in

Canopy distribution and microclimate preferences of sterile and wild Queensland fruit flies

  • 1.

    Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science (80-) 328, 894–899 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 2.

    Benton, M. J. The red queen and the court jester: Species diversity and the role of biotic and abiotic factors through time. Science (80-) 323, 728–732 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 3.

    Addo-Bediako, A., Chown, S. L. & Gaston, K. J. Revisiting water loss in insects: a large scale view. J. Insect Physiol. 47, 1377–1388 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 4.

    Abram, P., Boivin, G., Moiroux, J. & Brodeur, J. Behavioural effects of temperature on ectothermic animals: unifying thermal physiology and behavioural plasticity. Biol. Rev. Camb. Philos. Soc. 92, 1859–1876 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 5.

    Woods, H. A., Dillon, M. E. & Pincebourde, S. The roles of microclimatic diversity and of behavior in mediating the responses of ectotherms to climate change. J. Therm. Biol. 54, 86–97 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 6.

    Duffy, G. A., Coetzee, B. W., Janion-Scheepers, C. & Chown, S. L. Microclimate-based macrophysiology: implications for insects in a warming world. Curr. Opin. Insect Sci. 11, 84–89 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 7.

    Pincebourde, S., Sinoquet, H., Combes, D. & Casas, J. Regional climate modulates the canopy mosaic of favourable and risky microclimates for insects. J. Anim. Ecol. 76, 424–438 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 8.

    Sinoquet, H. et al. 3-D maps of tree canopy geometries at leaf scale. Ecology 90, 283 (2009).

    Article 

    Google Scholar 

  • 9.

    Pincebourde, S. & Woods, H. A. Climate uncertainty on leaf surfaces: The biophysics of leaf microclimates and their consequences for leaf-dwelling organisms. Funct. Ecol. 26, 844–853 (2012).

    Article 

    Google Scholar 

  • 10.

    Pincebourde, S. & Casas, J. Narrow safety margin in the phyllosphere during thermal extremes. Proc. Natl. Acad. Sci. 116, 5588–5596 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 11.

    Classen, A. T., Hart, S. C., Whitman, T. G., Cobb, N. S. & Koch, G. W. Insect infestations linked to shifts in microclimate: important climate change implications. Soil Sci. Soc. Am. J. 69, 2049–2057 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 12.

    Beetge, L. & Krüger, K. Drought and heat waves associated with climate change affect performance of the potato aphid Macrosiphum euphorbiae. Sci. Rep. 9, 3645 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 13.

    Dale, A. G. & Frank, S. D. Warming and drought combine to increase pest insect fitness on urban trees. PLoS One 12, e0173844 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 14.

    Sørensen, J. G., Addison, M. F. & Terblanche, J. S. Mass-rearing of insects for pest management: challenges, synergies and advances from evolutionary physiology. Crop Prot. 38, 87–94 (2012).

    Article 

    Google Scholar 

  • 15.

    Klassen, W. & Curtis, C. F. History of the sterile insect technique. in Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (eds. Dyck, V. A., Hendrichs, J. & Robinson, A. S.) 3–36 (Springer, 2005).

  • 16.

    Orozco-Dávila, D. et al. Mass rearing and sterile insect releases for the control of Anastrepha spp. pests in Mexico-a review. Entomol. Exp. Appl. 164, 176–187 (2017).

    Article 

    Google Scholar 

  • 17.

    Vreysen, M. J. B., Hendrichs, J. & Enkerlin, W. R. The sterile insect technique as a component of sustainable area-wide integrated pest management of selected horticultural insect pests. J. Fruit Ornam. Plant Res. 14, 107–130 (2006).

    Google Scholar 

  • 18.

    Enkerlin, W. R. Impact of fruit fly control programmes using the sterile insect technique. in Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (eds. Dyck, V. A., Hendrichs, J. & Robinson, A. S.) 652–676 (Springer, 2005).

  • 19.

    Dunn, D. W. & Follett, P. A. The sterile insect technique (SIT)-an introduction. Entomol. Exp. Appl. 164, 151–154 (2017).

    Article 

    Google Scholar 

  • 20.

    Vargas, R. I. Mass production of tephritid fruit flies. in Fruit Flies: Their Biology, Natural Enemies, and Control (eds. Robinson, A. S. & Hooper, G.) 141–152 (Elsevier, 1989).

  • 21.

    Perez-Staples, D., Shelly, T. E. & Yuval, B. Female mating failure and the failure of ‘mating’ in sterile insect programs. Entomol. Exp. Appl. 146, 66–78 (2013).

    Article 

    Google Scholar 

  • 22.

    Koyama, J., Kakinohana, H. & Miyatake, T. Eradication of the melon fly, Bactrocera cucurbitae, in Japan: importance of behavior, ecology, genetics, and evolution. Annu. Rev. Entomol. 49, 331–349 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 23.

    Cayol, J. P. Changes in sexual behavior and life history traits of tephritid species caused by mass-rearing processes. in Fruit flies (Tephritidae): Phylogeny and Evolution of Behavior (eds. Aluja, M. & Norrbom, A. L.) 843–860 (CRC Press, 2000).

  • 24.

    Meza-Hernández, J. S. & Díaz-Fleischer, F. Comparison of sexual compatibility between laboratory and wild Mexican fruit flies under laboratory and field conditions. J. Econ. Entomol. 99, 1979–1986 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 25.

    Moreno, D. S., Sanchez, M., Robacker, D. C. & Worley, J. Mating competitiveness of irradiated mexican fruit fly (Diptera: Tephritidae). J. Econ. Entomol. 84, 1227–1234 (1991).

    Article 

    Google Scholar 

  • 26.

    Orozco-Dávila, D., Hernández, R., Meza, S. & Domínguez, J. Sexual competitiveness and compatibility between mass-reared sterile flies and wild populations of Anastrepha ludens (Diptera: Tephritidae) from different regions in Mexico. Florida Entomol. 90, 19–26 (2007).

    Article 

    Google Scholar 

  • 27.

    Weldon, C. W., Schutze, M. K. & Karsten, M. Trapping to monitor tephritid movement: results, best practice, and assessment of alternatives. in Trapping Tephritid Fruit Flies: Lures, Area-Wide Programs, and Trade Implications (eds. Shelly, T., Epsky, N., Jang, E. B., Reyes-Flores, J. & Vargas, R.) 175–217 (Springer, 2014).

  • 28.

    Dominiak, B. C., Worsley, P. M. & Nicol, H. Release from a point source and dispersal of sterile Queensland fruit fly (Bactrocera tryoni (froggatt)) (Diptera: Tephritidae) at Wagga Wagga. Plant Prot. Q. 28, 120–125 (2013).

    Google Scholar 

  • 29.

    Dimou, I., Koutsikopoulos, C., Economopoulos, A. P. & Lykakis, J. The distribution of olive fruit fly captures with McPhail traps within an olive orchard. Phytoparasitica 31, 124–131 (2003).

    Article 

    Google Scholar 

  • 30.

    Raghu, S., Drew, R. A. I. & Clarke, A. R. Influence of host plant structure and microclimate on the abundance and behavior of a tephritid fly. J. Insect. Behav. 17, 179–190 (2004).

    Article 

    Google Scholar 

  • 31.

    Kaspi, R. & Yuval, B. Mediterranean Fruit Fly leks: factors affecting male location. Funct. Ecol. 13, 539–545 (1999).

    Article 

    Google Scholar 

  • 32.

    Baker, P. S. & van der Valk, H. Distribution and behaviour of sterile Mediterranean fruit flies in a host tree. J. Appl. Entomol. 114, 67–76 (1992).

    Article 

    Google Scholar 

  • 33.

    Aluja, M. & Birke, A. Habitat use by adults of Anastrepha obliqua (Diptera: Tephritidae) in a mixed mango and tropical plum orchard. Ann. Entomol. Soc. Am. 86, 799–812 (1993).

    Article 

    Google Scholar 

  • 34.

    Aluja, M., Jácome, I., Birke, A., Lozada, N. & Quintero, G. Basic patterns of behavior in wild Anastrepha striata (Diptera: Tephritidae) flies under field-cage conditions. Ann. Entomol. Soc. Am. 86, 776–793 (1993).

    Article 

    Google Scholar 

  • 35.

    Huettel, M. D. Monitoring the quality of laboratory-reared insects: A biological and behavioral perspective. Environ. Entomol. 5, 807–814 (1976).

    Article 

    Google Scholar 

  • 36.

    Dominiak, B. C. & Daniels, D. Review of the past and present distribution of Mediterranean fruit fly (Ceratitis capitata Wiedemann) and Queensland fruit fly (Bactrocera tryoni Froggatt) in Australia. Aust. J. Entomol. 51, 104–115 (2012).

    Article 

    Google Scholar 

  • 37.

    MacLellan, R. & King, K. National fruit fly surveillance programme 2017–2018. Surveillance 45, 68–71 (2018).

    Google Scholar 

  • 38.

    Aguilar, G., Blanchon, D., Foot, H., Pollonais, C. & Mosee, A. Queensland fruit fly invasion of New Zealand: Predicting area suitability under future climate change scenarios. Unitec ePress Perspectives in Biosecurity Research Series (2015).

  • 39.

    Vargas, R. I., Leblanc, L., Piñero, J. C. & Hoffman, K. Male annihilation, past, present, and future. in Trapping Tephritid Fruit Flies: Lures, Area-Wide Programs, and Trade Implications (eds. Shelly, T., Epsky, N., Jang, E. B., Reyes-Flores, J. & Vargas, R.) 493–511 (Springer, 2014).

  • 40.

    Vargas, R., Piñero, J. & Leblanc, L. An overview of pest species of Bactrocera fruit flies (Diptera: Tephritidae) and the integration of biopesticides with other biological approaches for their management with a focus on the Pacific region. Insects 6, 297–318 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Clarke, A. R., Powell, K. S., Weldon, C. W. & Taylor, P. W. The ecology of Bactrocera tryoni (Diptera: Tephritidae): What do we know to assist pest management?. Ann. Appl. Biol. 158, 26–54 (2011).

    Article 

    Google Scholar 

  • 42.

    Dominiak, B. C. Review of dispersal, survival, and establishment of Bactrocera tryoni (Diptera: Tephritidae) for quarantine purposes. Ann. Entomol. Soc. Am. 105, 434–446 (2012).

    Article 

    Google Scholar 

  • 43.

    Hancock, D. L., Hamacek, E. L., Lloyd, A. C. & Elson-Harris, M. M. The distribution and host plants of fruit flies (Diptera: Tephritidae) in Australia. Queensland Department of Primary Industries (2000).

  • 44.

    PHA. The National Plant Health Status Report (08/09). Plant Health Australia, Canberra, ACT (2009).

  • 45.

    Ha, A., Larson, K., Harvey, S., Fisher, W. & Malcolm, L. Benefit-cost analysis of options for managing Queensland fruit fly in Victoria. Victoria Department of Primary Industries (2010).

  • 46.

    Dominiak, B. C. Components of a systems approach for the management of Queensland fruit fly Bactrocera tryoni (Froggatt) in a post dimethoate fenthion era. Crop Prot. 116, 56–67 (2019).

    Article 

    Google Scholar 

  • 47.

    Stringer, L. D., Kean, J. M., Beggs, J. R. & Suckling, D. M. Management and eradication options for Queensland fruit fly. Popul. Ecol. 59, 259–273 (2017).

    Article 

    Google Scholar 

  • 48.

    Lynch, K. E., White, T. E. & Kemp, D. J. The effect of captive breeding upon adult thermal preference in the Queensland fruit fly (Bactrocera tryoni). J. Therm. Biol. 78, 290–297 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 49.

    Weldon, C. W., Yap, S. & Taylor, P. W. Desiccation resistance of wild and mass-reared Bactrocera tryoni (Diptera: Tephritidae). Bull. Entomol. Res. 103, 690–699 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 50.

    Fanson, B. G., Sundaralingam, S., Jiang, L., Dominiak, B. C. & D’Arcy, G. A review of 16 years of quality control parameters at a mass-rearing facility producing Queensland fruit fly, Bactrocera tryoni. Entomol. Exp. Appl. 151, 152–159 (2014).

    Article 

    Google Scholar 

  • 51.

    Moadeli, T., Taylor, P. W. & Ponton, F. High productivity gel diets for rearing of Queensland fruit fly, Bactrocera tryoni. J. Pest Sci. 2004(90), 507–520 (2017).

    Article 

    Google Scholar 

  • 52.

    Pérez-Staples, D., Weldon, C. W. & Taylor, P. W. Sex differences in developmental response to yeast hydrolysate supplements in adult Queensland fruit fly. Entomol. Exp. Appl. 141, 103–113 (2011).

    Article 

    Google Scholar 

  • 53.

    Perez-Staples, D., Prabhu, V. & Taylor, P. W. Post-teneral protein feeding enhances sexual performance of Queensland fruit flies. Physiol. Entomol. 32, 225–232 (2007).

    Article 

    Google Scholar 

  • 54.

    McInnis, D. O., Rendon, P. & Komatsu, J. Mating and remating of medflies (Diptera: Tephritidae) in Guatemala: Individual fly marking in field cages. Florida Entomol. 85, 126–137 (2002).

    Article 

    Google Scholar 

  • 55.

    R Core Team. R: a language and environment for statistical computing version 1.1.419. R Foundation for Statistical Computing (2019).

  • 56.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar 

  • 57.

    Bartoń, K. MuMIn: Multi-Model Inference. R Package version 1.43.6 (2019).

  • 58.

    Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat. Control 19, 716–723 (1974).

    ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 59.

    Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: Some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011).

    Article 

    Google Scholar 

  • 60.

    Symonds, M. R. E. & Moussalli, A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 65, 13–21 (2011).

    Article 

    Google Scholar 

  • 61.

    Lenth, R. emmeans: estimated marginal means, aka least-squares means. R Package version 1.3.3 (2019).

  • 62.

    Prokopy, R. J., Bennett, E. W. & Bush, G. L. Mating behavior in Rhagoletis pomonella (Diptera: Tephritidae) II. Temportal organization. Can. Entomol. 104, 97–104 (1972).

    Article 

    Google Scholar 

  • 63.

    McQuate, G. T. & Vargas, R. I. Assessment of attractiveness of plants as roosting sites for the melon fly, Bactrocera cucurbitae, and the oriental fruit fly, B. dorsalis. J. Insect Sci. 7, 13 (2007).

    Article 

    Google Scholar 

  • 64.

    Casas, J. & Aluja, M. The geometry of search movements of insects in plant canopies. Behav. Ecol. 8, 37–45 (1997).

    Article 

    Google Scholar 

  • 65.

    Shelly, T. E. & Kennelly, S. S. Settlement patterns of Mediterranean fruit flies in the tree canopy: an experimental analysis. J. Insect Behav. 20, 453–472 (2007).

    Article 

    Google Scholar 

  • 66.

    Warburg, M. S. & Yuval, B. Circadian patterns of feeding and reproductive activities of Mediterranean fruit flies (Diptera: Tephritidae) on various hosts in Israel. Ann. Entomol. Soc. Am. 90, 487–495 (1997).

    Article 

    Google Scholar 

  • 67.

    Hendrichs, J. & Hendrichs, M. A. Mediterranean fruit fly (Diptera: Tephritidae) in nature: Location and diel pattern of feeding and other activities on fruiting and nonfruiting hosts and nonhosts. Ann. Entomol. Soc. Am. 83, 632–641 (1990).

    Article 

    Google Scholar 

  • 68.

    Morgan, K. R., Shelly, T. E. & Kimsey, L. S. Body temperature regulation, energy metabolism, and foraging in light-seeking and shade-seeking robber flies. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 155, 561–570 (1985).

  • 69.

    Whitman, D. Function and evolution of thermoregulation in the desert grasshopper Taeniopoda eques. J. Anim. Ecol. 57, 369–383 (1988).

    Article 

    Google Scholar 

  • 70.

    Tychsen, P. H. & Fletcher, B. S. Studies on the rhythm of mating in the Queensland fruit fly, Dacus tryoni. J. Insect Physiol. 17, 2139–2156 (1971).

    Article 

    Google Scholar 

  • 71.

    Cheng, D., Chen, L., Yi, C., Liang, G. & Xu, Y. Association between changes in reproductive activity and D-glucose metabolism in the tephritid fruit fly, Bactrocera dorsalis (Hendel). Sci. Rep. 4, 7489 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 72.

    Warburg, M. S. & Yuval, B. Effects of energetic reserves on behavioral patterns of Mediterranean fruit flies (Diptera: Tephritidae). Oecologia 112, 314–319 (1997).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 73.

    Arita, L. & Kaneshiro, K. Sexual selection and lek behavior in the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae). Pacific Sci. 43, 135–143 (1989).

    Google Scholar 

  • 74.

    Hendrichs, J., Lauzon, C. R., Cooley, S. S. & Prokopy, R. J. Contribution of natural food sources to adult longevity and fecundity of Rhagoletis pomonella (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 86, 250–264 (1993).

    Article 

    Google Scholar 

  • 75.

    Urbaneja-Bernat, P., Tena, A., González-Cabrera, J. & Rodriguez-Saona, C. Plant guttation provides nutrient-rich food for insects. Proc. R. Soc. B Biol. Sci. 287, 20201080 (2020).

    CAS 
    Article 

    Google Scholar 

  • 76.

    Drew, R., Courtice, A. & Teakle, D. Bacteria as a natural source of food for adult fruit flies (Diptera: Tephritidae). Oecologia 60, 279–284 (1983).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 77.

    Prokopy, R. J., Drew, R. A. I., Sabine, B. N. E., Lloyd, A. C. & Hamacek, E. Effects of physiological and experiential state of Bactrocera tryoni flies on intra-tree foraging behavior for food (Bacteria) and host fruit. Oecologia 87, 394–400 (1991).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 78.

    Scarpati, M. L., Scalzo, R. L., Vita, G. & Gambacorta, A. Chemiotropic behavior of female olive fly (Bactrocera oleae GMEL.) on Olea Europeae L. J. Chem. Ecol. 22, 1027–1036 (1996).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 79.

    Truu, M. et al. Elevated air humidity changes soil bacterial community structure in the silver birch stand. Front. Microbiol. 8, 557 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 80.

    Hockberger, P. E. The discovery of the damaging effect of sunlight on bacteria. J. Photochem. Photobiol. B Biol. 58, 185–191 (2000).

    CAS 
    Article 

    Google Scholar 

  • 81.

    Jones, J., Raju, B. & Engelhard, A. Effects of temperature and leaf wetness on development of bacterial spot of geraniums and chrysanthemums incited by Pseudomonas cichorii. Plant Dis. 68, 248–251 (1984).

    Article 

    Google Scholar 

  • 82.

    Majumder, R., Sutcliffe, B., Taylor, P. W. & Chapman, T. A. Microbiome of the Queensland fruit fly through metamorphosis. Microorganisms 8, 795 (2020).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 83.

    Majumder, R., Sutcliffe, B., Taylor, P. W. & Chapman, T. A. Next-generation sequencing reveals relationship between the larval microbiome and food substrate in the polyphagous Queensland fruit fly. Sci. Rep. 9, 14292 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 84.

    Deutscher, A. T. et al. Near full-length 16S rRNA gene next-generation sequencing revealed Asaia as a common midgut bacterium of wild and domesticated Queensland fruit fly larvae. Microbiome 6, 85 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 85.

    Morrow, J., Frommer, M., Shearman, D. & Riegler, M. The microbiome of field-caught and laboratory-adapted Australian tephritid fruit fly species with different host plant use and specialisation. Microb. Ecol. 70, 498–508 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 86.

    Thaochan, N., Drew, R. A. I., Hughes, J. M., Vijaysegaran, S. & Chinajariyawong, A. Alimentary tract bacteria isolated and identified with API-20E and molecular cloning techniques from Australian tropical fruit flies, Bactrocera cacuminata and B. tryoni. J. Insect Sci. 10, 131 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 87.

    Sultana, S., Baumgartner, J. B., Dominiak, B. C., Royer, J. E. & Beaumont, L. J. Potential impacts of climate change on habitat suitability for the Queensland fruit fly. Sci. Rep. 7, 1–10 (2017).

    CAS 
    Article 

    Google Scholar 

  • 88.

    Meats, A. The bioclimatic potential of the Queensland fruit fly, Dacus tryoni, Australia. Proc. Ecol. Soc. Aust. 11, 151–161 (1981).

    ADS 

    Google Scholar 

  • 89.

    Fletcher, B. The ecology of a natural population of the Queensland Fruit Fly, Dacus tryoni. IV. The immigration and emigration of adults. Aust. J. Zool. 21, 541 (1973).

    Article 

    Google Scholar 

  • 90.

    Bateman, M. A. The ecology of fruit flies. Annu. Rev. Entomol. 17, 493–518 (1972).

    Article 

    Google Scholar 

  • 91.

    O’Loughlin, G. T., East, R. A. & Meats, A. Survival, development rates and generation times of the Queensland fruit fly, Dacus tryoni, in a marginally favourable climate: experiments in Victoria. Aust. J. Zool. 32, 353–361 (1984).

    Article 

    Google Scholar 

  • 92.

    Dominiak, B. C., Mavi, H. S. & Nicol, H. I. Effect of town microclimate on the Queensland fruit fly Bactrocera tryoni. Aust. J. Exp. Agric. 46, 1239–1249 (2006).

    Article 

    Google Scholar 

  • 93.

    Weldon, C. W., Terblanche, J. S. & Chown, S. L. Time-course for attainment and reversal of acclimation to constant temperature in two Ceratitis species. J. Therm. Biol. 36, 479–485 (2011).

    Article 

    Google Scholar 

  • 94.

    Nyamukondiwa, C., Weldon, C. W., Chown, S. L., le Roux, P. C. & Terblanche, J. S. Thermal biology, population fluctuations and implications of temperature extremes for the management of two globally significant insect pests. J. Insect Physiol. 59, 1199–1211 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 95.

    Meats, A. Rapid acclimatization to low temperature in the Queensland fruit fly, Dacus tryoni. J. Insect Physiol. 19, 1903–1911 (1973).

    Article 

    Google Scholar 

  • 96.

    Meats, A. Developmental and long-term acclimation to cold by the Queensland fruit-fly (Dacus tryoni) at constant and fluctuating temperatures. J. Insect Physiol. 22, 1013–1019 (1976).

    ADS 
    Article 

    Google Scholar 

  • 97.

    Fay, H. A. C. & Meats, A. Survival rates of the queensland fruit fly, dacus tryoni, in early spring: Field-cage studies with cold-acclimated wild flies and irradiated, warm- or cold-acclimated, laboratory flies. Aust. J. Zool. 35, 187–195 (1987).

    Article 

    Google Scholar 

  • 98.

    Fay, H. A. C. & Meats, A. The sterile insect release method and the importance of thermal conditioning before release: field-cage experiments with dacus tryoni in spring weather. Aust. J. Zool. 35, 197–204 (1987).

    Article 

    Google Scholar 

  • 99.

    Bubliy, O. A. & Loeschcke, V. Correlated responses to selection for stress resistance and longevity in a laboratory population of Drosophila melanogaster. J. Evol. Biol. 18, 789–803 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 100.

    Weldon, C., Diaz-Fleischer, F. & Perez-Staples, D. Desiccation resistance of tephritid flies: Recent research results and future directions. in Area-Wide Management of Fruit Fly Pests (eds. Pérez-Staples, D., Díaz-Fleischer, F., Montoya, P. & Vera, T.) 3–36 (CRC Press, 2019).

  • 101.

    Nishida, T. Food system of tephritid fruit flies in Hawaii. Proc. Hawaiian Entomol. Soc. 23, 245–254 (1980).

    Google Scholar 

  • 102.

    Nishida, T. & Bess, H. A. Studies on the ecology and control of the melon fly Dacus (Strumeta) Cucurbitae Coquillett (Diptera: Tephritidae). Hawaii Agric. Exp. Stn. Tech. Bull. 1–44 (1957).


  • Source: Ecology - nature.com

    Observed increasing water constraint on vegetation growth over the last three decades

    Rapid evolution of bacterial mutualism in the plant rhizosphere