in

Carbon assimilating fungi from surface ocean to subseafloor revealed by coupled phylogenetic and stable isotope analysis

  • 1.

    Doney S, Abbott MR, Cullen JJ, Karl DM, Rothstein L. From genes to ecosystems: the ocean’s new frontier. Ecol Environ. 2004;2:457–66.

    Google Scholar 

  • 2.

    Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science. 1998;281:237–40.

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Eppley RW, Petersen BJ. Particulate organic matter flux and planktonic new production in the deep ocean. Nature. 1979;282:677–80.

    Google Scholar 

  • 4.

    Ducklow H, Steinberg DK, Buessler KO. Upper ocean carbon export and the biological pump. Oceanography. 2001;14:56–58.

    Google Scholar 

  • 5.

    Carlson C, Ducklow H. Dissolved organic carbon in the upper ocean of the central equatorial Pacific Ocean, 1992: Daily and finescale vertical variations. Deep Sea Res II. 1995;42:639–56.

    CAS 

    Google Scholar 

  • 6.

    Cho BC, Azam F. Major role of bacteria in biogeochemical fluxes in the ocean’s interior. Nature. 1988;332:441–3.

    CAS 

    Google Scholar 

  • 7.

    Duarte CM, Cebrian J. The fate of marine autotrophic production. Limnol Oceanogr. 1996;41:1758–66.

    CAS 

    Google Scholar 

  • 8.

    Ducklow H. The bacterial component of the oceanic euphotic zone. FEMS Microbiol Ecol. 1999;30:1–30.

    CAS 

    Google Scholar 

  • 9.

    Herndl GJ, Reinthaler T. Microbial control of the dark end of the biological pump. Nat Geosci. 2013;6:718–24.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Worden AZ, Follows MJ, Giovannoni SJ, Wilken S, Zimmerman AE, Keeling PJ. Environmental science. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science. 2015;347:1257594.

    PubMed 

    Google Scholar 

  • 11.

    Grossart HP, Rojas-Jimenez K. Aquatic fungi: targeting the forgotten in microbial ecology. Curr Opin Microbiol. 2016;31:140–5.

    PubMed 

    Google Scholar 

  • 12.

    Richards TA, Jones MD, Leonard G, Bass D. Marine fungi: their ecology and molecular diversity. Ann Rev Mar Sci. 2012;4:495–522.

    PubMed 

    Google Scholar 

  • 13.

    Burgaud G, Arzur D, Durand L, Cambon-Bonavita MA, Barbier G. Marine culturable yeasts in deep-sea hydrothermal vents: species richness and association with fauna. FEMS Microbiol Ecol. 2010;73:121–33.

    CAS 
    PubMed 

    Google Scholar 

  • 14.

    Burgaud G, Le Calvez T, Arzur D, Vandenkoornhuyse P, Barbier G. Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents. Environ Microbiol. 2009;11:1588–1600.

    PubMed 

    Google Scholar 

  • 15.

    Redou V, Navarri M, Meslet-Cladiere L, Barbier G, Burgaud G. Species richness and adaptation of marine fungi from deep-subseafloor sediments. Appl Environ Microbiol. 2015;81:3571–83.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Hyde KD, Jones EBG, Leao E, Pointing SB, Poonyth AD, Vrjmoed LLP. Role of fungi in marine ecosystems. Biodivers Conserv. 1998;7:1147–61.

    Google Scholar 

  • 17.

    Jones EB. Marine fungi: some factors influencing biodiversity. Fungal Diversity. 2000;4:53–73.

    Google Scholar 

  • 18.

    Priest T, Fuchs B, Amann R, Reich M. Diversity and biomass dynamics of unicellular marine fungi during a spring phytoplankton bloom. Environ Microbiol. 2021;23:448–63.

    CAS 
    PubMed 

    Google Scholar 

  • 19.

    Gutierrez MH, Jara AM, Pantoja S. Fungal parasites infect marine diatoms in the upwelling ecosystem of the Humboldt current system off central Chile. Environ Microbiol. 2016;18:1646–53.

    PubMed 

    Google Scholar 

  • 20.

    Gutierrez MH, Pantoja S, Tejos E. The role of fungi in processing marine organic matter in the upwelling ecosystem off Chile. Mar Biol. 2011;158:205–19.

    Google Scholar 

  • 21.

    Bochdansky AB, Clouse MA, Herdl GJ. Eukaryotic microbes, principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic marine snow. ISME J. 2017;11:362–73.

    PubMed 

    Google Scholar 

  • 22.

    Becker S, Tebben J, Coffinet S, Wittshire K, Iversen MH, Harder T, et al. Laminarin is a major molecule in the marine carbon cycle. Proc Natl Acad Sci USA. 2020;117:6599–607.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Seymour JR, Amin SA, Raina JB, Stocker R. Zooming in on the phycosphere: the ecological interface for phytoplankton-bacteria relationships. Nat Microbiol. 2017;2:17065.

    CAS 
    PubMed 

    Google Scholar 

  • 24.

    Hassett BT, Gradinger R. Chytrids dominate arctic fungal communities. Environ Microbiol. 2016;18:2001–9.

    CAS 
    PubMed 

    Google Scholar 

  • 25.

    Lavik G, Stuhrmann T, Bruchert V, Van der Plas A, Mohrholz V, Lam P, et al. Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Nature. 2009;457:581–4.

    CAS 
    PubMed 

    Google Scholar 

  • 26.

    Ortega-Arbulu AS, Pichler M, Vuillemin A, Orsi WD. Effects of organic matter and low oxygen on the mycobenthos in a coastal lagoon. Environ Microbiol 2019;21:374–88.

    CAS 
    PubMed 

    Google Scholar 

  • 27.

    Orsi WD, Morard R, Vuillemin A, Eitel M, Wörheide G, Milucka J, et al. Anaerobic metabolism of Foraminifera thriving below the seafloor. ISME J. 2020;14:2580–94.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Orsi WD, Vuillemin A, Rodriguez P, Coskun OK, Gomez-Saez GV, Lavik G, et al. Metabolic activity analyses demonstrate that Lokiarchaeon exhibits homoacetogenesis in sulfidic marine sediments. Nat Microbiol. 2020;5:248–55.

    CAS 
    PubMed 

    Google Scholar 

  • 29.

    Dittmar T, Koch B, Hertkorn N, Kattner G. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnology and Oceanography. Methods. 2008;6:230–5.

    CAS 

    Google Scholar 

  • 30.

    Green NW, Perdue EM, Aiken GR, Butler KD, Chen H, Dittmar T, et al. An intercomparison of three methods for the large-scale isolation of oceanic dissolved organic matter. Mar Chem. 2014;161:14–19.

    CAS 

    Google Scholar 

  • 31.

    Riedel T, Dittmar T. A method detection limit for the analysis of natural organic matter via Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem. 2014;86:8376–82.

    CAS 
    PubMed 

    Google Scholar 

  • 32.

    Merder J, Freund JA, Feudel U, Hansen CT, Hawkes JA, Jacob B, et al. ICBM-OCEAN: processing ultrahigh-resolution mass spectrometry data of complex molecular mixtures. Anal Chem. 2020;92:6832–8.

    CAS 
    PubMed 

    Google Scholar 

  • 33.

    Koch BP, Dittmar T. From mass to structure: an aromaticity index for high resolution mass data of natural organic matter. Rapid Commun Mass Spectrom. 2006;20:926–32.

    CAS 

    Google Scholar 

  • 34.

    Koch BP, Dittmar T. Erratum: from mass to structure: an aromaticity index for high resolution mass data of natural organic matter. Rapid Commun Mass Spectrom. 2016;20:250–250.

    Google Scholar 

  • 35.

    Oksanen J, Blanchen FG, Friendly M, Kindt R, Legendre R, McGlinn D, et al. Vegan: community ecology package. R package version 2 4-3 2017. (https://CRAN.R-project.org/package=vegan). Accessed June 2020.

  • 36.

    Hansen CT, Niggemann J, Giebel HA, Simon M, Bach W, Dittmar T. Biodegradability of hydrothermally altered deep-sea dissolved organic matter. Mar Chem. 2019;217. https://doi.org/10.1016/j.marchem.2019.103706.

  • 37.

    Orsi WD, Smith JM, Liu S, Liu Z, Sakamoto CM, Wilken S, et al. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean. ISME J. 2016;10:2158–73.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol. 1993;2:113–8.

    CAS 
    PubMed 

    Google Scholar 

  • 39.

    White TJ, Bruns S, Lee S, Taylor J “Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics”. In: M Innis, D Gelfand, K Sninsky, T White, editors. PCR Protocols: a guide to methods and applications. Academic Pres, New York, NY; 1990. pp. 315–22.

  • 40.

    Tedersoo L, Lindahl B. Fungal identification biases in microbiome projects. Environ Microbiol Rep. 2016;8:774–9.

    PubMed 

    Google Scholar 

  • 41.

    Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.

    CAS 
    PubMed 

    Google Scholar 

  • 42.

    Nilsson RH, Larsson KH, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019;47:D259–D264.

    CAS 
    PubMed 

    Google Scholar 

  • 43.

    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Coskun OK, Pichler M, Vargas S, Gilder S, Orsi WD. Linking uncultivated microbial populations and benthic carbon turnover by using quantitative stable isotope probing. Appl Environ Microbiol. 2018;84:e01083–18.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Chemidlin Prevost-Boure N, Christen R, Dequiedt S, Mougel C, Lellevre M, Jolivet C, et al. Validation and application of a PCR primer set to quantify fungal communities in the soil environment by real-time quantitative PCR. PLoS One. 2011;6:e24166.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Banos S, Lentendu G, Kopf A, Wubet T, Glockner FO, Reich M. A comprehensive fungi-specific 18S rRNA gene sequence primer toolkit suited for diverse research issues and sequencing platforms. BMC Microbiol. 2018;18:190.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8:1494–512.

    CAS 
    PubMed 

    Google Scholar 

  • 48.

    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.

    CAS 
    PubMed 

    Google Scholar 

  • 49.

    Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, et al. The marine microbial eukaryote transcriptome sequencing project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 2014;12:e1001889.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Tatusov RL, Koonin EV, Lipman DJ. A genomic perspective on protein families. Science. 1997;278:631–7.

    CAS 
    PubMed 

    Google Scholar 

  • 51.

    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O, et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–21.

    CAS 
    PubMed 

    Google Scholar 

  • 53.

    Gouy M, Guindon S, Gascuel O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol. 2010;27:221–4.

    CAS 
    PubMed 

    Google Scholar 

  • 54.

    Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–495.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Tamames J, Puente-Sanchez F. SqueezeMeta, a highly portable, fully automatic metagenomic analysis pipeline. Front Microbiol. 2018;9:3349.

    PubMed 

    Google Scholar 

  • 56.

    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.

    CAS 
    PubMed 

    Google Scholar 

  • 58.

    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.

    CAS 
    PubMed 

    Google Scholar 

  • 59.

    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–596.

    CAS 
    PubMed 

    Google Scholar 

  • 61.

    Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinforma. 2004;5:1–19.

    Google Scholar 

  • 62.

    Guillard RRL, Hargraves PE. Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia. 1993;32:234–6.

    Google Scholar 

  • 63.

    Inthorn M, Wagner T, Scheeder G, Zabel M. Lateral transport controls distribution, quality and burial of organic matter along continental slopes in high-productivity areas. Geology. 2006;34:205–8.

    CAS 

    Google Scholar 

  • 64.

    Hungate BA, Mau RL, Schwartz E, Caporaso JG, Dijkstra P, van Gestel N, et al. Quantitative microbial ecology through stable isotope probing. Appl Environ Microbiol. 2015;81:7570–81.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    Igarza M, Dittmar T, Graco M, Niggemann J. Dissolved organic matter cycling in the coastal upwelling system off central Peru during an “El Niño” year. Front Mar Sci. 2019;6:198.

    Google Scholar 

  • 66.

    Kuypers MM, Lavik G, Woebken D, Schmid M, Fuchs BM, Amann R, et al. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proc Natl Acad Sci USA. 2005;102:6478–83.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 67.

    Wright JJ, Konwar KM, Hallam SJ. Microbial ecology of expanding oxygen minimum zones. Nat Rev Microbiol. 2012;10:381–94.

    CAS 
    PubMed 

    Google Scholar 

  • 68.

    Rossel PE, Stubbins A, Hach PF, Dittmar T. Bioavailability and molecular composition of dissolved organic matter from a diffuse hydrothermal system. Mar Chem. 2015;177:257–66.

    CAS 

    Google Scholar 

  • 69.

    Schmidt F, Koch BP, Goldhammer T, Elvert M, Witt M, Lin Y, et al. Unraveling signatures of biogeochemical processes and the depositional setting in the molecular composition of pore water DOM across different marine environments. Geochim Cosmochim Acta. 2017;207:57–80.

    CAS 

    Google Scholar 

  • 70.

    Gruninger RJ, Puniya AK, Callaghan TM, Edwards JE, Youssef N, Dagar SS, et al. Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiol Ecol. 2014;90:1–17.

    CAS 
    PubMed 

    Google Scholar 

  • 71.

    Jones MD, Richards TA, Hawksworth DL, Bass D. Validation and justification of the phylum name Cryptomycota phyl. nov. IMA Fungus. 2011;2:173–5.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 72.

    Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia. 2016;108:1028–46.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 73.

    Morand SC, Bertignac M, Iltis A, Kolder ICRM, Pirovano W, Jourdain R, et al. Complete genome sequence of Malassezia restricta CBS 7877, an opportunist pathogen involved in dandruff and seborrheic dermatitis. Microbiol Resour Announc. 2019;8:e01543–18.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 74.

    Buckley DH, Huangyutitham V, Hsu SF, Nelson TA. Stable isotope probing with 15N achieved by disentangling the effects of genome G+C content and isotope enrichment on DNA density. Appl Environ Microbiol. 2007;73:3189–95.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 75.

    Tedersoo L, Sanchez-Ramirez S, Kõljalg U, Bahram M, Döring M, Schigel D, et al. High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Diversity. 2018;90:135–59.

    Google Scholar 

  • 76.

    Walsh EA, Kirkpatrick JB, Rutherford SD, Smith DC, Sogin M, D’Hondt S, et al. Bacterial diversity and community composition from seasurface to subseafloor. ISME J. 2016;10:979–89.

    PubMed 

    Google Scholar 

  • 77.

    Karpov SA, Mamkaeva MA, Aleoshin VV, Nassonova E, Lilje O, Gleason FH. Morphology, phylogeny, and ecology of the aphelids (Aphelidea, Opisthokonta) and proposal for the new superphylum Opisthosporidia. Front Microbiol. 2014;5:112.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 78.

    Jones MD, Forn I, Gadelha C, Egan MJ, Bass D, Massana R, et al. Discovery of novel intermediate forms redefines the fungal tree of life. Nature. 2011;474:200–3.

    CAS 
    PubMed 

    Google Scholar 

  • 79.

    Chang Y, Wang S, Sekimoto S, Aerts AL, Choi C, Clum A, et al. Phylogenomic analyses indicate that early Fungi evolved digesting cell walls of algal ancestors of land plants. Genome Biol Evol. 2015;7:1590–601.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 80.

    Loron CC, Francois C, Rainbird RH, Turner EC, Borensztajn S, Javaux EJ. Early fungi from the Proterozoic era in Arctic Canada. Nature. 2019;570:232–5.

    CAS 
    PubMed 

    Google Scholar 

  • 81.

    Lyons TW, Reinhard CT, Planavsky NJ. The rise of oxygen in Earth’s early ocean and atmosphere. Nature. 2014;506:307–15.

    CAS 
    PubMed 

    Google Scholar 

  • 82.

    Passow U. Production of transparent exopolymer particles (TEP) by phyto- and bacterioplankton. Mar Ecol Prog Ser. 2002;236:1–12.

    Google Scholar 

  • 83.

    Takahashi E, Ledauphin J, Goux D, Orvain F. Optimising extraction of extracellular polymeric substances (EPS) from benthic diatoms: comparison of the efficiency of six EPS extraction methods. Mar Freshw Res. 2009;60:1201–10.

    CAS 

    Google Scholar 

  • 84.

    de Brouwer JFC, Wolfstein K, Stal J. Physical characterization and diel dynamics of different fractions of extracellular polysaccharides in an axenic culture of a benthic diatom. Eur J Phycol. 2002;37:37–44.

    Google Scholar 

  • 85.

    Bass D, Howe A, Brown N, Barton H, Demidova M, Michelle H, et al. Yeast forms dominate fungal diversity in the deep oceans. Proc R Soc B. 2007;274:3069–77.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 86.

    Amend A. From dandruff to deep-sea vents: Malassezia-like fungi are ecologically hyper-diverse. PLoS Pathog. 2014;10:e1004277.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 87.

    Meeboon J, Takamatsu S. Microidium phyllanthi-reticulati sp. nov. on Phyllanthus reticulatus. Mycotaxon. 2017;132:289–97.

    Google Scholar 

  • 88.

    Lueders T, Wagner B, Claus P, Friedrich MW. Stable isotope probing of rRNA and DNA reveals a dynamic methylotroph community and trophic interactions with fungi and protozoa in oxic rice field soil. Environ Microbiol. 2004;6:60–72.

    CAS 
    PubMed 

    Google Scholar 

  • 89.

    Kjeldsen KU, Schreiber L, Thorup CA, Boesen T, Bjerg JT, Yang T, et al. On the evolution and physiology of cable bacteria. Proc Natl Acad Sci USA. 2019;116:19116–25.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 90.

    Dyksma S, Bischof K, Fuchs BM, Hoffmann K, Meier D, Meyerdierks A, et al. Ubiquitous Gammaproteobacteria dominate dark carbon fixation in coastal sediments. ISME J. 2016;10:1939–53.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 91.

    Middelburg JJ. Chemoautotrophy in the ocean. Geophys Res Let. 2011;38:94–97.

    Google Scholar 

  • 92.

    Starzynska-Janiszewska A, Dulinski R, Stodolak B. Fermentation with edible Rhizopus strains to enhance the bioactive potential of hull-less pumpkin oil cake. Molecules. 2020;25:5782.

    CAS 
    PubMed Central 

    Google Scholar 

  • 93.

    Dubovenko AG, Dunaevsky YE, Belozersky MA, Oppert B, Lord JC, Elpidina EN. Trypsin-like proteins of the fungi as possible markers of pathogenicity. Fungal Biol. 2010;114:151–9.

    CAS 
    PubMed 

    Google Scholar 

  • 94.

    Arnosti C, Wietz M, Brinkhoff T, Hehemann JH, Probandt D, Zeugner L, et al. The biogeochemistry of marine polysaccharides: sources, inventories, and bacterial drivers of the carbohydrate cycle. Ann Rev Mar Sci. 2021;13:81–108.

    CAS 
    PubMed 

    Google Scholar 

  • 95.

    Rossel PE, Bienhold C, Hehemann JH, Dittmar T, Boetius A. Molecular composition of dissolved organic matter in sediment porewater of the arctic deep-sea observatory HAUSGARTEN (Fram Strait). Front Mar Sci. 2020;7:428.

    Google Scholar 

  • 96.

    Fenchel T, Finlay BJ. Ecology and evolution in anoxic worlds. In: RM May, PH Harvey, editors. Oxford Series in Ecology and Evolution. Oxford University Press, Oxford; 1–288, 1995.

  • 97.

    Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev. 2002;66:506–77.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Genetic determinants of endophytism in the Arabidopsis root mycobiome

    Mixoplankton interferences in dilution grazing experiments