Brown, J. H., Stevens, G. C. & Kaufman, D. M. The geographic range: Size, shape, boundaries, and internal structure. Annu. Rev. Ecol. Syst. 27, 597–623 (1996).
Google Scholar
Gaston, K. J. Geographic range limits: Achieving synthesis. Proc. R. Soc. B 276, 1395–1406 (2009).
Google Scholar
Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
Google Scholar
Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40, 415–436 (2009).
Google Scholar
Cahill, A. E. et al. Causes of warm-edge range limits: Systematic review, proximate factors and implications for climate change. J. Biogeogr. 41, 429–442 (2014).
Google Scholar
Bridle, J. R. & Vines, T. H. Limits to evolution at range margins: When and why does adaptation fail?. Trends Ecol. Evol. 22, 140–147 (2007).
Google Scholar
Chuang, A. & Peterson, C. R. Expanding population edges: Theories, traits, and trade-offs. Glob. Change Biol. 22, 494–512 (2016).
Google Scholar
Kubisch, A., Holt, R. D., Poethke, H. J. & Fronhofer, E. A. Where am I and why? Synthesizing range biology and the eco-evolutionary dynamics of dispersal. Oikos 123, 5–22 (2014).
Google Scholar
Shine, R., Brown, G. P. & Phillips, B. L. An evolutionary process that assembles phenotypes through space rather than through time. PNAS 108, 5708–5711 (2011).
Google Scholar
Wolz, M. et al. Dispersal and life-history traits in a spider with rapid range expansion. Mov. Ecol. 8, 1–11 (2020).
Google Scholar
Hill, J. K., Griffiths, H. M. & Thomas, C. D. Climate change and evolutionary adaptations at species’ range margins. Annu. Rev. Entomol. 56(56), 143–159 (2011).
Google Scholar
Kaluthota, C., Brinkman, B. E., Dos Santos, E. B. & Rendall, D. Transcontinental latitudinal variation in song performance and complexity in house Wrens (Troglodytes aedon). Proc. R. Soc. B 283, 1–8 (2016).
Google Scholar
Golab, M. J., Johansson, F. & Sniegula, S. Let’s mate here and now—seasonal constraints increase mating efficiency. Ecol. Entomol. 44, 623–629 (2019).
Google Scholar
Monteiro, N. et al. Parabolic variation in sexual selection intensity across the range of a cold-water pipefish: Implications for susceptibility to climate change. Glob. Change Biol. 23, 3600–3609 (2017).
Google Scholar
Hughes, C. L., Hill, J. K. & Dytham, C. Evolutionary trade-offs between reproduction and dispersal in populations at expanding range boundaries. Proc. R. Soc. B 270, S147–S150 (2003).
Google Scholar
Dudaniec, R. Y. et al. Latitudinal clines in sexual selection, sexual size dimorphism, and sex‐specific genetic dispersal during a poleward range expansion. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13488 (2021).
Google Scholar
De Lisle, S. P., Goedert, D., Reedy, A. M. & Svensson, E. I. Climatic factors and species range position predict sexually antagonistic selection across taxa. Philos. Trans. R. Soc. B 373, 20170415 (2018).
Google Scholar
Holt, R. D. & Keitt, T. H. Species’ borders: A unifying theme in ecology. Oikos 108, 3–6 (2005).
Google Scholar
Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).
Google Scholar
Norberg, U. M. & Rayner, J. M. V. Ecological morphology and flight in bats (Mammalia; Chiroptera): Wing adaptations, flight performance, foraging strategy and echolocation. Philos. Trans. R. Soc. Lond. B 316, 335–427 (1987).
Google Scholar
Bowlin, M. S. & Wikelski, M. Pointed wings, low wingloading and calm air reduce migratory flight costs in songbirds. PLoS One 3, e2154 (2008).
Google Scholar
DeVries, P. J., Penz, C. M. & Hill, R. I. Vertical distribution, flight behaviour and evolution of wing morphology in Morpho butterflies. J. Anim. Ecol. 79, 1077–1085 (2010).
Google Scholar
Le Roy, C., Debat, V. & Llaurens, V. Adaptive evolution of butterfly wing shape: From morphology to behaviour. Biol. Rev. 94, 1261–1281 (2019).
Google Scholar
Cassel-Lundhagen, A., Tammaru, T., Windig, J. J., Ryrholm, N. & Nylin, S. Are peripheral populations special? Congruent patterns in two butterfly species. Ecography 32, 591–600 (2009).
Google Scholar
Taylor-Cox, E. D. et al. Wing morphological responses to latitude and colonisation in a range expanding butterfly. PeerJ 8, e10352 (2020).
Google Scholar
Hassall, C., Thompson, D. J. & Harvey, I. F. Variation in morphology between core and marginal populations of three British damselflies. Aquat. Insect. 31, 187–197 (2009).
Google Scholar
Therry, L., Zawal, A., Bonte, D. & Stoks, R. What factors shape female phenotypes of a poleward-moving damselfly at the edge of its range?. Biol. J. Linn. Soc. 112, 556–568 (2014).
Google Scholar
Johansson, F. Latitudinal shifts in body size of Enallagma cyathigerum (Odonata). J. Biogeogr. 30, 29–34 (2003).
Google Scholar
Swaegers, J. et al. Ecological and evolutionary drivers of range size in Coenagrion damselflies. J. Evol. Biol. 27, 2386–2395 (2014).
Google Scholar
Hickling, R., Roy, D. B., Hill, J. K. & Thomas, C. D. A northward shift of range margins in British Odonata. Glob. Change Biol. 11, 502–506 (2005).
Google Scholar
Termaat, T. et al. Distribution trends of European dragonflies under climate change. Divers. Distrib. 25, 936–950 (2019).
Google Scholar
Outomuro, D. et al. Antagonistic natural and sexual selection on wing shape in a scrambling damselfly. Evolution 70, 1582–1595 (2016).
Google Scholar
Arambourou, H., Sanmartín-Villar, I. & Stoks, R. Wing shape-mediated carry-over effects of a heat wave during the larval stage on post-metamorphic locomotor ability. Oecologia 184, 279–291 (2017).
Google Scholar
Therry, L., Nilsson-Örtman, V., Bonte, D. & Stoks, R. Rapid evolution of larval life history, adult immune function and flight muscles in a poleward-moving damselfly. J. Evol. Biol. 27, 141–152 (2014).
Google Scholar
Dijkstra, K.-D.B. & Schröter, A. Field Guide to the Dragonflies of Britain and Europe 2nd edn. (Bloomsbury Wildlife, 2020).
Corbet, P. S., Suhling, F. & Soendgerath, D. Voltinism of odonata: A review. Int. J. Odonatol. 9, 1–44 (2006).
Google Scholar
Sniegula, S., Golab, M. J. & Johansson, F. A large-scale latitudinal pattern of life-history traits in a strictly univoltine damselfly. Ecol. Entomol. 41, 459–472 (2016).
Google Scholar
Stoks, R. Components of lifetime mating success and body size in males of a scrambling damselfly. Anim. Behav. 59, 339–348 (2000).
Google Scholar
Sniegula, S., Prus, M. A., Golab, M. J. & Outomuro, D. Do males with higher mating success invest more in armaments? An across-populations study in damselflies. Ecol. Entomol. 42, 526–530 (2017).
Google Scholar
Jenkins, D. G. et al. Does size matter for dispersal distance?. Glob. Ecol. Biogeogr. 16, 415–425 (2007).
Google Scholar
Fairbairn, D. J., Blanckenhorn, W. U. & Székely, T. Sex, Size & Gender Roles (Oxford University Press, 2007).
Google Scholar
Sekar, S. A meta-analysis of the traits affecting dispersal ability in butterflies: Can wingspan be used as a proxy?. J. Anim. Ecol. 81, 174–184 (2012).
Google Scholar
Malmqvist, B. How does wing length relate to distribution patterns of stoneflies (Plecoptera) and mayflies (Ephemeroptera)?. Biol. Conserv. 93, 271–276 (2000).
Google Scholar
Lancaster, J. & Downes, B. J. Dispersal traits may reflect dispersal distances, but dispersers may not connect populations demographically. Oecologia 184, 171–182 (2017).
Google Scholar
Rundle, S. D., Bilton, D. T. & Foggo, A. By wind, wings or water: Body size, dispersal and range size in aquatic invertebrates. In Body Size: The Structure and Function of Aquatic Ecosystems (eds. Hildrew, A. G., Raffaelli, D. G. & Edmonds-Brown, R.) 186–209 (Cambridge University Press, 2007).
Wootton, R. J. The functional morphology of the wings of Odonata. Adv. Odonatol. 5, 153–169 (1991).
Dudley, R. The Biomechanics of Insect Flight. Form, Function, Evolution (Princeton University Press, 2000).
Google Scholar
Roff, D. Optimizing development time in a seasonal environment—The ups and downs of clinal variation. Oecologia 45, 202–208 (1980).
Google Scholar
Dmitriew, C. M. The evolution of growth trajectories: What limits growth rate?. Biol. Rev. 86, 97–116 (2011).
Google Scholar
Utzeri, C., Carchini, G., Falchetti, E. & Belfiore, C. Philopatry, homing and dispersal in Lestes barbarus (Fabricius) (Zygoptera: Lestidae). Odonatologica 13, 573–584 (1984).
Wang, X. & Clarke, J. A. The evolution of avian wing shape and previously unrecognized trends in covert feathering. Proc. R. Soc. B 282, 20151935 (2015).
Google Scholar
Johansson, F., Söderquist, M. & Bokma, F. Insect wing shape evolution: Independent effects of migratory and mate guarding flight on dragonfly wings. Biol. J. Linn. Soc. 97, 362–372 (2009).
Google Scholar
Outomuro, D., Adams, D. C. & Johansson, F. Wing shape allometry and aerodynamics in calopterygid damselflies: A comparative approach. BMC Evol. Biol. 13, 118 (2013).
Google Scholar
Berwaerts, K., Van Dyck, H. & Aerts, P. Does flight morphology relate to flight performance? An experimental test with the butterfly Pararge aegeria. Funct. Ecol. 16, 484–491 (2002).
Google Scholar
Jantzen, B. & Eisner, T. Hindwings are unnecessary for flight but essential for execution of normal evasive flight in Lepidoptera. PNAS 105, 16636–16640 (2008).
Google Scholar
Kalkman, V. J. Lestes sponsa. The IUCN Red List of Threatened Species 2014: e.T165475A19165578. https://doi.org/10.2305/IUCN.UK.2014-1.RLTS.T165475A19165578.en. Downloaded on 20 April 2021. (2014).
Corbet, P. S. Dragonflies. Behaviour and Ecology of ODONATA (Cornell University Press, 1999).
Córdoba-Aguilar, A., López-Valenzuela, A. & Brunel, O. Allometry in damselfly ornamental and genital traits: Solving some pitfalls of allometry and sexual selection. Genetica 138, 1141–1146 (2010).
Google Scholar
Śniegula, S., Drobniak, S. M., GołaB, M. J. & Johansson, F. Photoperiod and variation in life history traits in core and peripheral populations in the damselfly Lestes sponsa. Ecol. Entomol. 39, 137–148 (2014).
Google Scholar
Rohlf, F. J. tpsDig2 version 2.19. (Accessed 1 September 2021); https://sbmorphometrics.org (2015).
Rohlf, F. J. & Slice, D. Extension of the Procrustes method for the optimal superimposition of landmarks. Syst. Zool. 39, 40–59 (1990).
Google Scholar
Rohlf, F. J. tpsRelw. Relative warps version 1.49. (Accessed 1 September 2021); https://sbmorphometrics.org (2010).
Adams, D. C., Collyer, M. L., Kaliontzopoulou, A. & Balken, E. Geomorph: Software for geometric morphometric analyses. R package version 3.3.2. (Accessed 1 September 2021); https://sbmorphometrics.org (2021).
Bartoń, K. MuMIn: Multi-Model Inference. R package version 1.43.17 (Accessed 1 September 2021); https://sbmorphometrics.org (2020).
Collyer, M. L., Sekora, D. J. & Adams, D. C. A method for analysis of phenotypic change for phenotypes described by high-dimensional data. Heredity 115, 357–365 (2015).
Google Scholar
Adams, D. C. & Collyer, M. L. On the comparison of the strength of morphological integration across morphometric datasets. Evolution 70, 2623–2631 (2016).
Google Scholar
Source: Ecology - nature.com