Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science (80-) 328, 894–899 (2010).
Google Scholar
Benton, M. J. The red queen and the court jester: Species diversity and the role of biotic and abiotic factors through time. Science (80-) 323, 728–732 (2009).
Google Scholar
Addo-Bediako, A., Chown, S. L. & Gaston, K. J. Revisiting water loss in insects: a large scale view. J. Insect Physiol. 47, 1377–1388 (2001).
Google Scholar
Abram, P., Boivin, G., Moiroux, J. & Brodeur, J. Behavioural effects of temperature on ectothermic animals: unifying thermal physiology and behavioural plasticity. Biol. Rev. Camb. Philos. Soc. 92, 1859–1876 (2016).
Google Scholar
Woods, H. A., Dillon, M. E. & Pincebourde, S. The roles of microclimatic diversity and of behavior in mediating the responses of ectotherms to climate change. J. Therm. Biol. 54, 86–97 (2015).
Google Scholar
Duffy, G. A., Coetzee, B. W., Janion-Scheepers, C. & Chown, S. L. Microclimate-based macrophysiology: implications for insects in a warming world. Curr. Opin. Insect Sci. 11, 84–89 (2015).
Google Scholar
Pincebourde, S., Sinoquet, H., Combes, D. & Casas, J. Regional climate modulates the canopy mosaic of favourable and risky microclimates for insects. J. Anim. Ecol. 76, 424–438 (2007).
Google Scholar
Sinoquet, H. et al. 3-D maps of tree canopy geometries at leaf scale. Ecology 90, 283 (2009).
Google Scholar
Pincebourde, S. & Woods, H. A. Climate uncertainty on leaf surfaces: The biophysics of leaf microclimates and their consequences for leaf-dwelling organisms. Funct. Ecol. 26, 844–853 (2012).
Google Scholar
Pincebourde, S. & Casas, J. Narrow safety margin in the phyllosphere during thermal extremes. Proc. Natl. Acad. Sci. 116, 5588–5596 (2019).
Google Scholar
Classen, A. T., Hart, S. C., Whitman, T. G., Cobb, N. S. & Koch, G. W. Insect infestations linked to shifts in microclimate: important climate change implications. Soil Sci. Soc. Am. J. 69, 2049–2057 (2005).
Google Scholar
Beetge, L. & Krüger, K. Drought and heat waves associated with climate change affect performance of the potato aphid Macrosiphum euphorbiae. Sci. Rep. 9, 3645 (2019).
Google Scholar
Dale, A. G. & Frank, S. D. Warming and drought combine to increase pest insect fitness on urban trees. PLoS One 12, e0173844 (2017).
Google Scholar
Sørensen, J. G., Addison, M. F. & Terblanche, J. S. Mass-rearing of insects for pest management: challenges, synergies and advances from evolutionary physiology. Crop Prot. 38, 87–94 (2012).
Google Scholar
Klassen, W. & Curtis, C. F. History of the sterile insect technique. in Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (eds. Dyck, V. A., Hendrichs, J. & Robinson, A. S.) 3–36 (Springer, 2005).
Orozco-Dávila, D. et al. Mass rearing and sterile insect releases for the control of Anastrepha spp. pests in Mexico-a review. Entomol. Exp. Appl. 164, 176–187 (2017).
Google Scholar
Vreysen, M. J. B., Hendrichs, J. & Enkerlin, W. R. The sterile insect technique as a component of sustainable area-wide integrated pest management of selected horticultural insect pests. J. Fruit Ornam. Plant Res. 14, 107–130 (2006).
Enkerlin, W. R. Impact of fruit fly control programmes using the sterile insect technique. in Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (eds. Dyck, V. A., Hendrichs, J. & Robinson, A. S.) 652–676 (Springer, 2005).
Dunn, D. W. & Follett, P. A. The sterile insect technique (SIT)-an introduction. Entomol. Exp. Appl. 164, 151–154 (2017).
Google Scholar
Vargas, R. I. Mass production of tephritid fruit flies. in Fruit Flies: Their Biology, Natural Enemies, and Control (eds. Robinson, A. S. & Hooper, G.) 141–152 (Elsevier, 1989).
Perez-Staples, D., Shelly, T. E. & Yuval, B. Female mating failure and the failure of ‘mating’ in sterile insect programs. Entomol. Exp. Appl. 146, 66–78 (2013).
Google Scholar
Koyama, J., Kakinohana, H. & Miyatake, T. Eradication of the melon fly, Bactrocera cucurbitae, in Japan: importance of behavior, ecology, genetics, and evolution. Annu. Rev. Entomol. 49, 331–349 (2004).
Google Scholar
Cayol, J. P. Changes in sexual behavior and life history traits of tephritid species caused by mass-rearing processes. in Fruit flies (Tephritidae): Phylogeny and Evolution of Behavior (eds. Aluja, M. & Norrbom, A. L.) 843–860 (CRC Press, 2000).
Meza-Hernández, J. S. & Díaz-Fleischer, F. Comparison of sexual compatibility between laboratory and wild Mexican fruit flies under laboratory and field conditions. J. Econ. Entomol. 99, 1979–1986 (2006).
Google Scholar
Moreno, D. S., Sanchez, M., Robacker, D. C. & Worley, J. Mating competitiveness of irradiated mexican fruit fly (Diptera: Tephritidae). J. Econ. Entomol. 84, 1227–1234 (1991).
Google Scholar
Orozco-Dávila, D., Hernández, R., Meza, S. & Domínguez, J. Sexual competitiveness and compatibility between mass-reared sterile flies and wild populations of Anastrepha ludens (Diptera: Tephritidae) from different regions in Mexico. Florida Entomol. 90, 19–26 (2007).
Google Scholar
Weldon, C. W., Schutze, M. K. & Karsten, M. Trapping to monitor tephritid movement: results, best practice, and assessment of alternatives. in Trapping Tephritid Fruit Flies: Lures, Area-Wide Programs, and Trade Implications (eds. Shelly, T., Epsky, N., Jang, E. B., Reyes-Flores, J. & Vargas, R.) 175–217 (Springer, 2014).
Dominiak, B. C., Worsley, P. M. & Nicol, H. Release from a point source and dispersal of sterile Queensland fruit fly (Bactrocera tryoni (froggatt)) (Diptera: Tephritidae) at Wagga Wagga. Plant Prot. Q. 28, 120–125 (2013).
Dimou, I., Koutsikopoulos, C., Economopoulos, A. P. & Lykakis, J. The distribution of olive fruit fly captures with McPhail traps within an olive orchard. Phytoparasitica 31, 124–131 (2003).
Google Scholar
Raghu, S., Drew, R. A. I. & Clarke, A. R. Influence of host plant structure and microclimate on the abundance and behavior of a tephritid fly. J. Insect. Behav. 17, 179–190 (2004).
Google Scholar
Kaspi, R. & Yuval, B. Mediterranean Fruit Fly leks: factors affecting male location. Funct. Ecol. 13, 539–545 (1999).
Google Scholar
Baker, P. S. & van der Valk, H. Distribution and behaviour of sterile Mediterranean fruit flies in a host tree. J. Appl. Entomol. 114, 67–76 (1992).
Google Scholar
Aluja, M. & Birke, A. Habitat use by adults of Anastrepha obliqua (Diptera: Tephritidae) in a mixed mango and tropical plum orchard. Ann. Entomol. Soc. Am. 86, 799–812 (1993).
Google Scholar
Aluja, M., Jácome, I., Birke, A., Lozada, N. & Quintero, G. Basic patterns of behavior in wild Anastrepha striata (Diptera: Tephritidae) flies under field-cage conditions. Ann. Entomol. Soc. Am. 86, 776–793 (1993).
Google Scholar
Huettel, M. D. Monitoring the quality of laboratory-reared insects: A biological and behavioral perspective. Environ. Entomol. 5, 807–814 (1976).
Google Scholar
Dominiak, B. C. & Daniels, D. Review of the past and present distribution of Mediterranean fruit fly (Ceratitis capitata Wiedemann) and Queensland fruit fly (Bactrocera tryoni Froggatt) in Australia. Aust. J. Entomol. 51, 104–115 (2012).
Google Scholar
MacLellan, R. & King, K. National fruit fly surveillance programme 2017–2018. Surveillance 45, 68–71 (2018).
Aguilar, G., Blanchon, D., Foot, H., Pollonais, C. & Mosee, A. Queensland fruit fly invasion of New Zealand: Predicting area suitability under future climate change scenarios. Unitec ePress Perspectives in Biosecurity Research Series (2015).
Vargas, R. I., Leblanc, L., Piñero, J. C. & Hoffman, K. Male annihilation, past, present, and future. in Trapping Tephritid Fruit Flies: Lures, Area-Wide Programs, and Trade Implications (eds. Shelly, T., Epsky, N., Jang, E. B., Reyes-Flores, J. & Vargas, R.) 493–511 (Springer, 2014).
Vargas, R., Piñero, J. & Leblanc, L. An overview of pest species of Bactrocera fruit flies (Diptera: Tephritidae) and the integration of biopesticides with other biological approaches for their management with a focus on the Pacific region. Insects 6, 297–318 (2015).
Google Scholar
Clarke, A. R., Powell, K. S., Weldon, C. W. & Taylor, P. W. The ecology of Bactrocera tryoni (Diptera: Tephritidae): What do we know to assist pest management?. Ann. Appl. Biol. 158, 26–54 (2011).
Google Scholar
Dominiak, B. C. Review of dispersal, survival, and establishment of Bactrocera tryoni (Diptera: Tephritidae) for quarantine purposes. Ann. Entomol. Soc. Am. 105, 434–446 (2012).
Google Scholar
Hancock, D. L., Hamacek, E. L., Lloyd, A. C. & Elson-Harris, M. M. The distribution and host plants of fruit flies (Diptera: Tephritidae) in Australia. Queensland Department of Primary Industries (2000).
PHA. The National Plant Health Status Report (08/09). Plant Health Australia, Canberra, ACT (2009).
Ha, A., Larson, K., Harvey, S., Fisher, W. & Malcolm, L. Benefit-cost analysis of options for managing Queensland fruit fly in Victoria. Victoria Department of Primary Industries (2010).
Dominiak, B. C. Components of a systems approach for the management of Queensland fruit fly Bactrocera tryoni (Froggatt) in a post dimethoate fenthion era. Crop Prot. 116, 56–67 (2019).
Google Scholar
Stringer, L. D., Kean, J. M., Beggs, J. R. & Suckling, D. M. Management and eradication options for Queensland fruit fly. Popul. Ecol. 59, 259–273 (2017).
Google Scholar
Lynch, K. E., White, T. E. & Kemp, D. J. The effect of captive breeding upon adult thermal preference in the Queensland fruit fly (Bactrocera tryoni). J. Therm. Biol. 78, 290–297 (2018).
Google Scholar
Weldon, C. W., Yap, S. & Taylor, P. W. Desiccation resistance of wild and mass-reared Bactrocera tryoni (Diptera: Tephritidae). Bull. Entomol. Res. 103, 690–699 (2013).
Google Scholar
Fanson, B. G., Sundaralingam, S., Jiang, L., Dominiak, B. C. & D’Arcy, G. A review of 16 years of quality control parameters at a mass-rearing facility producing Queensland fruit fly, Bactrocera tryoni. Entomol. Exp. Appl. 151, 152–159 (2014).
Google Scholar
Moadeli, T., Taylor, P. W. & Ponton, F. High productivity gel diets for rearing of Queensland fruit fly, Bactrocera tryoni. J. Pest Sci. 2004(90), 507–520 (2017).
Google Scholar
Pérez-Staples, D., Weldon, C. W. & Taylor, P. W. Sex differences in developmental response to yeast hydrolysate supplements in adult Queensland fruit fly. Entomol. Exp. Appl. 141, 103–113 (2011).
Google Scholar
Perez-Staples, D., Prabhu, V. & Taylor, P. W. Post-teneral protein feeding enhances sexual performance of Queensland fruit flies. Physiol. Entomol. 32, 225–232 (2007).
Google Scholar
McInnis, D. O., Rendon, P. & Komatsu, J. Mating and remating of medflies (Diptera: Tephritidae) in Guatemala: Individual fly marking in field cages. Florida Entomol. 85, 126–137 (2002).
Google Scholar
R Core Team. R: a language and environment for statistical computing version 1.1.419. R Foundation for Statistical Computing (2019).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Google Scholar
Bartoń, K. MuMIn: Multi-Model Inference. R Package version 1.43.6 (2019).
Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat. Control 19, 716–723 (1974).
Google Scholar
Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: Some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011).
Google Scholar
Symonds, M. R. E. & Moussalli, A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 65, 13–21 (2011).
Google Scholar
Lenth, R. emmeans: estimated marginal means, aka least-squares means. R Package version 1.3.3 (2019).
Prokopy, R. J., Bennett, E. W. & Bush, G. L. Mating behavior in Rhagoletis pomonella (Diptera: Tephritidae) II. Temportal organization. Can. Entomol. 104, 97–104 (1972).
Google Scholar
McQuate, G. T. & Vargas, R. I. Assessment of attractiveness of plants as roosting sites for the melon fly, Bactrocera cucurbitae, and the oriental fruit fly, B. dorsalis. J. Insect Sci. 7, 13 (2007).
Google Scholar
Casas, J. & Aluja, M. The geometry of search movements of insects in plant canopies. Behav. Ecol. 8, 37–45 (1997).
Google Scholar
Shelly, T. E. & Kennelly, S. S. Settlement patterns of Mediterranean fruit flies in the tree canopy: an experimental analysis. J. Insect Behav. 20, 453–472 (2007).
Google Scholar
Warburg, M. S. & Yuval, B. Circadian patterns of feeding and reproductive activities of Mediterranean fruit flies (Diptera: Tephritidae) on various hosts in Israel. Ann. Entomol. Soc. Am. 90, 487–495 (1997).
Google Scholar
Hendrichs, J. & Hendrichs, M. A. Mediterranean fruit fly (Diptera: Tephritidae) in nature: Location and diel pattern of feeding and other activities on fruiting and nonfruiting hosts and nonhosts. Ann. Entomol. Soc. Am. 83, 632–641 (1990).
Google Scholar
Morgan, K. R., Shelly, T. E. & Kimsey, L. S. Body temperature regulation, energy metabolism, and foraging in light-seeking and shade-seeking robber flies. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 155, 561–570 (1985).
Whitman, D. Function and evolution of thermoregulation in the desert grasshopper Taeniopoda eques. J. Anim. Ecol. 57, 369–383 (1988).
Google Scholar
Tychsen, P. H. & Fletcher, B. S. Studies on the rhythm of mating in the Queensland fruit fly, Dacus tryoni. J. Insect Physiol. 17, 2139–2156 (1971).
Google Scholar
Cheng, D., Chen, L., Yi, C., Liang, G. & Xu, Y. Association between changes in reproductive activity and D-glucose metabolism in the tephritid fruit fly, Bactrocera dorsalis (Hendel). Sci. Rep. 4, 7489 (2014).
Google Scholar
Warburg, M. S. & Yuval, B. Effects of energetic reserves on behavioral patterns of Mediterranean fruit flies (Diptera: Tephritidae). Oecologia 112, 314–319 (1997).
Google Scholar
Arita, L. & Kaneshiro, K. Sexual selection and lek behavior in the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae). Pacific Sci. 43, 135–143 (1989).
Hendrichs, J., Lauzon, C. R., Cooley, S. S. & Prokopy, R. J. Contribution of natural food sources to adult longevity and fecundity of Rhagoletis pomonella (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 86, 250–264 (1993).
Google Scholar
Urbaneja-Bernat, P., Tena, A., González-Cabrera, J. & Rodriguez-Saona, C. Plant guttation provides nutrient-rich food for insects. Proc. R. Soc. B Biol. Sci. 287, 20201080 (2020).
Google Scholar
Drew, R., Courtice, A. & Teakle, D. Bacteria as a natural source of food for adult fruit flies (Diptera: Tephritidae). Oecologia 60, 279–284 (1983).
Google Scholar
Prokopy, R. J., Drew, R. A. I., Sabine, B. N. E., Lloyd, A. C. & Hamacek, E. Effects of physiological and experiential state of Bactrocera tryoni flies on intra-tree foraging behavior for food (Bacteria) and host fruit. Oecologia 87, 394–400 (1991).
Google Scholar
Scarpati, M. L., Scalzo, R. L., Vita, G. & Gambacorta, A. Chemiotropic behavior of female olive fly (Bactrocera oleae GMEL.) on Olea Europeae L. J. Chem. Ecol. 22, 1027–1036 (1996).
Google Scholar
Truu, M. et al. Elevated air humidity changes soil bacterial community structure in the silver birch stand. Front. Microbiol. 8, 557 (2017).
Google Scholar
Hockberger, P. E. The discovery of the damaging effect of sunlight on bacteria. J. Photochem. Photobiol. B Biol. 58, 185–191 (2000).
Google Scholar
Jones, J., Raju, B. & Engelhard, A. Effects of temperature and leaf wetness on development of bacterial spot of geraniums and chrysanthemums incited by Pseudomonas cichorii. Plant Dis. 68, 248–251 (1984).
Google Scholar
Majumder, R., Sutcliffe, B., Taylor, P. W. & Chapman, T. A. Microbiome of the Queensland fruit fly through metamorphosis. Microorganisms 8, 795 (2020).
Google Scholar
Majumder, R., Sutcliffe, B., Taylor, P. W. & Chapman, T. A. Next-generation sequencing reveals relationship between the larval microbiome and food substrate in the polyphagous Queensland fruit fly. Sci. Rep. 9, 14292 (2019).
Google Scholar
Deutscher, A. T. et al. Near full-length 16S rRNA gene next-generation sequencing revealed Asaia as a common midgut bacterium of wild and domesticated Queensland fruit fly larvae. Microbiome 6, 85 (2018).
Google Scholar
Morrow, J., Frommer, M., Shearman, D. & Riegler, M. The microbiome of field-caught and laboratory-adapted Australian tephritid fruit fly species with different host plant use and specialisation. Microb. Ecol. 70, 498–508 (2015).
Google Scholar
Thaochan, N., Drew, R. A. I., Hughes, J. M., Vijaysegaran, S. & Chinajariyawong, A. Alimentary tract bacteria isolated and identified with API-20E and molecular cloning techniques from Australian tropical fruit flies, Bactrocera cacuminata and B. tryoni. J. Insect Sci. 10, 131 (2010).
Google Scholar
Sultana, S., Baumgartner, J. B., Dominiak, B. C., Royer, J. E. & Beaumont, L. J. Potential impacts of climate change on habitat suitability for the Queensland fruit fly. Sci. Rep. 7, 1–10 (2017).
Google Scholar
Meats, A. The bioclimatic potential of the Queensland fruit fly, Dacus tryoni, Australia. Proc. Ecol. Soc. Aust. 11, 151–161 (1981).
Google Scholar
Fletcher, B. The ecology of a natural population of the Queensland Fruit Fly, Dacus tryoni. IV. The immigration and emigration of adults. Aust. J. Zool. 21, 541 (1973).
Google Scholar
Bateman, M. A. The ecology of fruit flies. Annu. Rev. Entomol. 17, 493–518 (1972).
Google Scholar
O’Loughlin, G. T., East, R. A. & Meats, A. Survival, development rates and generation times of the Queensland fruit fly, Dacus tryoni, in a marginally favourable climate: experiments in Victoria. Aust. J. Zool. 32, 353–361 (1984).
Google Scholar
Dominiak, B. C., Mavi, H. S. & Nicol, H. I. Effect of town microclimate on the Queensland fruit fly Bactrocera tryoni. Aust. J. Exp. Agric. 46, 1239–1249 (2006).
Google Scholar
Weldon, C. W., Terblanche, J. S. & Chown, S. L. Time-course for attainment and reversal of acclimation to constant temperature in two Ceratitis species. J. Therm. Biol. 36, 479–485 (2011).
Google Scholar
Nyamukondiwa, C., Weldon, C. W., Chown, S. L., le Roux, P. C. & Terblanche, J. S. Thermal biology, population fluctuations and implications of temperature extremes for the management of two globally significant insect pests. J. Insect Physiol. 59, 1199–1211 (2013).
Google Scholar
Meats, A. Rapid acclimatization to low temperature in the Queensland fruit fly, Dacus tryoni. J. Insect Physiol. 19, 1903–1911 (1973).
Google Scholar
Meats, A. Developmental and long-term acclimation to cold by the Queensland fruit-fly (Dacus tryoni) at constant and fluctuating temperatures. J. Insect Physiol. 22, 1013–1019 (1976).
Google Scholar
Fay, H. A. C. & Meats, A. Survival rates of the queensland fruit fly, dacus tryoni, in early spring: Field-cage studies with cold-acclimated wild flies and irradiated, warm- or cold-acclimated, laboratory flies. Aust. J. Zool. 35, 187–195 (1987).
Google Scholar
Fay, H. A. C. & Meats, A. The sterile insect release method and the importance of thermal conditioning before release: field-cage experiments with dacus tryoni in spring weather. Aust. J. Zool. 35, 197–204 (1987).
Google Scholar
Bubliy, O. A. & Loeschcke, V. Correlated responses to selection for stress resistance and longevity in a laboratory population of Drosophila melanogaster. J. Evol. Biol. 18, 789–803 (2005).
Google Scholar
Weldon, C., Diaz-Fleischer, F. & Perez-Staples, D. Desiccation resistance of tephritid flies: Recent research results and future directions. in Area-Wide Management of Fruit Fly Pests (eds. Pérez-Staples, D., Díaz-Fleischer, F., Montoya, P. & Vera, T.) 3–36 (CRC Press, 2019).
Nishida, T. Food system of tephritid fruit flies in Hawaii. Proc. Hawaiian Entomol. Soc. 23, 245–254 (1980).
Nishida, T. & Bess, H. A. Studies on the ecology and control of the melon fly Dacus (Strumeta) Cucurbitae Coquillett (Diptera: Tephritidae). Hawaii Agric. Exp. Stn. Tech. Bull. 1–44 (1957).
Source: Ecology - nature.com