselfly. Anim. Behav. 59, 339–348 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Sniegula, S., Prus, M. A., Golab, M. J. & Outomuro, D. Do males with higher mating success invest more in armaments? An across-populations study in damselflies. Ecol. Entomol. 42, 526–530 (2017).

    Article 

    Google Scholar 

  • 40.

    Jenkins, D. G. et al. Does size matter for dispersal distance?. Glob. Ecol. Biogeogr. 16, 415–425 (2007).

    Article 

    Google Scholar 

  • 41.

    Fairbairn, D. J., Blanckenhorn, W. U. & Székely, T. Sex, Size & Gender Roles (Oxford University Press, 2007).

    Book 

    Google Scholar 

  • 42.

    Sekar, S. A meta-analysis of the traits affecting dispersal ability in butterflies: Can wingspan be used as a proxy?. J. Anim. Ecol. 81, 174–184 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Malmqvist, B. How does wing length relate to distribution patterns of stoneflies (Plecoptera) and mayflies (Ephemeroptera)?. Biol. Conserv. 93, 271–276 (2000).

    Article 

    Google Scholar 

  • 44.

    Lancaster, J. & Downes, B. J. Dispersal traits may reflect dispersal distances, but dispersers may not connect populations demographically. Oecologia 184, 171–182 (2017).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Rundle, S. D., Bilton, D. T. & Foggo, A. By wind, wings or water: Body size, dispersal and range size in aquatic invertebrates. In Body Size: The Structure and Function of Aquatic Ecosystems (eds. Hildrew, A. G., Raffaelli, D. G. & Edmonds-Brown, R.) 186–209 (Cambridge University Press, 2007).

  • 46.

    Wootton, R. J. The functional morphology of the wings of Odonata. Adv. Odonatol. 5, 153–169 (1991).

    Google Scholar 

  • 47.

    Dudley, R. The Biomechanics of Insect Flight. Form, Function, Evolution (Princeton University Press, 2000).

    Book 

    Google Scholar 

  • 48.

    Roff, D. Optimizing development time in a seasonal environment—The ups and downs of clinal variation. Oecologia 45, 202–208 (1980).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Dmitriew, C. M. The evolution of growth trajectories: What limits growth rate?. Biol. Rev. 86, 97–116 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Utzeri, C., Carchini, G., Falchetti, E. & Belfiore, C. Philopatry, homing and dispersal in Lestes barbarus (Fabricius) (Zygoptera: Lestidae). Odonatologica 13, 573–584 (1984).

    Google Scholar 

  • 51.

    Wang, X. & Clarke, J. A. The evolution of avian wing shape and previously unrecognized trends in covert feathering. Proc. R. Soc. B 282, 20151935 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Johansson, F., Söderquist, M. & Bokma, F. Insect wing shape evolution: Independent effects of migratory and mate guarding flight on dragonfly wings. Biol. J. Linn. Soc. 97, 362–372 (2009).

    Article 

    Google Scholar 

  • 53.

    Outomuro, D., Adams, D. C. & Johansson, F. Wing shape allometry and aerodynamics in calopterygid damselflies: A comparative approach. BMC Evol. Biol. 13, 118 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 54.

    Berwaerts, K., Van Dyck, H. & Aerts, P. Does flight morphology relate to flight performance? An experimental test with the butterfly Pararge aegeria. Funct. Ecol. 16, 484–491 (2002).

    Article 

    Google Scholar 

  • 55.

    Jantzen, B. & Eisner, T. Hindwings are unnecessary for flight but essential for execution of normal evasive flight in Lepidoptera. PNAS 105, 16636–16640 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 56.

    Kalkman, V. J. Lestes sponsa. The IUCN Red List of Threatened Species 2014: e.T165475A19165578. https://doi.org/10.2305/IUCN.UK.2014-1.RLTS.T165475A19165578.en. Downloaded on 20 April 2021. (2014).

  • 57.

    Corbet, P. S. Dragonflies. Behaviour and Ecology of ODONATA (Cornell University Press, 1999).

    Google Scholar 

  • 58.

    Córdoba-Aguilar, A., López-Valenzuela, A. & Brunel, O. Allometry in damselfly ornamental and genital traits: Solving some pitfalls of allometry and sexual selection. Genetica 138, 1141–1146 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 59.

    Śniegula, S., Drobniak, S. M., GołaB, M. J. & Johansson, F. Photoperiod and variation in life history traits in core and peripheral populations in the damselfly Lestes sponsa. Ecol. Entomol. 39, 137–148 (2014).

    Article 

    Google Scholar 

  • 60.

    Rohlf, F. J. tpsDig2 version 2.19. (Accessed 1 September 2021); https://sbmorphometrics.org (2015).

  • 61.

    Rohlf, F. J. & Slice, D. Extension of the Procrustes method for the optimal superimposition of landmarks. Syst. Zool. 39, 40–59 (1990).

    Article 

    Google Scholar 

  • 62.

    Rohlf, F. J. tpsRelw. Relative warps version 1.49. (Accessed 1 September 2021); https://sbmorphometrics.org (2010).

  • 63.

    Adams, D. C., Collyer, M. L., Kaliontzopoulou, A. & Balken, E. Geomorph: Software for geometric morphometric analyses. R package version 3.3.2. (Accessed 1 September 2021); https://sbmorphometrics.org (2021).

  • 64.

    Bartoń, K. MuMIn: Multi-Model Inference. R package version 1.43.17 (Accessed 1 September 2021); https://sbmorphometrics.org (2020).

  • 65.

    Collyer, M. L., Sekora, D. J. & Adams, D. C. A method for analysis of phenotypic change for phenotypes described by high-dimensional data. Heredity 115, 357–365 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 66.

    Adams, D. C. & Collyer, M. L. On the comparison of the strength of morphological integration across morphometric datasets. Evolution 70, 2623–2631 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Genome-wide analysis reveals associations between climate and regional patterns of adaptive divergence and dispersal in American pikas

    Crossing disciplines, adding fresh eyes to nuclear engineering