in

Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon

  • 1.

    Xiao, X. M., Biradar, C. M., Czarnecki, C., Alabi, T. & Keller, M. A simple algorithm for large-scale mapping of evergreen forests in tropical America, Africa and Asia. Remote Sens. 1, 355–374 (2009).

    Article 

    Google Scholar 

  • 2.

    Pan, Y. D. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. USA 108, 9899–9904 (2011).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Davidson, E. A. et al. The Amazon basin in transition. Nature 481, 321–328 (2012).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, E2602–E2610 (2013).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Mitchard, E. T. A. The tropical forest carbon cycle and climate change. Nature 559, 527–534 (2018).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Fearnside, P. M. Brazilian politics threaten environmental policies. Science 353, 746–748 (2016).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Fearnside, P. M. Business as Usual: A Resurgence of Deforestation in the Brazilian Amazon (Yale School of Forestry & Environmental Studies, 2017).

  • 9.

    Berenguer, E. et al. A large-scale field assessment of carbon stocks in human-modified tropical forests. Glob. Change Biol. 20, 3713–3726 (2014).

    Article 

    Google Scholar 

  • 10.

    Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Doughty, C. E. et al. Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature 519, 78–82 (2015).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Change 2, 182–185 (2012).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Baccini, A. et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230–234 (2017).

    CAS 
    Article 

    Google Scholar 

  • 14.

    PRODES Legal Amazon Deforestation Monitoring System (INPE, 2018); http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes

  • 15.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Tyukavina, A. et al. Types and rates of forest disturbance in Brazilian Legal Amazon, 2000–2013. Sci. Adv. 3, e1601047 (2017).

    Article 

    Google Scholar 

  • 17.

    Qin, Y. et al. Improved estimates of forest cover and loss in the Brazilian Amazon in 2000–2017. Nat. Sustain. 2, 764–772 (2019).

    Article 

    Google Scholar 

  • 18.

    Seymour, F. & Harris, N. L. Reducing tropical deforestation. Science 365, 756–757 (2019).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Richards, P., Arima, E., VanWey, L., Cohn, A. & Bhattarai, N. Are Brazil’s deforesters avoiding detection? Conserv. Lett. 10, 470–476 (2017).

    Article 

    Google Scholar 

  • 20.

    Fan, L. et al. Satellite-observed pantropical carbon dynamics. Nat. Plants 5, 944–951 (2019).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Brandt, M. et al. Satellite passive microwaves reveal recent climate-induced carbon losses in African drylands. Nat. Ecol. Evol. 2, 827–835 (2018).

    Article 

    Google Scholar 

  • 22.

    Wigneron, J.-P. et al. Tropical forests did not recover from the strong 2015–2016 El Niño event. Sci. Adv. 6, eaay4603 (2020).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Wigneron, J.-P. et al. SMOS-IC data record of soil moisture and L-VOD: historical development, applications and perspectives. Remote Sens. Environ. 254, 112238 (2021).

    Article 

    Google Scholar 

  • 24.

    Qin, Y. W. et al. Annual dynamics of forest areas in South America during 2007–2010 at 50 m spatial resolution. Remote Sens. Environ. 201, 73–87 (2017).

    Article 

    Google Scholar 

  • 25.

    Ferrante, L. & Fearnside, P. M. Brazil’s new president and ‘ruralists’ threaten Amazonia’s environment, traditional peoples and the global climate. Environ. Conserv. 46, 261–263 (2019).

    Article 

    Google Scholar 

  • 26.

    Artaxo, P. Working together for Amazonia. Science 363, 323–323 (2019).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Aragão, L. E. O. C. et al. 21st century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 9, 536 (2018).

    Article 
    CAS 

    Google Scholar 

  • 28.

    Nunes, S., Oliveira, L., Siqueira, J., Morton, D. C. & Souza, C. M. Unmasking secondary vegetation dynamics in the Brazilian Amazon. Environ. Res. Lett. 15, 034057 (2020).

    Article 

    Google Scholar 

  • 29.

    Hilker, T. et al. Vegetation dynamics and rainfall sensitivity of the Amazon. Proc. Natl Acad. Sci. USA 111, 16041–16046 (2014).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Liu, J. et al. Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Nino. Science 358, eaam5690 (2017).

    Article 
    CAS 

    Google Scholar 

  • 31.

    Giardina, F. et al. Tall Amazonian forests are less sensitive to precipitation variability. Nat. Geosci. 11, 405–409 (2018).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Matricardi, E. A. T. et al. Long-term forest degradation surpasses deforestation in the Brazilian Amazon. Science 369, 1378–1382 (2020).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Yang, Y. et al. Post-drought decline of the Amazon carbon sink. Nat. Commun. 9, 3172 (2018).

    Article 
    CAS 

    Google Scholar 

  • 34.

    Gatti, L. V. et al. Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements. Nature 506, 76–80 (2014).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Asner, G. P. et al. Selective logging in the Brazilian Amazon. Science 310, 480–482 (2005).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Silva, C. H. L.Jr et al. Persistent collapse of biomass in Amazonian forest edges following deforestation leads to unaccounted carbon losses. Sci. Adv. 6, eaaz8360 (2020).

    Article 

    Google Scholar 

  • 37.

    Espírito-Santo, F. D. B. et al. Size and frequency of natural forest disturbances and the Amazon forest carbon balance. Nat. Commun. 5, 3434 (2014).

    Article 
    CAS 

    Google Scholar 

  • 38.

    Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M. F. & Nepstad, D. The 2010 Amazon drought. Science 331, 554–554 (2011).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Jiménez-Muñoz, J. C. et al. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Sci. Rep. 6, 33130 (2016).

    Article 
    CAS 

    Google Scholar 

  • 40.

    Harris, N. L. et al. Baseline map of carbon emissions from deforestation in tropical regions. Science 336, 1573–1576 (2012).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Aguiar, A. P. D. et al. Land use change emission scenarios: anticipating a forest transition process in the Brazilian Amazon. Glob. Change Biol. 22, 1821–1840 (2016).

    Article 

    Google Scholar 

  • 42.

    Aragão, L. E. O. C. et al. Environmental change and the carbon balance of Amazonian forests. Biol. Rev. 89, 913–931 (2014).

    Article 

    Google Scholar 

  • 43.

    Friedlingstein, P. et al. Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019).

    Article 

    Google Scholar 

  • 44.

    Silva, C. V. J. et al. Estimating the multi-decadal carbon deficit of burned Amazonian forests. Environ. Res. Lett. 15, 114023 (2020).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Silva, C. V. J. et al. Drought-induced Amazonian wildfires instigate a decadal-scale disruption of forest carbon dynamics. Phil. Trans. R. Soc. B 373, 20180043 (2018).

    Article 

    Google Scholar 

  • 46.

    Barlow, J., Peres, C. A., Lagan, B. O. & Haugaasen, T. Large tree mortality and the decline of forest biomass following Amazonian wildfires. Ecol. Lett. 6, 6–8 (2003).

    Article 

    Google Scholar 

  • 47.

    Fuchs, R. et al. Why the US–China trade war spells disaster for the Amazon. Nature 567, 451–454 (2019).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Hansen, M. C., Potapov, P. & Tyukavina, A. Comment on ‘Tropical forests are a net carbon source based on aboveground measurements of gain and loss’. Science 363, eaar3629 (2019).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Dubayah, R. et al. The Global Ecosystem Dynamics Investigation: high-resolution laser ranging of the Earth’s forests and topography. Sci. Remote Sens. 1, 100002 (2020).

    Article 

    Google Scholar 

  • 50.

    Doughty, R. et al. TROPOMI reveals dry-season increase of solar-induced chlorophyll fluorescence in the Amazon forest. Proc. Natl Acad. Sci. USA 116, 22393–22398 (2019).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Moore, B. III et al. The potential of the Geostationary Carbon Cycle Observatory (GeoCarb) to provide multi-scale constraints on the carbon cycle in the Americas. Front. Environ. Sci. 6, 109 (2018).

    Article 

    Google Scholar 

  • 52.

    Landsat (NASA, USGS, 2019); https://landsat.gsfc.nasa.gov/news/media-resources

  • 53.

    Avitabile, V. et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Change Biol. 22, 1406–1420 (2016).

    Article 

    Google Scholar 

  • 54.

    Fernandez-Moran, R. et al. SMOS-IC: an alternative SMOS soil moisture and vegetation optical depth product. Remote Sens. 9, 457 (2017).

    Article 

    Google Scholar 

  • 55.

    Rodriguez-Fernandez, N. J. et al. An evaluation of SMOS L-band vegetation optical depth (L-VOD) data sets: high sensitivity of L-VOD to above-ground biomass in Africa. Biogeosciences 15, 4627–4645 (2018).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Konings, A. G. & Gentine, P. Global variations in ecosystem-scale isohydricity. Glob. Change Biol. 23, 891–905 (2017).

    Article 

    Google Scholar 

  • 57.

    Liu, Y. Y. et al. Recent reversal in loss of global terrestrial biomass. Nat. Clim. Change 5, 470–474 (2015).

    Article 

    Google Scholar 

  • 58.

    Moesinger, L. et al. The global long-term microwave Vegetation Optical Depth Climate Archive (VODCA). Earth Syst. Sci. Data 12, 177–196 (2020).

    Article 

    Google Scholar 

  • 59.

    Tang, H. et al. Characterizing global forest canopy cover distribution using spaceborne lidar. Remote Sens. Environ. 231, 111262 (2019).

    Article 

    Google Scholar 

  • 60.

    Crisp, D. et al. The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products. Atmos. Meas. Tech. 10, 59–81 (2017).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Kiel, M. et al. How bias correction goes wrong: measurement of XCO2 affected by erroneous surface pressure estimates. Atmos. Meas. Tech. 12, 2241–2259 (2019).

    CAS 
    Article 

    Google Scholar 

  • 62.

    Worden, J. R. et al. Evaluation and attribution of OCO-2 XCO2 uncertainties. Atmos. Meas. Tech. 10, 2759–2771 (2017).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Giglio, L. & Justice, C. MOD14A2 MODIS/Terra Thermal Anomalies/Fire 8-Day L3 Global 1km SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2015).

  • 64.

    Giglio, L., Justice, C., Boschetti, L. & Roy, D. MCD64A1 MODIS/Terra+Aqua Burned Area Monthly L3 Global 500m SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2015).

  • 65.

    Huffman, G. et al. Integrated Multi-satellitE Retrievals for GPM (IMERG). Version 4.4 (NASA’s Precipitation Processing Center, 2014); ftp://arthurhou.pps.eosdis.nasa.gov/gpmdata/

  • 66.

    Running, S., Mu, Q. & Zhao, M. MOD16A2 MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500m SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2017).

  • 67.

    Qin, Y., Xiao, X. & Wigneron, J.-P. Annual evergreen forest maps in the Brazilian Amazon during 2010–2019. Figshare https://doi.org/10.6084/m9.figshare.14115518.v1 (2021).

  • 68.

    Qin, Y., Xiao, X. & Wigneron, J.-P. Annual aboveground biomass maps in the Brazilian Amazon during 2010–2019. Figshare https://doi.org/10.6084/m9.figshare.14115566.v1 (2021).

  • 69.

    Qin, Y., Xiao, X. & Wigneron, J.-P. Code for evergreen forest and aboveground biomass analyses in the Brazilian Amazon. Figshare https://doi.org/10.6084/m9.figshare.14115680.v1 (2021).


  • Source: Ecology - nature.com

    Q&A: Vivienne Sze on crossing the hardware-software divide for efficient artificial intelligence

    China’s transition to electric vehicles