in

Bridgehead effect and multiple introductions shape the global invasion history of a termite

  • 1.

    Lewis, S. L. & Maslin, M. A. Defining the Anthropocene. Nature 519, 171–180 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 2.

    Capinha, C., Essl, F., Seebens, H., Moser, D. & Miguel Pereira, H. The dispersal of alien species redefines biogeography in the Anthropocene. Science 348, 1248–1251 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 3.

    Hulme, P. E. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18 (2009).

    Article  Google Scholar 

  • 4.

    Meyerson, L. A. & Mooney, H. A. Invasive alien species in an era of globalization. Front. Ecol. Environ. 5, 199–208 (2007).

    Article  Google Scholar 

  • 5.

    Banks, N. C., Paini, D. R., Bayliss, K. L. & Hodda, M. The role of global trade and transport network topology in the human-mediated dispersal of alien species. Ecol. Lett. 18, 188–199 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Simberloff, D. et al. Impacts of biological invasions: what’s what and the way forward. Trends Ecol. Evol. 28, 58–66 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 8.

    Bellard, C., Cassey, P. & Blackburn, T. M. Alien species as a driver of recent extinctions. Biol. Lett. 12, 20150623 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    Schrieber, K. & Lachmuth, S. The genetic paradox of invasions revisited: the potential role of inbreeding  environment interactions in invasion success. Biol. Rev. 92, 939–952 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 10.

    Allendorf, F. W. & Lundquist, L. L. Introduction: population biology, evolution, and control of invasive species. Conserv. Biol. 17, 24–30 (2003).

    Article  Google Scholar 

  • 11.

    Estoup, A. et al. Is there a genetic paradox of biological invasion? Annu. Rev. Ecol. Evol. Syst. 47, 51–72 (2016).

    Article  Google Scholar 

  • 12.

    Roman, J. & Darling, J. A. Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol. Evol. 22, 454–464 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  • 13.

    Uller, T. & Leimu, R. Founder events predict changes in genetic diversity during human-mediated range expansions. Glob. Change Biol. 17, 3478–3485 (2011).

    Article  Google Scholar 

  • 14.

    Bossdorf, O. et al. Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 144, 1–11 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Dlugosch, K. M. & Parker, I. M. Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol. Ecol. 17, 431–449 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 16.

    Hufbauer, R. A. et al. Anthropogenically induced adaptation to invade (AIAI): contemporary adaptation to human-altered habitats within the native range can promote invasions. Evol. Appl. 5, 89–101 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Facon, B. et al. A general eco-evolutionary framework for understanding bioinvasions. Trends Ecol. Evol. 21, 130–135 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Facon, B., Pointier, J.-P., Jarne, P., Sarda, V. & David, P. High genetic variance in life-history strategies within invasive populations by way of multiple introductions. Curr. Biol. 18, 363–367 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 19.

    Lombaert, E. et al. Bridgehead effect in the worldwide invasion of the biocontrol Harlequin ladybird. PLoS ONE 5, e9743 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 20.

    Ascunce, M. S. et al. Global invasion history of the fire ant Solenopsis invicta. Science 331, 1066–1068 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    Bertelsmeier, C. et al. Recurrent bridgehead effects accelerate global alien ant spread. Proc. Natl Acad. Sci. USA 115, 5486 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    Bertelsmeier, C. & Keller, L. Bridgehead effects and role of adaptive evolution in invasive populations. Trends Ecol. Evol. 33, 527–534 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Cristescu, M. E. Genetic reconstructions of invasion history. Mol. Ecol. 24, 2212–2225 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 24.

    Estoup, A. & Guillemaud, T. Reconstructing routes of invasion using genetic data: why, how and so what? Mol. Ecol. 19, 4113–4130 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. 100 of the World’s Worst Invasive Alien Species: A Selection from the Global Invasive Species Database Vol. 12 (Invasive Species Specialist Group, 2000).

  • 26.

    Wang, J. & Grace, J. K. Current status of Coptotermes Wasmann (Isoptera: Rhinotermitidae) in China, Japan, Australia and the American Pacific. Sociobiology 33, 295–305 (1999).

    Google Scholar 

  • 27.

    Evans, T. A., Forschler, B. T. & Grace, J. K. Biology of invasive termites: a worldwide review. Annu. Rev. Entomol. 58, 455–474 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 28.

    Shiraki, T. On the Japanese termites. Transcr. Entomol., Jpn. 2, 229–242 (1909).

    Google Scholar 

  • 29.

    Kistner, D. H. A new genus and species of termitophilous Aleocharinae from mainland China associated with Coptotermes formosanus and its zoogeographical significance (Coleoptera: Staphylinidae). Sociobiology 10, 93–104 (1985).

    Google Scholar 

  • 30.

    Maruyama, M. & Iwata, R. Two new termitophiles of the tribe Termitohospitini (Coleoptera: Staphylinidae: Aleocharinae) associated with Coptotermes formosanus (Isoptera: Rhinotermitidae). Can. Entomologist 134, 419–432 (2002).

    Article  Google Scholar 

  • 31.

    Maruyama, M., Kanao, T. & Iwata, R. Discovery of two Aleocharine Staphylinid species (Coleoptera) associated with Coptotermes formosanus (Isoptera: Rhinotermitidae) from Central Japan, with a review of the possible natural distribution of C. formosanus in Japan and surrounding countries. Sociobiology 59, 605–616 (2014).

    Google Scholar 

  • 32.

    Li, G. in Fauna Sinica: Insecta (eds Huang, F. et al.) 299–341 (Science Press, 2000).

  • 33.

    Chouvenc, T. et al. Revisiting Coptotermes (Isoptera: Rhinotermitidae): a global taxonomic road map for species validity and distribution of an economically important subterranean termite genus. Syst. Entomol. 41, 299–306 (2016).

    Article  Google Scholar 

  • 34.

    Yeap, B.-K., Othman, A. S. & Lee, C.-Y. Molecular systematics of Coptotermes (Isoptera: Rhinotermitidae) from East Asia and Australia. Ann. Entomol. Soc. Am. 102, 1077–1090 (2009).

    Article  Google Scholar 

  • 35.

    Lee, T. R. C., Cameron, S. L., Evans, T. A., Ho, S. Y. W. & Lo, N. The origins and radiation of Australian Coptotermes termites: from rainforest to desert dwellers. Mol. Phylogen. Evol. 82, 234–244 (2015).

    Article  Google Scholar 

  • 36.

    Austin, J. W. et al. Genetic evidence for two introductions of the Formosan subterranean termite, Coptotermes Formosanus (Isoptera: Rhinotermitidae), to the United States. Fla. Entomol. 89, 183–193 (2006).

    CAS  Article  Google Scholar 

  • 37.

    Li, H.-F., Ye, W., Su, N.-Y. & Kanzaki, N. Phylogeography of Coptotermes Gestroi and Coptotermes Formosanus (Isoptera: Rhinotermitidae) in Taiwan. Ann. Entomol. Soc. Am. 102, 684–693 (2009).

    Article  Google Scholar 

  • 38.

    Fang, R., Huang, L. & Zhong, J. H. Surprising low levels of genetic diversity of Formosan subterranean termites in South China as revealed by the COII gene (Isoptera: Rhinotermitidae). Sociobiology 51, 1–20 (2008).

    Google Scholar 

  • 39.

    Tokuda, G., Isagawa, H. & Sugio, K. The complete mitogenome of the Formosan termite, Coptotermes formosanus Shiraki. Insectes Soc. 59, 17–24 (2012).

    Article  Google Scholar 

  • 40.

    Vargo, E. L., Husseneder, C. & Grace, J. K. Colony and population genetic structure of the Formosan subterranean termite, Coptotermes formosanus, in Japan. Mol. Ecol. 12, 2599–2608 (2003).

    CAS  PubMed  Article  Google Scholar 

  • 41.

    Broughton, R. E. & Grace, J. K. Lack of mitochondrial DNA variation in an introduced population of the Formosan subterranean termite (Isoptera: Rhinotermitidae). Sociobiology 24, 121–126 (1994).

    Google Scholar 

  • 42.

    Korman, A. K. & Pashley, D. P. Genetic comparisons among U.S. populations of Formosan subterranean termites. Sociobiology 19, 41–50 (1991).

    Google Scholar 

  • 43.

    Wang, J. & Grace, J. K. Genetic relationship of Coptotermes formosanus (Isoptera: Rhinotermitidae) populations from the United States and China. Sociobiology 36, 7–19 (2000).

    Google Scholar 

  • 44.

    Vargo, E. L., Husseneder, C., Woodson, D., Waldvogel, M. G. & Grace, J. K. Genetic analysis of colony and population structure of three introduced populations of the Formosan subterranean termite (Isoptera: Rhinotermitidae) in the continental United States. Environ. Entomol. 35, 151–166 (2006).

    Article  Google Scholar 

  • 45.

    Gentz, M. C., Rubinoff, D. & Grace, J. K. Phylogenetic analysis of subterranean termites (Coptotermes spp., Isoptera: Rhinotermitidae) indicates the origins of Hawaiian and North American invasions: potential implications for invasion biology. Proc. Hawaii. Entomol. Soc. 40, 1–9 (2008).

    Google Scholar 

  • 46.

    Husseneder, C. et al. Genetic diversity and colony breeding structure in native and introduced ranges of the Formosan subterranean termite, Coptotermes formosanus. Biol. Invasions 14, 419–437 (2012).

    Article  Google Scholar 

  • 47.

    Haverty, M. I., Nelson, L. J. & Page, M. Cuticular hydrocarbons of four populations of Coptotermes formosanus Shiraki in the United States. J. Chem. Ecol. 16, 1635–1647 (1990).

    CAS  PubMed  Article  Google Scholar 

  • 48.

    Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S. & Hoekstra, H. E. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7, e37135 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Swezey, O. H. Notes and exhibitions. Proc. Hawaii. Entomol. Soc. 3 (1914).

  • 50.

    Swezey, O. H. Entomological notes. Proc. Hawaii. Entomol. Soc. 3 (1915).

  • 51.

    Su, N.-Y. & Tamashiro, M. An Overview of the Formosan Subterranean Termite (Isoptera: Rhinotermitidae) in the World 3–15 (University of Hawaii, College of Tropical Agriculture and Human Resources research extension series, 1987).

  • 52.

    Chambers, D. M., Zungoli, P. A. & Hill, H. S. J. Distribution and habitats of the Formosan subterranean termite (Isoptera: Rhinotermitidae) in South Carolina. J. Econ. Entomol. 81, 1611–1619 (1988).

    Article  Google Scholar 

  • 53.

    Beal, R. H. Formosan invader. Pest Control 35, 13–17 (1967).

    Google Scholar 

  • 54.

    Spink, W. The Formosan subterranean termite in Louisiana. La. State Univeristy Circ. 89, 12 (1967).

    Google Scholar 

  • 55.

    Shi, M.-M., Michalski, S. G., Welk, E., Chen, X.-Y. & Durka, W. Phylogeography of a widespread Asian subtropical tree: genetic east–west differentiation and climate envelope modelling suggest multiple glacial refugia. J. Biogeogr. 41, 1710–1720 (2014).

    Article  Google Scholar 

  • 56.

    Ye, Z. et al. Phylogeography of a semi-aquatic bug, Microvelia horvathi (Hemiptera: Veliidae): an evaluation of historical, geographical and ecological factors. Sci. Rep. 6, 21932 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 57.

    Qiu, Y.-X., Fu, C.-X. & Comes, H. P. Plant molecular phylogeography in China and adjacent regions: tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora. Mol. Phylogen. Evol. 59, 225–244 (2011).

    Article  Google Scholar 

  • 58.

    Lemopoulos, A. et al. Comparing RADseq and microsatellites for estimating genetic diversity and relatedness – Implications for brown trout conservation. Ecol. Evol. 9, 2106–2120 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 59.

    Fischer, M. C. et al. Estimating genomic diversity and population differentiation—an empirical comparison of microsatellite and SNP variation in Arabidopsis halleri. BMC Genom. 18, 69 (2017).

    Article  Google Scholar 

  • 60.

    Mori, H. The Formosan Subterranean Termite in Japan: its Distribution, Damage, and Current and Potential Control Measures 23–26 (University of Hawaii, College of Tropical Agriculture and Human Resources research extension series, 1987).

  • 61.

    Westphal, M. I., Browne, M., MacKinnon, K. & Noble, I. The link between international trade and the global distribution of invasive alien species. Biol. Invasions 10, 391–398 (2008).

    Article  Google Scholar 

  • 62.

    Floerl, O., Inglis, G. J., Dey, K. & Smith, A. The importance of transport hubs in stepping-stone invasions. J. Appl. Ecol. 46, 37–45 (2009).

    Article  Google Scholar 

  • 63.

    Nordyke, E. C. & Lee, R. K. C. Chinese in Hawai’i: a historical and demographic perspective. Hawaii. J. Hist. 23, 196–216 (1989).

    Google Scholar 

  • 64.

    Gay, F. J. A World Review of Introduced Species of Termites (CSIRO, 1967).

  • 65.

    Boyd, M. Oriental immigration: the experience of the Chinese, Japanese, and Filipino populations in the United States. Int. Migr. Rev. 5, 48–61 (1971).

    Article  Google Scholar 

  • 66.

    Matsumoto, Y. S. Okinawa migrants to Hawaii. Hawaii. J. Hist. 16, 125–133 (1982).

    Google Scholar 

  • 67.

    Javal, M. et al. Deciphering the worldwide invasion of the Asian long-horned beetle: a recurrent invasion process from the native area together with a bridgehead effect. Mol. Ecol. 28, 951–967 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 68.

    van Boheemen, L. A. et al. Multiple introductions, admixture and bridgehead invasion characterize the introduction history of Ambrosia artemisiifolia in Europe and Australia. Mol. Ecol. 26, 5421–5434 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 69.

    Lesieur, V. et al. The rapid spread of Leptoglossus occidentalis in Europe: a bridgehead invasion. J. Pest Sci. 92, 189–200 (2019).

    Article  Google Scholar 

  • 70.

    Correa, M. C. G. et al. European bridgehead effect in the worldwide invasion of the obscure mealybug. Biol. Invasions 21, 123–136 (2019).

    Article  Google Scholar 

  • 71.

    Sherpa, S. et al. Unravelling the invasion history of the Asian tiger mosquito in Europe. Mol. Ecol. 28, 2360–2377 (2019).

    PubMed  Article  Google Scholar 

  • 72.

    Yang, C.-C. et al. Propagule pressure and colony social organization are associated with the successful invasion and rapid range expansion of fire ants in China. Mol. Ecol. 21, 817–833 (2012).

    PubMed  Article  Google Scholar 

  • 73.

    Blumenfeld, A. J. & Vargo, E. L. Geography, opportunity and bridgeheads facilitate termite invasions to the United States. Biol. Invasions 22, 3269–3282 (2020).

    Article  Google Scholar 

  • 74.

    Barrett, S. C. H. & Charlesworth, D. Effects of a change in the level of inbreeding on the genetic load. Nature 352, 522–524 (1991).

    CAS  PubMed  Article  Google Scholar 

  • 75.

    Crnokrak, P. & Barrett, S. C. H. Perspective: purging the genetic load: a review of the experimental evidence. Evolution 56, 2347–2358 (2002).

    PubMed  Article  Google Scholar 

  • 76.

    Eyer, P. A. et al. Inbreeding tolerance as a pre-adapted trait for invasion success in the invasive ant Brachyponera chinensis. Mol. Ecol. 27, 4711–4724 (2018).

    PubMed  Google Scholar 

  • 77.

    Facon, B. et al. Inbreeding depression is purged in the invasive insect Harmonia axyridis. Curr. Biol. 21, 424–427 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 78.

    Charlesworth, J. & Eyre-Walker, A. The other side of the nearly neutral theory, evidence of slightly advantageous back-mutations. Proc. Natl Acad. Sci. USA 104, 16992 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 79.

    Lanfear, R., Calcott, B., Kainer, D., Mayer, C. & Stamatakis, A. Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evol. Biol. 14, 82 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 80.

    Zepeda‐Paulo, F. et al. The invasion route for an insect pest species: the tobacco aphid in the New World. Mol. Ecol. 19, 4738–4752 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 81.

    Miller, N. et al. Multiple transatlantic introductions of the western corn rootworm. Science 310, 992 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 82.

    Kolbe, J. J. et al. Multiple sources, admixture, and genetic variation in introduced Anolis lizard populations. Conserv. Biol. 21, 1612–1625 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  • 83.

    Whitney, K. D. & Gabler, C. A. Rapid evolution in introduced species, ‘invasive traits’ and recipient communities: challenges for predicting invasive potential. Divers. Distrib. 14, 569–580 (2008).

    Article  Google Scholar 

  • 84.

    Tsutsui, N. D., Suarez, A. V., Holway, D. A. & Case, T. J. Reduced genetic variation and the success of an invasive species. Proc. Natl Acad. Sci. USA 97, 5948–5953 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 85.

    Pearcy, M., Goodisman, M. A. & Keller, L. Sib mating without inbreeding in the longhorn crazy ant. Proc. R. Soc. B: Biol. Sci. 278, 2677–2681 (2011).

    Article  Google Scholar 

  • 86.

    Eyer, P.-A., Blumenfeld, A. J. & Vargo, E. L. Sexually antagonistic selection promotes genetic divergence between males and females in an ant. Proc. Natl Acad. Sci. USA 116, 24157–24163 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 87.

    Su, N.-Y., Scheffrahn, R. H. & Weissling, T. A new introduction of a subterranean termite, Coptotermes havilandi Holmgren (Isoptera: Rhinotermitidae) in Miami, Florida. Fla. Entomol. 80, 408–411 (1997).

    Article  Google Scholar 

  • 88.

    Chouvenc, T., Scheffrahn, R. H., Mullins, A. J. & Su, N.-Y. Flight phenology of two Coptotermes species (Isoptera: Rhinotermitidae) in southeastern Florida. J. Econ. Entomol. 110, 1693–1704 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 89.

    Chouvenc, T., Helmick, E. E. & Su, N.-Y. Hybridization of two major termite invaders as a consequence of human activity. PLoS ONE 10, https://doi.org/10.1371/journal.pone.0120745 (2015).

  • 90.

    Chouvenc, T., Sillam-Dussès, D. & Robert, A. Courtship behavior confusion in two subterranean termite species that evolved in allopatry (Blattodea, Rhinotermitidae, Coptotermes). J. Chem. Ecol. https://doi.org/10.1007/s10886-020-01178-2 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 91.

    Perdereau, E. et al. Global genetic analysis reveals the putative native source of the invasive termite, Reticulitermes flavipes, in France. Mol. Ecol. 22, 1105–1119 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 92.

    Perdereau, E. et al. Relationship between invasion success and colony breeding structure in a subterranean termite. Mol. Ecol. 24, 2125–2142 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 93.

    Vargo, E. L. Diversity of termite breeding systems. Insects 10, 52 (2019).

    PubMed Central  Article  Google Scholar 

  • 94.

    Clement, J. L. & Bagneres, A. G. in Pheromone Communication in Social Insects. Ants, Wasps, Bees, and Termites (eds Vander Meer, R. K., Breed, M. D., Espelie, K. E. & Winston, M. L.) 126–155 (Westview Press, 1998).

  • 95.

    Perdereau, E., Dedeine, F., Christidès, J.-P. & Bagnères, A.-G. Variations in worker cuticular hydrocarbons and soldier isoprenoid defensive secretions within and among introduced and native populations of the subterranean termite, Reticulitermes flavipes. J. Chem. Ecol. 36, 1189–1198 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 96.

    Perdereau, E., Dedeine, F., Christidès, J. P., Dupont, S. & Bagnères, A. G. Competition between invasive and indigenous species: an insular case study of subterranean termites. Biol. Invasions 13, 1457–1470 (2010).

    Article  Google Scholar 

  • 97.

    Perdereau, E., Bagnères, A. G., Dupont, S. & Dedeine, F. High occurrence of colony fusion in a European population of the American termite Reticulitermes flavipes. Insectes Soc. 57, 393–402 (2010).

    Article  Google Scholar 

  • 98.

    Fournier, D. et al. Clonal reproduction by males and females in the little fire ant. Nature 435, 1230–1234 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 99.

    Thoms, E. M. et al. Bugs, baits, and bureaucracy: completing the first termite bait efficacy trials (quarterly replenishment of noviflumuron) initiated after adoption of Florida Rule, Chapter 5E-2.0311. Am. Entomol. 55, 29–39 (2009).

    Article  Google Scholar 

  • 100.

    Vargo, E. & Husseneder, C. in Biology of Termites: A Modern Synthesis (eds Bignell, D. E., Roisin, Y. & Lo, N.) 321–348 (Springer, 2011).

  • 101.

    FastQC v0.11.8 (Babraham Bioinformatics, Babraham Institute, 2018).

  • 102.

    Rochette, N. C., Rivera-Colón, A. G. & Catchen, J. M. Stacks 2: analytical methods for paired-end sequencing improve RADseq-based population genomics. Mol. Ecol. 28, 4737–4754 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 103.

    Paris, J. R., Stevens, J. R. & Catchen, J. M. Lost in parameter space: a road map for stacks. Methods Ecol. Evol. 8, 1360–1373 (2017).

    Article  Google Scholar 

  • 104.

    Benestan, L. M. et al. Conservation genomics of natural and managed populations: building a conceptual and practical framework. Mol. Ecol. 25, 2967–2977 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 105.

    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 106.

    Lischer, H. E. L. & Excoffier, L. PGDSpider: an automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics 28, 298–299 (2011).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 107.

    Raj, A., Stephens, M. & Pritchard, J. K. fastSTRUCTURE: variational Inference of Population Structure in Large SNP Data Sets. Genetics 197, 573 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 108.

    Pina-Martins, F., Silva, D. N., Fino, J. & Paulo, O. S. Structure_threader: an improved method for automation and parallelization of programs structure, fastStructure and MavericK on multicore CPU systems. Mol. Ecol. Resour. 17, e268–e274 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 109.

    Chhatre, V. E. Distruct v2.3, A modified cluster membership plotting script. http://distruct2.popgen.org (2018).

  • 110.

    Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 111.

    R Core Team. R: A language and environment for statistical computing. https://www.R-project.org/ (2020).

  • 112.

    Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 113.

    Malinsky, M., Trucchi, E., Lawson, D. J. & Falush, D. RADpainter and fineRADstructure: population inference from RADseq data. Mol. Biol. Evol. 35, 1284–1290 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 114.

    Lawson, D. J., Hellenthal, G., Myers, S. & Falush, D. Inference of population structure using dense haplotype data. PLoS Genet. 8, e1002453 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 115.

    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 116.

    Leaché, A. D., Banbury, B. L., Felsenstein, J., de Oca, An-M. & Stamatakis, A. Short tree, long tree, right tree, wrong tree: new acquisition bias corrections for inferring SNP phylogenies. Syst. Biol. 64, 1032–1047 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 117.

    Pattengale, N. D., Masoud, A., Bininda-Emonds, O. R. P., Moret, B. M. E. & Stamatkis, A. How many bootstrap replicates are necessary? J. Comput. Biol. 17, 337–354 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 118.

    Beaumont, M. A., Zhang, W. & Balding, D. J. Approximate Bayesian computation in population genetics. Genetics 162, 2025 (2002).

    PubMed  PubMed Central  Google Scholar 

  • 119.

    Pudlo, P. et al. Reliable ABC model choice via random forests. Bioinformatics 32, 859–866 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 120.

    Ryan, S. F. et al. Global invasion history of the agricultural pest butterfly Pieris rapae revealed with genomics and citizen science. Proc. Natl Acad. Sci. USA 116, 20015 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 121.

    Fraimout, A. et al. Deciphering the routes of invasion of Drosophila suzukii by means of ABC random forest. Mol. Biol. Evol. 34, 980–996 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 122.

    Cornuet, J.-M. et al. DIYABC v2.0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30, 1187–1189 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 123.

    Raynal, L. et al. ABC random forests for Bayesian parameter inference. Bioinformatics 35, 1720–1728 (2018).

    Article  CAS  Google Scholar 

  • 124.

    Liu, X. & Fu, Y.-X. Stairway Plot 2: demographic history inference with folded SNP frequency spectra. Genome Biol. 21, 280 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 125.

    Drummond, A. J., Rambaut, A., Shapiro, B. & Pybus, O. G. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol. Biol. Evol. 22, 1185–1192 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 126.

    Liu, X., Fu, Y.-X., Maxwell, T. J. & Boerwinkle, E. Estimating population genetic parameters and comparing model goodness-of-fit using DNA sequences with error. Genome Res. 20, 101–109 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 127.

    Nielsen, R. Estimation of population parameters and recombination rates from single nucleotide polymorphisms. Genetics 154, 931 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 128.

    Liu, S., Ferchaud, A.-L., Grønkjær, P., Nygaard, R. & Hansen, M. M. Genomic parallelism and lack thereof in contrasting systems of three-spined sticklebacks. Mol. Ecol. 27, 4725–4743 (2018).

    PubMed  Article  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Sulfur bacteria promote dissolution of authigenic carbonates at marine methane seeps

    Nonnutritive sweeteners can promote the dissemination of antibiotic resistance through conjugative gene transfer