Foster, M. S. Rhodoliths between rocks and soft places. J. Phycol. 37, 659–667. https://doi.org/10.1046/j.1529-8817.2001.00195.x (2001).
Google Scholar
Riosmena-Rodríguez, R., Nelson, W. & Aguirre, J. Rhodolith/mäerl beds: A global perspective (Springer, 2017). https://doi.org/10.1007/978-3-319-29315-8.
Google Scholar
Nelson, W. A. Calcified macroalgae—critical to coastal ecosystems and vulnerable to change: a review. Mar. Freshw. Res. 60, 787–801. https://doi.org/10.1071/MF08335 (2009).
Google Scholar
Amado-Filho, G. M. et al. Rhodolith beds are major CaCO3 bio-factories in the tropical South West Atlantic. PLoS ONE 7, e35171. https://doi.org/10.1371/journal.pone.0035171 (2012).
Google Scholar
Smith, S. V. & Mackenzie, F. T. The role of CaCO3 reactions in the contemporary oceanic CO2 cycle. Aquat. Geochem. 22, 153–175. https://doi.org/10.1007/s10498-015-9282-y (2015).
Google Scholar
Amado-Filho, G.M., Bahia, R.G., Pereira-Filho, G.H. & Longo, L.L. South Atlantic rhodolith beds: Latitudinal distribution, species composition, structure and ecosystem functions, threats and conservation status. In Rhodolith/mäerl beds: A global perspective (eds, Riosmena-Rodríguez, R. et al.), Switzerland: Springer International Publishing; https://doi.org/10.1007/978-3-319-29315-8_12 (2017).
Carvalho, V. F. et al. Environmental drivers of rhodolith beds and epiphytes community along the South Western Atlantic coast. Mar. Environ. Res. 154, 104827. https://doi.org/10.1016/j.marenvres.2019.104827 (2020).
Google Scholar
Legrand, E. et al. Species interactions can shift the response of a maerl bed community to ocean acidification and warming. Biogeosciences 14, 5359–5376. https://doi.org/10.5194/bg-14-5359-2017 (2017).
Google Scholar
Legrand, E. et al. Grazers increase the sensitivity of coralline algae to ocean acidification and warming. J. Sea Res. 148–149, 1–7. https://doi.org/10.1016/j.seares.2019.03.001 (2019).
Google Scholar
Legrand, E., Martin, S., Leroux, C. & Riera, P. Using stable isotope analysis to determine the effects of ocean acidification and warming on trophic interactions in a maerl bed community. Mar. Ecol. https://doi.org/10.1111/maec.12612 (2020).
Google Scholar
Burdett, H. L., Perna, G., McKay, L., Broomhead, G. & Kamenos, N. A. Community-level sensitivity of a calcifying ecosystem to acute in situ CO2 enrichment. Mar. Ecol. Prog. Ser. 587, 73–80. https://doi.org/10.3354/meps12421 (2018).
Google Scholar
Sordo, L., Santos, R., Barrote, I. & Silva, J. High CO2 decreases the long-term resilience of the free-living coralline algae Phymatolithon lusitanicum. Ecol. Evol. 8, 4781–4792. https://doi.org/10.1002/ece3.4020 (2018).
Google Scholar
Sordo, L., Santos, R., Barrote, I. & Silva, J. Temperature amplifies the effect of high CO2 on the photosynthesis, respiration, and calcification of the coralline algae Phymatolithon lusitanicum. Ecol. Evol. 9, 11000–11009. https://doi.org/10.1002/ece3.5560 (2019).
Google Scholar
Qui-Minet, Z. M. et al. Combined effects of global climate change and nutrient enrichment on the physiology of three temperate maerl species. Ecol. Evol. 9, 13787–13807. https://doi.org/10.1002/ece3.5802 (2019).
Google Scholar
Schubert, N. et al. Rhodolith primary and carbonate production in a changing ocean: the interplay of warming and nutrients. Sci. Total Environ. 676, 455–468. https://doi.org/10.1016/j.scitotenv.2019.04.280 (2019).
Google Scholar
Martin, S. & Hall-Spencer, J.M. Effects of ocean warming and acidification on rhodolith/mäerl beds. In Rhodolith/mäerl beds: A global perspective (eds. Riosmena-Rodríguez, R. et al.). Switzerland: Springer International Publishing; https://doi.org/10.1007/978-3-319-29315-8_3 (2017).
Roleda, M. Y., Boyd, P. W. & Hurd, C. L. Before ocean acidification: calcifier chemistry lessons. J. Phycol. 48(4), 840–843. https://doi.org/10.1111/j.1529-8817.2012.01195.x (2012).
Google Scholar
Dupont, S. & Pörtner, H. O. A snapshot of ocean acidification research. Mar. Biol. 160, 1765–1771. https://doi.org/10.1007/s00227-013-2282-9 (2013).
Google Scholar
Cyronak, T., Schulz, K. G. & Jokiel, P. L. The Omega myth: what really drives lower calcification rates in an acidifying ocean. ICES J. Mar. Sci. 73(3), 558–562. https://doi.org/10.1093/icesjms/fsv075 (2016).
Google Scholar
Falkenberg, L. J., Dupont, S. & Bellerby, R. G. Approaches to reconsider literature on physiological effects of environmental change: examples from ocean acidification research. Front. Mar. Sci. 5, 453. https://doi.org/10.3389/fmars.2018.00453 (2018).
Google Scholar
Cornwall, C. E., Comeau, S. & McCulloch, M. T. Coralline algae elevate pH at the site of calcification under ocean acidification. Global Change Biol. 23, 4245–4256. https://doi.org/10.1111/gcb.13673 (2017).
Google Scholar
Cornwall, C. E. et al. Resistance of corals and coralline algae to ocean acidification: physiological control of calcification under natural pH variability. Proc. Roy. Soc. B 285(1884), 20181168. https://doi.org/10.1098/rspb.2018.1168 (2018).
Google Scholar
Comeau, S., Cornwall, C. E., De Carlo, T. M., Krieger, E. & McCulloch, M. Similar controls on calcification under ocean acidification across unrelated coral reef taxa. Global Change Biol. 24, 4857–4868. https://doi.org/10.1111/gcb.14379 (2018).
Google Scholar
Comeau, S. et al. Flow-driven micro-scale pH variability affects the physiology of corals and coralline algae under ocean acidification. Sci. Rep. 9, 1–12. https://doi.org/10.1038/s41598-019-49044-w (2019).
Google Scholar
Comeau, S. et al. Resistance to ocean acidification in coral reef taxa is not gained by acclimatization. Nat. Clim. Chang. 9(6), 477–483. https://doi.org/10.1038/s41558-019-0486-9 (2019).
Google Scholar
Liu, Y. W., Sutton, J. N., Ries, J. B. & Eagle, R. A. Regulation of calcification site pH is a polyphyletic but not always governing response to ocean acidification. Sci. Adv. 6(5), aax1314. https://doi.org/10.1126/sciadv.aax1314 (2020).
Google Scholar
Donald, H. K., Ries, J. B., Stewart, J. A., Fowell, S. E. & Foster, G. L. Boron isotope sensitivity to seawater pH change in a species of Neogoniolithon coralline red alga. Geochim. Cosmochim. Acta 217, 240–253. https://doi.org/10.1016/j.gca.2017.08.021 (2017).
Google Scholar
Hofmann, L. C., Schoenrock, K. M. & de Beer, D. Arctic coralline algae elevate surface pH and carbonate in the dark. Front. Plant Sci. 9, 1416. https://doi.org/10.3389/fpls.2018.01416 (2018).
Google Scholar
Hurd, C. L. et al. Metabolically induced pH fluctuations by some coastal calcifiers exceed projected 22nd century ocean acidification: a mechanism for differential susceptibility. Global Change Biol. 17, 3254–3262. https://doi.org/10.1111/j.1365-2486.2011.02473.x (2011).
Google Scholar
Cornwall, C. E. et al. Diffusion boundary layers ameliorate the negative effects of ocean acidification on the temperate coralline macroalga Arthrocardia corymbosa. PLoS ONE 9, e97235. https://doi.org/10.1371/journal.pone.0097235 (2014).
Google Scholar
Hofmann, L. C., Koch, M. & de Beer, D. Biotic control of surface pH and evidence of light-induced H+ pumping and Ca2+-H+ exchange in a tropical crustose coralline alga. PLoS ONE 1, e0159057. https://doi.org/10.1371/journal.pone.0159057 (2016).
Google Scholar
McNicholl, C., Koch, M. S. & Hofmann, L. C. Photosynthesis and light-dependent proton pumps increase boundary layer pH in tropical macroalgae: A proposed mechanism to sustain calcification under ocean acidification. J. Exp. Mar. Biol. Ecol. 521, 151208. https://doi.org/10.1016/j.jembe.2019.151208 (2019).
Google Scholar
Hurd, C. L. & Pilditch, C. A. Flow-induced morphological variations affect diffusion boundary-layer thickness of Macrocystis pyrifera (Heterokontophyta, Laminariales). J. Phycol. 47, 341–351. https://doi.org/10.1111/j.1529-8817.2011.00958.x (2011).
Google Scholar
Foster, M.S., Amado-Filho, G.M., Kamenos, N.A., Riosmena-Rodríguez, R. & Steller D.L. Rhodoliths and rhodolith beds. In Research and Discoveries: The Revolution of Science Through SCUBA (eds, Lang, M.A. et al.). Washington, D.C, USA: Smithsonian Institution Scholarly Press (2013).
Melbourne, L. A., Denny, M. W., Harniman, R. L., Rayfield, E. J. & Schmidt, D. N. The importance of wave exposure on the structural integrity of rhodoliths. J. Exp. Mar. Biol. Ecol. 503, 109–119. https://doi.org/10.1016/j.jembe.2017.11.007 (2018).
Google Scholar
Farias, J. N., Riosmena-Rodríguez, R., Bouzon, Z., Oliveira, E. C. & Horta, P. A. Lithothamnion superpositum (Corallinales; Rhodophyta): First description for the Western Atlantic or rediscovery of a species?. Phycol. Res. 58, 210–216. https://doi.org/10.1111/j.1440-1835.2010.00581.x (2010).
Google Scholar
Vieira-Pinto, T. et al. Lithophyllum species from Brazilian coast: range extension of Lithophyllum margaritae and description of Lithophyllum atlanticum sp. nov. (Corallineales, Corallinophycidae, Rhodophyta). Phytotaxa 190, 355–369. https://doi.org/10.11646/phytotaxa.190.1.21 (2014).
Google Scholar
Sissini, M. N. et al. Mesophyllum erubescens (Corallinales, Rhodophyta)-so many species in one epithet. Phytotaxa 190, 299–319. https://doi.org/10.11646/phytotaxa.190.1.18 (2014).
Google Scholar
de Beer, D. & Larkum, A. Photosynthesis and calcification in the calcifying algae Halimeda discoidea studied with microsensors. Plant Cell Environ. 24, 1209–1217. https://doi.org/10.1046/j.1365-3040.2001.00772.x (2001).
Google Scholar
Hurd, C. L. Slow-flow habitats as refugia for coastal calcifiers from ocean acidification. J. Phycol. 51, 599–605. https://doi.org/10.1111/jpy.12307 (2015).
Google Scholar
Nash, M. C., Diaz-Pulido, G., Harvey, A. S. & Adey, W. Coralline algal calcification: A morphological and process-based understanding. PLoS ONE 14, e0221396. https://doi.org/10.1371/journal.pone.0221396 (2019).
Google Scholar
Burdett, H. L., Hennige, S. J., Francis, F. T. Y. & Kamenos, N. A. The photosynthetic characteristics of red coralline algae, determined using pulse amplitude modulation (PAM) fluorometry. Bot. Mar. 5, 499–509. https://doi.org/10.1515/bot-2012-0135 (2012).
Google Scholar
Noisette, F., Egilsdottir, H., Davoult, D. & Martin, S. Physiological responses of three temperate coralline algae from contrasting habitats to near-future ocean acidification. J. Exp. Mar. Biol. Ecol. 448, 179–187. https://doi.org/10.1016/j.jembe.2013.07.006 (2013).
Google Scholar
Martin, S., Cohu, S., Vignot, C., Zimmerman, G. & Gattuso, J. P. One-year experiment on the physiological response of the Mediterranean crustose coralline alga, Lithophyllum cabiochae, to elevated pCO2 and temperature. Ecol. Evol. 3(3), 676–693. https://doi.org/10.1002/ece3.475 (2013).
Google Scholar
Johnson, M. D., Moriarty, V. W. & Carpenter, R. C. Acclimatization of the crustose coralline alga Porolithon onkodes to variable pCO2. PLoS ONE 9(2), e87678. https://doi.org/10.1371/journal.pone.0087678 (2014).
Google Scholar
Cornwall, C. E. et al. A coralline alga gains tolerance to ocean acidification over multiple generations of exposure. Nat. Clim. Chang. 10, 143–146. https://doi.org/10.1038/s41558-019-0681-8 (2020).
Google Scholar
Cornwall, C. E. et al. Diurnal fluctuations in seawater pH influence the response of a calcifying macroalga to ocean acidification. Proc. Roy. Soc. London Series B 280, 20132201. https://doi.org/10.1098/rspb.2013.2201 (2013).
Google Scholar
Boyd, P. W. et al. Biological responses to environmental heterogeneity under future ocean conditions. Global Change Biol. 22(8), 2633–2650. https://doi.org/10.1111/gcb.13287 (2016).
Google Scholar
Noisette, F. & Hurd, C. Abiotic and biotic interactions in the diffusive boundary layer of kelp blades create a potential refuge from ocean acidification. Funct. Ecol. 32(5), 1329–1342. https://doi.org/10.1111/1365-2435.13067 (2018).
Google Scholar
Johnson, M. D. et al. pH variability exacerbates effects of ocean acidification on a Caribbean crustose coralline alga. Front. Mar. Sci. 6, 150. https://doi.org/10.3389/fmars.2019.00150 (2019).
Google Scholar
Borowitzka, M. A. Photosynthesis and calcification in the articulated coralline red algae Amphiroa anceps and A foliacea. Mar. Biol. 62, 17–23. https://doi.org/10.1007/BF00396947 (1981).
Google Scholar
Chisholm, J. R. Calcification by crustose coralline algae on the northern Great Barrier Reef Australia. Limnol. Oceanogr. 45(7), 1476–1484. https://doi.org/10.4319/lo.2000.45.7.1476 (2000).
Google Scholar
Martin, S., Castets, M.-D. & Clavier, J. Primary production, respiration and calcification of the temperate free-living coralline alga Lithothamnion corallioides. Aquat. Bot. 85, 121–128. https://doi.org/10.1016/j.aquabot.2006.02.005 (2006).
Google Scholar
McNicholl, C. et al. Ocean acidification effects on calcification and dissolution in tropical reef macroalgae. Coral Reefs 39, 1635–1647. https://doi.org/10.1007/s00338-020-01991-x (2020).
Google Scholar
Kamenos, N. A. et al. Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification. Global Change Biol. 19, 3621–3628. https://doi.org/10.1111/gcb.12351 (2013).
Google Scholar
Vogel, N. et al. Calcareous green alga Halimeda tolerates ocean acidification conditions at tropical carbon dioxide seeps. Limnol. Oceanogr. 60, 263–275. https://doi.org/10.1002/lno.10021 (2015).
Google Scholar
Vogel, N., Meyer, F. W., Wild, C. & Uthicke, S. Decreased light availability can amplify negative impacts of ocean acidification on calcifying coral reef organisms. Mar. Ecol. Prog. Ser. 521, 49–61. https://doi.org/10.3354/meps11088 (2015).
Google Scholar
McNicholl, C. & Koch, M. S. Irradiance, photosynthesis and elevated pCO2 effects on net calcification in tropical reef macroalgae. J. Exp. Mar. Biol. Ecol. 535, 151489. https://doi.org/10.1016/j.jembe.2020.151489 (2021).
Google Scholar
Schoenrock, K. M. et al. Influences of salinity on the physiology and distribution of the Arctic coralline algae, Lithothamnion glaciale (Corallinales, Rhodophyta). J. Phycol. 54, 690–702. https://doi.org/10.1111/jpy.12774 (2018).
Google Scholar
MAArE. Projeto de monitoramento ambiental da Reserva Biológica Marinha do Arvoredo e entorno. Florianópolis, Brazil: ICMBio/UFSC (2017).
Kaandorp, J. A. & Kübler, J. E. The algorithmic beauty of seaweeds, sponges and corals (Springer, Heidelberg, 2001). https://doi.org/10.1007/978-3-662-04339-4.
Google Scholar
Leal, R. N., Bassi, D., Posenato, R. & Amado-Filho, G. M. Tomographic analysis for bioerosion signatures in shallow-water rhodoliths from the Abrolhos Bank Brazil. J. Coast. Res. 279, 306–309. https://doi.org/10.2112/11T-00006.1 (2012).
Google Scholar
Teichert, S. Hollow rhodoliths increase Svalbard’s shelf biodiversity. Sci. Rep. 4, 1–5. https://doi.org/10.1038/srep06972 (2014).
Google Scholar
Torrano-Silva, B. N., Ferreira, S. G. & Oliveira, M. C. Unveiling privacy: Advances in microtomography of coralline algae. Micron 72, 34–38. https://doi.org/10.1016/j.micron.2015.02.004 (2015).
Google Scholar
Laforsch, C. et al. A precise and non-destructive method to calculate the surface area in living scleractinian corals using x-ray computed tomography and 3D modeling. Coral Reefs 27, 811–820. https://doi.org/10.1007/s00338-008-0405-4 (2008).
Google Scholar
Limaye, A. Drishti: a volume exploration and representation tool. In Developments in X-Ray Tomography VIII, San Diego, California, USA: SPIE Proc. 85060X; https://doi.org/10.1117/12.935640 (2012).
Ahrens, J., Geveci, B. & Law, C. ParaView: An End-User Tool for Large Data Visualization. In Visualization Handbook (eds CD Hansen, CR Johnson) Oxford, UK: Elsevier; https://doi.org/10.1016/B978-012387582-2/50038-1 (2005).
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682. https://doi.org/10.1038/nmeth.2019 (2012).
Google Scholar
Rueden, C. T. et al. Image J2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18, 529. https://doi.org/10.1186/s12859-017-1934-z (2017).
Google Scholar
Revsbech, N. P. An oxygen microsensor with a guard cathode. Limnol. Oceanogr. 34, 474–478. https://doi.org/10.4319/lo.1989.34.2.0474 (1989).
Google Scholar
de Beer, D. et al. A microsensor for carbonate ions suitable for microprofiling in freshwater and saline environments. Limnol. Oceanogr. Methods 6, 532–541. https://doi.org/10.4319/lom.2008.6.532 (2008).
Google Scholar
Jørgensen, B. B. & Revsbech, N. P. Diffusive boundary layers and the oxygen uptake of sediments and detritus 1. Limnol. Oceanogr. 30, 111–122. https://doi.org/10.4319/lo.1985.30.1.0111 (1985).
Google Scholar
Smith, S.V. & Kinsey, D.W. Calcification and organic carbon metabolism as indicated by carbon dioxide. In Coral Reefs: Research Methods. Monographs on Oceanographic Methodology (eds. Stoddart, D. & Johannes, R.). Paris: UNESCO (1978)
Hansson, I. & Jagner, D. Evaluation of the accuracy of Gran plots by means of computer calculations: application to the potentiometric titration of the total alkalinity and carbonate content in sea water. Anal. Chim. Acta 75, 363–373. https://doi.org/10.1016/S0003-2670(01)82503-4 (1973).
Google Scholar
Bradshaw, A. L., Brewer, P. G., Sharer, D. K. & Williams, R. T. Measurements of total carbon dioxide and alkalinity by potentiometric titration in the GEOSECS program. Earth Planet. Sci. Lett. 55, 99–115. https://doi.org/10.1016/0012-821X(81)90090-X (1981).
Google Scholar
Stimson, J. & Kinzie, R. A. The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillophora damicornis (Linnaeus) under nitrogen-enrichment and control conditions. J. Exp. Mar. Biol. Ecol. 153, 63–74. https://doi.org/10.1016/S0022-0981(05)80006-1 (1991).
Google Scholar
Naumann, M. S., Niggl, W., Laforsch, C., Glaser, C. & Wild, C. Coral surface area quantification-evaluation of established techniques by comparison with computer tomography. Coral Reefs 28, 109–117. https://doi.org/10.1007/s00338-008-0459-3 (2009).
Google Scholar
Veal, C. J., Holmes, G., Nunez, M., Hoegh-Guldberg, O. & Osborn, J. A comparative study of methods for surface area and three-dimensional shape measurements of coral skeletons. Limnol. Oceanogr. Methods 8, 241–253. https://doi.org/10.4319/lom.2010.8.241 (2010).
Google Scholar
Source: Ecology - nature.com