in

Body size dependent dispersal influences stability in heterogeneous metacommunities

  • 1.

    Gardner, M. R. & Ashby, W. R. Connectance of large dynamic (cybernetic) systems: Critical values for stability. Nature 228, 784 (1970).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 2.

    May, R. M. Will a large complex system be stable?. Nature 238, 413–414 (1972).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    McCann, K. S. The diversity-stability debate. Nature 405, 228–233 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Dunne, J. A. The network structure of food webs. in Ecological Networks: Linking Structure to Dynamics in Food Webs 27–86 (2006).

  • 5.

    Williams, R. J., Brose, U. & Martinez, N. D. Homage to Yodzis and Innes 1992: Scaling up feeding-based population dynamics to complex ecological networks. in From Energetics to Ecosystems: The Dynamics and Structure of Ecological Systems. 37–51 (Springer, 2007).

  • 6.

    Gross, T., Rudolf, L., Levin, S. A. & Dieckmann, U. Generalized models reveal stabilizing factors in food webs. Science 325, 747–750 (2009).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Fahimipour, A. K., Anderson, K. E. & Williams, R. J. Compensation masks trophic cascades in complex food webs. Theor. Ecol. 10, 245–253 (2017).

    Article 

    Google Scholar 

  • 8.

    Rooney, N. & McCann, K. S. Integrating food web diversity, structure and stability. Trends Ecol. Evolut. 27, 40–46 (2012).

    Article 

    Google Scholar 

  • 9.

    Jacquet, C. et al. No complexity-stability relationship in empirical ecosystems. Nat. Commun. 7, 12573 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Brose, U., Williams, R. J. & Martinez, N. D. Allometric scaling enhances stability in complex food webs. Ecol. Lett. 9, 1228–1236 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Martinez, N. D. Allometric trophic networks from individuals to socio-ecosystems: Consumer-resource theory of the ecological elephant in the room. Front. Ecol. Evolut. 8, 92 (2020).

    Article 

    Google Scholar 

  • 12.

    Segel, L. A. & Levin, S. A. Application of nonlinear stability theory to the study of the effects of diffusion on predator-prey interactions. in AIP Conference Proceedings, Vol. 27, 123–152 (American Institute of Physics, 1976).

  • 13.

    Durrett, R. & Levin, S. The importance of being discrete (and spatial). Theor. Popul. Biol. 46, 363–394 (1994).

    MATH 
    Article 

    Google Scholar 

  • 14.

    McCann, K. S., Rasmussen, J. & Umbanhowar, J. The dynamics of spatially coupled food webs. Ecol. Lett. 8, 513–523 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Fahimipour, A. K. & Hein, A. M. The dynamics of assembling food webs. Ecol. Lett. 17, 606–613 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Brechtel, A., Gramlich, P., Ritterskamp, D., Drossel, B. & Gross, T. Master stability functions reveal diffusion-driven pattern formation in networks. Phys. Rev. E 97, 032307 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 17.

    Brechtel, A., Gross, T. & Drossel, B. Far-ranging generalist top predators enhance the stability of meta-foodwebs. Sci. Rep. 9, 1–15 (2019).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Gross, T. & et. al. Modern models of trophic meta-communities. Phil. Trans. R. Soc. B (in press).

  • 19.

    Rooney, N., McCann, K., Gellner, G. & Moore, J. C. Structural asymmetry and the stability of diverse food webs. Nature 442, 265–269 (2006).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Otto, S. B., Rall, B. C. & Brose, U. Allometric degree distributions facilitate food-web stability. Nature 450, 1226–1229 (2007).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Williams, R. J. & Martinez, N. D. Simple rules yield complex food webs. Nature 404, 180–183 (2000).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Cohen, J. E., Pimm, S. L., Yodzis, P. & Saldaña, J. Body sizes of animal predators and animal prey in food webs. J. Anim. Ecol. 67–78 (1993).

  • 23.

    Petchey, O. L., Beckerman, A. P., Riede, J. O. & Warren, P. H. Size, foraging, and food web structure. Proc. Natl. Acad. Sci. 105, 4191–4196 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Cohen, J. E., Briand, F. & Newman, C. M. Community Food Webs: Data and Theory Vol. 20 (Springer, 2012).

    MATH 

    Google Scholar 

  • 25.

    Elton, C. S. Animal Ecology (University of Chicago Press, 2001).

    Google Scholar 

  • 26.

    Lindeman, R. L. The trophic-dynamic aspect of ecology. Ecology 23, 399–417 (1942).

    Article 

    Google Scholar 

  • 27.

    Peters, R. H. & Peters, R. H. The Ecological Implications of Body Size Vol. 2 (Cambridge University Press, 1986).

    Google Scholar 

  • 28.

    Riede, J. O. et al. Stepping in Elton’s footprints: A general scaling model for body masses and trophic levels across ecosystems. Ecol. Lett. 14, 169–178 (2011).

  • 29.

    Kalinkat, G. et al. Body masses, functional responses and predator-prey stability. Ecology letters 16, 1126–1134 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Costa-Pereira, R., Araújo, M. S., Olivier, R. d. S., Souza, F. L. & Rudolf, V. H. Prey limitation drives variation in allometric scaling of predator-prey interactions. Am. Nat. 192, E139–E149 (2018).

  • 31.

    Guzman, L. M. & Srivastava, D. S. Prey body mass and richness underlie the persistence of a top predator. Proc. R. Soc. B 286, 20190622 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Brose, U. et al. Consumer-resource body-size relationships in natural food webs. Ecology 87, 2411–2417 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Barnes, C., Maxwell, D., Reuman, D. C. & Jennings, S. Global patterns in predator-prey size relationships reveal size dependency of trophic transfer efficiency. Ecology 91, 222–232 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Potapov, A. M., Brose, U., Scheu, S. & Tiunov, A. V. Trophic position of consumers and size structure of food webs across aquatic and terrestrial ecosystems. Am. Nat. 194, 823–839 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography Vol. 1 (Princeton University Press, 2001).

    Book 

    Google Scholar 

  • 36.

    Simberloff, D. S. & Wilson, E. O. Experimental zoogeography of islands: the colonization of empty islands. Ecology 50, 278–296 (1969).

    Article 

    Google Scholar 

  • 37.

    Brown, J. H. & Kodric-Brown, A. Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58, 445–449 (1977).

    Article 

    Google Scholar 

  • 38.

    Levins, R. Some demographic and genetic consequences of environmental heterogeneity for biological control. Am. Entomol. 15, 237–240 (1969).

    Google Scholar 

  • 39.

    Gotelli, N. J. Metapopulation models: The rescue effect, the propagule rain, and the core-satellite hypothesis. Am. Nat. 138, 768–776 (1991).

    Article 

    Google Scholar 

  • 40.

    Crowley, P. H. Dispersal and the stability of predator-prey interactions. Am. Nat. 118, 673–701 (1981).

    MathSciNet 
    Article 

    Google Scholar 

  • 41.

    Reeve, J. D. Environmental variability, migration, and persistence in host-parasitoid systems. Am. Nat. 132, 810–836 (1988).

    Article 

    Google Scholar 

  • 42.

    Murdoch, W. W. Population regulation in theory and practice. Ecology 75, 271–287 (1994).

    Article 

    Google Scholar 

  • 43.

    Briggs, C. J. & Hoopes, M. F. Stabilizing effects in spatial parasitoid-host and predator-prey models: A review. Theor. Popul. Biol. 65, 299–315 (2004).

    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Gravel, D., Massol, F. & Leibold, M. A. Stability and complexity in model meta-ecosystems. Nat. Commun. 7, 1–8 (2016).

    Article 
    CAS 

    Google Scholar 

  • 45.

    Mougi, A. & Kondoh, M. Food-web complexity, meta-community complexity and community stability. Sci. Rep. 6, 24478 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 46.

    Domenici, P. The scaling of locomotor performance in predator-prey encounters: from fish to killer whales. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 131, 169–182 (2001).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Hirt, M. R., Lauermann, T., Brose, U., Noldus, L. P. & Dell, A. I. The little things that run: a general scaling of invertebrate exploratory speed with body mass. Ecology 98, 2751–2757 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Hirt, M. R., Jetz, W., Rall, B. C. & Brose, U. A general scaling law reveals why the largest animals are not the fastest. Nat. Ecol. Evolut. 1, 1116–1122 (2017).

    Article 

    Google Scholar 

  • 49.

    Cloyed, C. S., Grady, J. M., Savage, V. M., Uyeda, J. C. & Dell, A. I. The allometry of locomotion. Ecology e03369 (2021).

  • 50.

    Reiss, M. Scaling of home range size: Body size, metabolic needs and ecology. Trends Ecol. Evolut. 3, 85–86 (1988).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Minns, C. K. Allometry of home range size in lake and river fishes. Can. J. Fish. Aquat. Sci. 52, 1499–1508 (1995).

    Article 

    Google Scholar 

  • 52.

    Jetz, W., Carbone, C., Fulford, J. & Brown, J. H. The scaling of animal space use. Science 306, 266–268 (2004).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    Hendriks, A. J., Willers, B. J., Lenders, H. R. & Leuven, R. S. Towards a coherent allometric framework for individual home ranges, key population patches and geographic ranges. Ecography 32, 929–942 (2009).

    Article 

    Google Scholar 

  • 54.

    Hein, A. M., Hou, C. & Gillooly, J. F. Energetic and biomechanical constraints on animal migration distance. Ecol. Lett. 15, 104–110 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Hartfelder, J. et al. The allometry of movement predicts the connectivity of communities. Proc. Natl. Acad. Sci. 117, 22274–22280 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 56.

    Vander Zanden, M. J. & Vadeboncoeur, Y. Fishes as integrators of benthic and pelagic food webs in lakes. Ecology 83, 2152–2161 (2002).

    Article 

    Google Scholar 

  • 57.

    Wolkovich, E. M. et al. Linking the green and brown worlds: The prevalence and effect of multichannel feeding in food webs. Ecology 95, 3376–3386 (2014).

    Article 

    Google Scholar 

  • 58.

    Lomolino, M. V. Immigrant selection, predation, and the distributions of Microtus pennsylvanicus and Blarina brevicauda on islands. Am. Nat. 123, 468–483 (1984).

    Article 

    Google Scholar 

  • 59.

    Beisner, B. E., Peres-Neto, P. R., Lindström, E. S., Barnett, A. & Longhi, M. L. The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87, 2985–2991 (2006).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    De Bie, T. et al. Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecol. Lett. 15, 740–747 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 61.

    Kareiva, P. Population dynamics in spatially complex environments: Theory and data. Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci. 330, 175–190 (1990).

    ADS 
    Article 

    Google Scholar 

  • 62.

    Murray, J. Mathematical Biology II: Spatial Models and Biomedical Applications Vol. 3 (Springer, 2001).

    Google Scholar 

  • 63.

    Rietkerk, M. & Van de Koppel, J. Regular pattern formation in real ecosystems. Trends Ecol. Evolut. 23, 169–175 (2008).

    Article 

    Google Scholar 

  • 64.

    Pedersen, E. J., Marleau, J. N., Granados, M., Moeller, H. V. & Guichard, F. Nonhierarchical dispersal promotes stability and resilience in a tritrophic metacommunity. Am. Nat. 187, E116–E128 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 65.

    Haegeman, B. & Loreau, M. General relationships between consumer dispersal, resource dispersal and metacommunity diversity. Ecol. Lett. 17, 175–184 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 66.

    Amarasekare, P. Spatial dynamics of foodwebs. Annu. Rev. Ecol. Evol. Syst. 39, 479–500 (2008).

    Article 

    Google Scholar 

  • 67.

    Fronhofer, E. A., Klecka, J., Melián, C. J. & Altermatt, F. Condition-dependent movement and dispersal in experimental metacommunities. Ecol. Lett. 18, 954–963 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 68.

    Toscano, B. J., Gownaris, N. J., Heerhartz, S. M. & Monaco, C. J. Personality, foraging behavior and specialization: integrating behavioral and food web ecology at the individual level. Oecologia 182, 55–69 (2016).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 69.

    Fronhofer, E. A. et al. Bottom-up and top-down control of dispersal across major organismal groups. Nat. Ecol. Evolut. 2, 1859–1863 (2018).

    Article 

    Google Scholar 

  • 70.

    Gross, T. & Feudel, U. Generalized models as a universal approach to the analysis of nonlinear dynamical systems. Phys. Rev. E 73, 016205 (2006).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 71.

    Yeakel, J. D., Stiefs, D., Novak, M. & Gross, T. Generalized modeling of ecological population dynamics. Theor. Ecol. 4, 179–194 (2011).

    Article 

    Google Scholar 

  • 72.

    Hirt, M. R. et al. Bridging scales: Allometric random walks link movement and biodiversity research. Trends Ecol. Evolut. 33, 701–712 (2018).

    Article 

    Google Scholar 

  • 73.

    Othmer, H. G. & Scriven, L. Non-linear aspects of dynamic pattern in cellular networks. J. Theor. Biol. 43, 83–112 (1974).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 74.

    Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301–306 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 75.

    Krause, A. E., Frank, K. A., Mason, D. M., Ulanowicz, R. E. & Taylor, W. W. Compartments revealed in food-web structure. Nature 426, 282–285 (2003).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 76.

    Post, D. M., Conners, M. E. & Goldberg, D. S. Prey preference by a top predator and the stability of linked food chains. Ecology 81, 8–14 (2000).

    Article 

    Google Scholar 

  • 77.

    Neutel, A.-M., Heesterbeek, J. A. & de Ruiter, P. C. Stability in real food webs: Weak links in long loops. Science 296, 1120–1123 (2002).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 78.

    Leibold, M. A. et al. The metacommunity concept: A framework for multi-scale community ecology. Ecol. Lett. 7, 601–613 (2004).

    Article 

    Google Scholar 

  • 79.

    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article 

    Google Scholar 

  • 80.

    Jenkins, D. G. et al. Does size matter for dispersal distance?. Glob. Ecol. Biogeogr. 16, 415–425 (2007).

    Article 

    Google Scholar 

  • 81.

    Stevens, V. M. et al. A comparative analysis of dispersal syndromes in terrestrial and semi-terrestrial animals. Ecol. Lett. 17, 1039–1052 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 82.

    Guzman, L. M. & Srivastava, D. S. Genomic variation among populations provides insight into the causes of metacommunity survival. Ecology 101, e03182 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 83.

    Leitch, K. J., Ponce, F. V., Dickson, W. B., van Breugel, F. & Dickinson, M. H. The long-distance flight behavior of drosophila supports an agent-based model for wind-assisted dispersal in insects. Proc. Natl. Acad. Sci. 118 (2021).

  • 84.

    Bowman, J., Jaeger, J. A. & Fahrig, L. Dispersal distance of mammals is proportional to home range size. Ecology 83, 2049–2055 (2002).

    Article 

    Google Scholar 

  • 85.

    Shanks, A. L., Grantham, B. A. & Carr, M. H. Propagule dispersal distance and the size and spacing of marine reserves. Ecol. Appl. 13, 159–169 (2003).

    Article 

    Google Scholar 

  • 86.

    Kartascheff, B., Heckmann, L., Drossel, B. & Guill, C. Why allometric scaling enhances stability in food web models. Theor. Ecol. 3, 195–208 (2010).

    Article 

    Google Scholar 

  • 87.

    Hudson, L. N. & Reuman, D. C. A cure for the plague of parameters: Constraining models of complex population dynamics with allometries. Proc. R. Soc. B: Biol. Sci. 280, 20131901 (2013).

    Article 

    Google Scholar 

  • 88.

    Brose, U. et al. Predator traits determine food-web architecture across ecosystems. Nat. Ecol. Evolut. 3, 919–927 (2019).

    Article 

    Google Scholar 

  • 89.

    Heino, J. et al. Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshw. Biol. 60, 845–869 (2015).

    Article 

    Google Scholar 

  • 90.

    Siegel, D. et al. The stochastic nature of larval connectivity among nearshore marine populations. Proc. Natl. Acad. Sci. 105, 8974–8979 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 91.

    Pillai, P., Loreau, M. & Gonzalez, A. A patch-dynamic framework for food web metacommunities. Theor. Ecol. 3, 223–237 (2010).

    Article 

    Google Scholar 

  • 92.

    Pillai, P., Gonzalez, A. & Loreau, M. Metacommunity theory explains the emergence of food web complexity. Proc. Natl. Acad. Sci. 108, 19293–19298 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 93.

    Plitzko, S. J. & Drossel, B. The effect of dispersal between patches on the stability of large trophic food webs. Theor. Ecol. 8, 233–244 (2015).

    Article 

    Google Scholar 

  • 94.

    Guichard, F. Recent advances in metacommunities and meta-ecosystem theories. F1000Research 6 (2017).

  • 95.

    Hata, S., Nakao, H. & Mikhailov, A. S. Dispersal-induced destabilization of metapopulations and oscillatory turing patterns in ecological networks. Sci. Rep. 4, 3585 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 96.

    White, K. & Gilligan, C. Spatial heterogeneity in three species, plant-parasite-hyperparasite, systems. Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci. 353, 543–557 (1998).

    Article 

    Google Scholar 

  • 97.

    Gibert, J. P. & Yeakel, J. D. Laplacian matrices and turing bifurcations: Revisiting levin 1974 and the consequences of spatial structure and movement for ecological dynamics. Theor. Ecol. 12, 265–281 (2019).

    Article 

    Google Scholar 

  • 98.

    Fox, J. W., Vasseur, D., Cotroneo, M., Guan, L. & Simon, F. Population extinctions can increase metapopulation persistence. Nat. Ecol. Evolut. 1, 1271–1278 (2017).

    Article 

    Google Scholar 

  • 99.

    Hastings, A. Food web theory and stability. Ecology 69, 1665–1668 (1988).

    Article 

    Google Scholar 

  • 100.

    Anderson, H., Hutson, V. & Law, R. On the conditions for permanence of species in ecological communities. Am. Nat. 139, 663–668 (1992).

    Article 

    Google Scholar 

  • 101.

    Haydon, D. Pivotal assumptions determining the relationship between stability and complexity: An analytical synthesis of the stability-complexity debate. Am. Nat. 144, 14–29 (1994).

    Article 

    Google Scholar 

  • 102.

    Chen, X. & Cohen, J. E. Global stability, local stability and permanence in model food webs. J. Theor. Biol. 212, 223–235 (2001).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 103.

    Bjørnstad, O. N., Ims, R. A. & Lambin, X. Spatial population dynamics: Analyzing patterns and processes of population synchrony. Trends Ecol. Evolut. 14, 427–432 (1999).

    Article 

    Google Scholar 

  • 104.

    Ims, R. A. & Andreassen, H. P. Spatial synchronization of vole population dynamics by predatory birds. Nature 408, 194–196 (2000).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 105.

    Sundell, J. et al. Large-scale spatial dynamics of vole populations in Finland revealed by the breeding success of vole-eating avian predators. J. Anim. Ecol. 73, 167–178 (2004).

    Article 

    Google Scholar 

  • 106.

    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343 (2014).

  • 107.

    McCauley, D. J. et al. Marine defaunation: Animal loss in the global ocean. Science 347 (2015).

  • 108.

    Parsons, T. The removal of marine predators by fisheries and the impact of trophic structure. Mar. Pollut. Bull. 25, 51–53 (1992).

    Article 

    Google Scholar 

  • 109.

    Baum, J. K. & Worm, B. Cascading top-down effects of changing oceanic predator abundances. J. Anim. Ecol. 78, 699–714 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 110.

    Albert, C. H., Rayfield, B., Dumitru, M. & Gonzalez, A. Applying network theory to prioritize multispecies habitat networks that are robust to climate and land-use change. Conserv. Biol. 31, 1383–1396 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 111.

    Schiesari, L. et al. Towards an applied metaecology. Perspect. Ecol. Conserv. 17, 172–181 (2019).

    Google Scholar 

  • 112.

    Vermaat, J. E., Dunne, J. A. & Gilbert, A. J. Major dimensions in food-web structure properties. Ecology 90, 278–282 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 113.

    White, J. W., Rassweiler, A., Samhouri, J. F., Stier, A. C. & White, C. Ecologists should not use statistical significance tests to interpret simulation model results. Oikos 123, 385–388 (2014).

    Article 

    Google Scholar 

  • 114.

    R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/. (R Foundation for Statistical Computing, 2020).

  • 115.

    Aufderheide, H., Rudolf, L., Gross, T. & Lafferty, K. D. How to predict community responses to perturbations in the face of imperfect knowledge and network complexity. Proc. R. Soc. B Biol. Sci. 280, 20132355 (2013).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Using the IUCN Red List to map threats to terrestrial vertebrates at global scale

    Making the case for hydrogen in a zero-carbon economy