in

Brockarchaeota, a novel archaeal phylum with unique and versatile carbon cycling pathways

  • 1.

    Baker, B. J. et al. Diversity, ecology and evolution of Archaea. Nat. Microbiol. 5, 887–900 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 2.

    Baker, B. J., Appler, K. E. & Gong, X. New microbial biodiversity in marine sediments. Ann. Rev. Mar. Sci. 13, 161–175 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 3.

    Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 4.

    Kozubal, M. A. et al. Geoarchaeota: a new candidate phylum in the Archaea from high-temperature acidic iron mats in Yellowstone National Park. ISME J. 7, 622–634 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 5.

    Jay, Z. J. et al. Marsarchaeota are an aerobic archaeal lineage abundant in geothermal iron oxide microbial mats. Nat. Microbiol. 3, 732–740 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 6.

    Hua, Z. S. et al. Genomic inference of the metabolism and evolution of the archaeal phylum Aigarchaeota. Nat. Commun. 9, 2832 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 7.

    Seitz, K. W. et al. Asgard archaea capable of anaerobic hydrocarbon cycling. Nat. Commun. 10, 1822 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 8.

    Spang, A. et al. Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat. Microbiol. 4, 1138–1148 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 9.

    Orsi, W. D. et al. Metabolic activity analyses demonstrate that Lokiarchaeon exhibits homoacetogenesis in sulfidic marine sediments. Nat. Microbiol. 5, 248–255 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 10.

    Eme, L., Spang, A., Lombard, J., Stairs, C. W. & Ettema, T. J. G. Archaea and the origin of eukaryotes. Nat. Rev. Microbiol. 15, 711–723 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 11.

    Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Williams, T. A. et al. Integrative modeling of gene and genome evolution roots the archaeal tree of life. Proc. Natl Acad. Sci. U.S.A. 114, E4602 –E4611 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Spang, A., Caceres, E. F. & Ettema, T. J. G. Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life. Science 357, eaaf3883 (2017).

  • 14.

    Trembath-Reichert, E. et al. Methyl-compound use and slow growth characterize microbial life in 2-km-deep subseafloor coal and shale beds. Proc. Natl Acad. Sci. USA 114, E9206–E9215 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 15.

    Zhuang, G. C., Peña-Montenegro, T. D., Montgomery, A., Hunter, K. S. & Joye, S. B. Microbial metabolism of methanol and methylamine in the Gulf of Mexico: insight into marine carbon and nitrogen cycling. Environ. Microbiol. 20, 4543–4554 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 16.

    Chistoserdova, L. Modularity of methylotrophy, revisited. Environ. Microbiol. 13, 2603–2622 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 17.

    Chistoserdova, L. & Kalyuzhnaya, M. G. Current trends in methylotrophy. Trends Microbiol. 26, 703–714 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 18.

    Sun, J., Mausz, M. A., Chen, Y. & Giovannoni, S. J. Microbial trimethylamine metabolism in marine environments. Environ. Microbiol. 21, 513–520 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 19.

    Zhuang, G.-C., Montgomery, A. & Joye, S. B. Heterotrophic metabolism of C1 and C2 low molecular weight compounds in northern Gulf of Mexico sediments: controlling factors and implications for organic carbon degradation. Geochim. Cosmochim. Acta 247, 243–260 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 20.

    Vanwonterghem, I. et al. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat. Microbiol. 1, 16170 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 21.

    Lazar, C. S. et al. Genomic evidence for distinct carbon substrate preferences and ecological niches of Bathyarchaeota in estuarine sediments. Environ. Microbiol. 18, 1200–1211 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Zhuang, G. Methylotrophic methanogenesis and potential methylated substrates in marine sediment. (University of Bremen, 2014).

  • 23.

    Richards, M. A. et al. Exploring hydrogenotrophic methanogenesis: a genome scale metabolic reconstruction of Methanococcus maripaludis. J. Bacteriol. 198, 3379–3390 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Sousa, D. Z. et al. The deep-subsurface sulfate reducer Desulfotomaculum kuznetsovii employs two methanol-degrading pathways. Nat. Commun. 9, 239 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 25.

    Dombrowski, N., Teske, A. P. & Baker, B. J. Extensive metabolic versatility and redundancy in microbially diverse, dynamic Guaymas Basin hydrothermal sediments. Nat. Commun. 9, 4999 (2018).

  • 26.

    Fricke, W. F. et al. The genome sequence of Methanosphaera stadtmanae reveals why this human intestinal archaeon is restricted to methanol and H2 for methane formation and ATP synthesis †. J. Bacteriol. 188, 642–658 (2006).

  • 27.

    McKay L., et al. Co-occurring genomic capacity for anaerobic methane and dissimilatory sulfur metabolisms discovered in the Korarchaeota. Nat. Microbiol.4, 614–622 (2019).

  • 28.

    Muñoz-Velasco, I. et al. Methanogenesis on early stages of life: ancient but not primordial. Orig. Life Evol. Biosph. 48, 407–420 (2019).

  • 29.

    Adam, P. S., Borrel, G. & Gribaldo, S. An archaeal origin of the Wood–Ljungdahl H4MPT branch and the emergence of bacterial methylotrophy. Nat. Microbiol. 4, 2155–2163 (2019).

  • 30.

    Swan, B., Reifel, K. & Valentine, D. Periodic sulfide irruptions impact microbial community structure and diversity in the water column of a hypersaline lake. Aquat. Microb. Ecol. 60, 97–108 (2010).

    Article 

    Google Scholar 

  • 31.

    Adam, P. S., Borrel, G. & Gribaldo, S. Evolutionary history of carbon monoxide dehydrogenase/acetyl-CoA synthase, one of the oldest enzymatic complexes. PNAS 115, E5837 (2018).

    Article 
    CAS 

    Google Scholar 

  • 32.

    Orita, I. et al. The ribulose monophosphate pathway substitutes for the missing pentose phosphate pathway in the archaeon Thermococcus kodakaraensis. J. Bacteriol. 188, 4698–4704 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Urschel, M. R., Kubo, M. D., Hoehler, T. M., Peters, J. W. & Boyd, E. S. Carbon source preference in chemosynthetic hot spring communities. Appl. Environ. Microbiol. 81, 3834–3847 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Yokohama, H., Wagner, I. D. & Wiegel, J. Caldicoprobacter oshimai gen. nov., sp. nov., an anaerobic, xylanolytic, extremely thermophilic bacterium isolated from sheep faeces, and proposal of Caldicoprobacteraceae fam. nov. Int. J. Syst. Evol. Microbiol. 60, 67–71 (2010).

    Article 
    CAS 

    Google Scholar 

  • 35.

    Zhang, X. et al. Petroclostridium xylanilyticum gen. Nov., sp. nov., a xylan-degrading bacterium isolated from an oilfield, and reclassification of clostridial cluster iii members into four novel genera in a new hungateiclostridiaceae fam. nov.Int. J. Syst. Evol. Microbiol. 68, 3197–3211 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 36.

    Girbal, L., Croux, C., Vasconcelos, I. & Soucaille, P. Regulation of metabolic shifts in Clostridium acetobutylicum ATCC 824. FEMS Microbiol. Rev. 17, 287–297 (1995).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Qi, F. et al. Improvement of butanol production in Clostridium acetobutylicum through enhancement of NAD(P)H availability. J. Ind. Microbiol. Biotechnol. 45, 993–1002 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 38.

    Branduardi, P., Longo, V., Berterame, N. M., Rossi, G. & Porro, D. A novel pathway to produce butanol and isobutanol in Saccharomyces cerevisiae. Biotechnol. Biofuels 6, 68 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Johnsen, U. & Schönheit, P. Novel xylose dehydrogenase in the halophilic archaeon Haloarcula marismortui. J. Bacteriol. 186, 6198–6207 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Ravachol, J. et al. Mechanisms involved in xyloglucan catabolism by the cellulosome-producing bacterium Ruminiclostridium cellulolyticum. Sci. Rep. 6, 22770 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Macdonald, S. S., Blaukopf, M. & Withers, S. G. N-acetylglucosaminidases from CAZy family GH3 are really glycoside phosphorylases, thereby explaining their use of histidine as an acid/Base catalyst in place of glutamic acid. J. Biol. Chem. 290, 4887–4895 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 42.

    Wang, Y. et al. Environmental conditions constrain the distribution and diversity of Archaeal merA in Yellowstone National Park, Wyoming, U.S.A. Microb. Ecol. 62, 739–752 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    Nunes, C. I. P. et al. ArsC3 from Desulfovibrio alaskensis G20, a cation and sulfate-independent highly efficient arsenate reductase. J. Biol. Inorg. Chem. 19, 1277–1285 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 44.

    Silver, S. & Phung, L. T. Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl. Environ. Microbiol. 71, 599–608 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Colman, D. R., Lindsay, M. R. & Boyd, E. S. Mixing of meteoric and geothermal fluids supports hyperdiverse chemosynthetic hydrothermal communities. Nat. Commun. 10, 681 (2019).

  • 46.

    Zhou, Z. et al. Genome- and community-level interaction insights into carbon utilization and element cycling functions of Hydrothermarchaeota in hydrothermal sediment. mSystems 5, e00795-19 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Rabus, R., Venceslau, S. S., Lars, W., Wall, J. D. & Pereira, I. A. C. A post-genomic view of the ecophysiology, catabolism and biotechnological relevance of sulphate-reducing prokaryotes. Adv. Micro. Physiol. 66, 55–321 (2015).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Tóth, A., Takács, M., Groma, G., Rákhely, G. & Kovács, K. L. A novel NADPH-dependent oxidoreductase with a unique domain structure in the hyperthermophilic Archaeon, Thermococcus litoralis. FEMS Microbiol. Lett. 282, 8–14 (2008).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 49.

    Ma, K., Weiss, R. & Adams, M. W. W. Characterization of hydrogenase II from the hyperthermophilic archaeon Pyrococcus furiosus and assessment of its role in sulfur reduction. J. Bacteriol. 182, 1864–1871 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 50.

    Jenney, F. E. & Adams, M. W. W. Hydrogenases of the model hyperthermophiles. Ann. N. Y. Acad. Sci. 1125, 252–266 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 51.

    Van Haaster, D. J., Silva, P. J., Hagedoorn, P. L., Jongejan, J. A. & Hagen, W. R. Reinvestigation of the steady-state kinetics and physiological function of the soluble NiFe-hydrogenase I of Pyrococcus furiosus. J. Bacteriol. 190, 1584–1587 (2008).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 52.

    Greening, C. et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 10, 761–777 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 53.

    Stetter, K. O. Hyperthermophiles in the history of life. Philos. Trans. R. Soc. B Biol. Sci. 361, 1837–1842 (2006).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Collins, T., Gerday, C. & Feller, G. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29, 3–23 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 55.

    Schädel, C., Richter, A., Blöchl, A. & Hoch, G. Hemicellulose concentration and composition in plant cell walls under extreme carbon source-sink imbalances. Physiol. Plant. 139, 241–255 (2010).

    PubMed 

    Google Scholar 

  • 56.

    Chen, S. et al. The Great Oxidation Event expanded the genetic repertoire of arsenic metabolism and cycling. 117, 10414–10421 (2020).

  • 57.

    Rogers, K. L. & Schulte, M. D. Organic sulfur metabolisms in hydrothermal environments. Geobiology 10, 320–332 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 58.

    Baker, B. J. et al. Genomic inference of the metabolism of cosmopolitan subsurface Archaea, Hadesarchaea. Nat. Microbiol. 1, 16002 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 59.

    Hatzenpichler, R., Krukenberg, V., Spietz, R. L. & Jay, Z. J. Next-generation physiology approaches to study microbiome function at single cell level. Nat. Rev. Microbiol. 18, 241–256 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Eren, A. M. et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 3, e1319 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 61.

    Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3, e1165 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 62.

    Dick, G. J. et al. Community-wide analysis of microbial genome sequence signatures. Genome Biol. 10, R85 (2009).

  • 63.

    Darling, A. E. et al. PhyloSift: phylogenetic analysis of genomes and metagenomes. PeerJ 2, e243 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 65.

    Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 66.

    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010).

    Article 
    CAS 

    Google Scholar 

  • 67.

    Aramaki, T. et al. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 68.

    Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 69.

    Søndergaard, D., Pedersen, C. N. S. & Greening, C. HydDB: a web tool for hydrogenase classification and analysis. Sci. Rep. 6, 34212 (2016).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 70.

    Zhang, H. et al. DbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 46, W95–W101 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 71.

    De Anda, V. et al. MEBS, a software platform to evaluate large (meta)genomic collections according to their metabolic machinery: unraveling the sulfur cycle. Gigascience 6, 1–17 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 72.

    Zhichao, Z. et al METABOLIC: High-throughput. profiling of microbial genomes for functional traits, biogeochemistry, and community-scale metabolic networks. Preprint at bioRxiv 761643 (2019).

  • 73.

    Rawlings, N. D., Morton, F. R., Kok, C. Y., Kong, J. & Barrett, A. J. MEROPS: the peptidase database. Nucleic Acids Res. 38, D227–D233 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 74.

    Taboada, B., Estrada, K., Ciria, R. & Merino, E. Operon-mapper: a web server for precise operon identification in bacterial and archaeal genomes. Bioinformatics 34, 4118–4120 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 75.

    Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 76.

    Yu, N. Y. et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26, 1608–1615 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 77.

    Boyd, J. A., Woodcroft, B. J. & Tyson, G. W. GraftM: a tool for scalable, phylogenetically informed classification of genes within metagenomes. Nucleic Acids Res. 46, e59 (2018).

  • 78.

    Hua, Z. S. et al. Insights into the ecological roles and evolution of methyl-coenzyme M reductase-containing hot spring Archaea. Nat. Commun. 10, 4574 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 79.

    Chaumeil, P., Mussig, A. J., Parks, D. H. & Hugenholtz, P. Genome analysis GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2020).

  • 80.

    Kahle, D. & Wickham, H. ggmap: spatial visualization with ggplot2. R. J. 5, 144–161 (2013).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Spencer Compton, Karna Morey, Tara Venkatadri, and Lily Zhang named 2021-22 Goldwater Scholars

    Navigating beneath the Arctic ice