in

Carbon stocks of homestead forests have a mitigation potential to climate change in Bangladesh

  • 1.

    IEA. Renewables information 2019 overview. Clim. Change 2013 Phys. Sci. Basis 53, 1–30 (2019).

    Google Scholar 

  • 2.

    IPCC. Summary for Policymakers. In: Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. [V. Masson-Delmotte, P. Zhai, H. O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, T. Waterfield (eds.)]. (2018).

  • 3.

    IPCC. Foreword, Preface, Dedication and In Memoriam. Clim. Chang. 2014 Mitig. Clim. Chang. Contrib. Work. Gr. III to Fifth Assess. Rep. Intergov. Panel Clim. Chang. 1454 (2014).

  • 4.

    Shakoor, A. et al. Biogeochemical transformation of greenhouse gas emissions from terrestrial to atmospheric environment and potential feedback to climate forcing. Environ. Sci. Pollut. Res. 27, 38513–38536 (2020).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Mani, M., Bandyopadhyay, S., Chonabayashi, S., Markandya, A. & Mosier, T. South Asia’s Hotspots: The Impact of Temperature and Precipitation Changes on Living Standards. South Asia’s Hotspots: The Impact of Temperature and Precipitation Changes on Living Standards (2018). https://doi.org/10.1596/978-1-4648-1155-5.

  • 6.

    Sarkar, M. S. K., Sadeka, S., Sikdar, M. M. H. & Badiuzzaman. Energy consumption and CO2 emission in Bangladesh: Trends and policy implications. Asia Pac. J. Energy Environ. 5, 41–48 (2018).

    Article 

    Google Scholar 

  • 7.

    Mitchard, E. T. A. The tropical forest carbon cycle and climate change. Nature 559, 527–534 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 8.

    Dixon, R. K. et al. Carbon pools and flux of global forest ecosystems. Science 263, 185–190 (1994).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 9.

    Adame, M. F. et al. Carbon stocks of tropical coastal wetlands within the Karstic landscape of the Mexican Caribbean. PLoS ONE 8, e56569 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Bonan, G. B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 11.

    Henry, M. et al. Biodiversity, carbon stocks and sequestration potential in aboveground biomass in smallholder farming systems of western Kenya. Agric. Ecosyst. Environ. 129, 238–252 (2009).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Kumar, B. M. Species richness and aboveground carbon stocks in the homegardens of central Kerala, India. Agric. Ecosyst. Environ. 140, 430–440 (2011).

    Article 

    Google Scholar 

  • 13.

    Mattsson, E., Ostwald, M., Nissanka, S. P. & Pushpakumara, D. K. N. G. Quantification of carbon stock and tree diversity of homegardens in a dry zone area of Moneragala district, Sri Lanka. Agrofor. Syst. 89, 435–445 (2015).

    Article 

    Google Scholar 

  • 14.

    Nair, P. K. R., Kumar, B. M. & Nair, V. D. Agroforestry as a strategy for carbon sequestration. J. Plant Nutr. Soil Sci. 172, 10–23 (2009).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Murthy, I. K. Carbon sequestration potential of agroforestry systems in India. J. Earth Sci. Clim. Change 4, 1–7 (2013).

    Article 
    CAS 

    Google Scholar 

  • 16.

    Delgado, J. A. et al. Conservation practices to mitigate and adapt to climate change. J. Soil Water Conserv. 66, 118–129 (2011).

    Article 

    Google Scholar 

  • 17.

    Kabir, M. E. & Webb, E. L. Can homegardens conserve biodiversity in Bangladesh?. Biotropica 40, 95–103 (2008).

    Google Scholar 

  • 18.

    FD [Forest Department]. Bangladesh Forestry Master Plan 2017–2036, 2036 (2017).

  • 19.

    Mather, A. Global forest resources assessment 2000 main report. Land Use Policy 20, 195 (2003).

    Article 

    Google Scholar 

  • 20.

    FD [Forest Department]. District wise forest area of Bangladesh 2016. Preprint at http://www.bforest.gov.bd/ (2020).

  • 21.

    Mukul, S. A. et al. A new estimate of carbon for Bangladesh forest ecosystems with their spatial distribution and REDD+ implications. Int. J. Res. Land-use Sustain. 1, 33–41 (2014).

    Google Scholar 

  • 22.

    Nath, T. K., Aziz, N. & Inoue, M. Contribution of homestead forests to rural economy and climate change mitigation: A study from the ecologically critical area of Cox’s Bazar—Teknaf Peninsula, Bangladesh. Small-scale For. 14, 1–18 (2015).

    Article 

    Google Scholar 

  • 23.

    Jaman, M. S. et al. Quantification of carbon stock and tree diversity of homegardens in Rangpur District, Bangladesh. Int. J. Agric. For. 6, 169–180 (2016).

    Google Scholar 

  • 24.

    Wang, S. & Huang, Y. Determinants of soil organic carbon sequestration and its contribution to ecosystem carbon sinks of planted forests. Glob. Change Biol. 26, 3163–3173 (2020).

    ADS 
    Article 

    Google Scholar 

  • 25.

    Khan, M. N. I. et al. Allometric relationships of stand level carbon stocks to basal area, tree height and wood density of nine tree species in Bangladesh. Glob. Ecol. Conserv. 22, e01025 (2020).

    Article 

    Google Scholar 

  • 26.

    Shen, Y. et al. Tree aboveground carbon storage correlates with environmental gradients and functional diversity in a tropical forest. Sci. Rep. 6, 25304 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Petrokofsky, G. et al. Comparison of methods for measuring and assessing carbon stocks and carbon stock changes in terrestrial carbon pools. How do the accuracy and precision of current methods compare? A systematic review protocol. Environ. Evid. 1, 1–21 (2012).

    Article 

    Google Scholar 

  • 28.

    Dondini, M., Hastings, A., Saiz, G., Jones, M. B. & Smith, P. The potential of Miscanthus to sequester carbon in soils: Comparing field measurements in Carlow, Ireland to model predictions. GCB Bioenergy 1, 413–425 (2009).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Ullah, M. R. & Al-Amin, M. Above- and below-ground carbon stock estimation in a natural forest of Bangladesh. J. For. Sci. 58, 372–379 (2012).

    Article 

    Google Scholar 

  • 30.

    Nouvellon, Y. et al. Age-related changes in litter inputs explain annual trends in soil CO2 effluxes over a full Eucalyptus rotation after afforestation of a tropical savannah. Biogeochemistry 111, 515–533 (2012).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Krishna, M. P. & Mohan, M. Litter decomposition in forest ecosystems: A review. Energy Ecol. Environ. 2, 236–249 (2017).

    Article 

    Google Scholar 

  • 32.

    Patra, P. K. et al. The carbon budget of South Asia. Biogeosciences 10, 513–527 (2013).

    ADS 
    Article 

    Google Scholar 

  • 33.

    Ostertag, R., Marín-Spiotta, E., Silver, W. L. & Schulten, J. Litterfall and decomposition in relation to soil carbon pools along a secondary forest chronosequence in Puerto Rico. Ecosystems 11, 701–714 (2008).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Nair, P. K. R. & Garrity, D. Afroforestry—The Future of Global Land Use, Advances in Agroforestry (Springer, 2012) https://doi.org/10.1007/978-94-007-4676-3_1.

    Book 

    Google Scholar 

  • 35.

    Abrar, M. M. et al. Variations in the profile distribution and protection mechanisms of organic carbon under long-term fertilization in a Chinese Mollisol. Sci. Total Environ. 723, 138181 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 36.

    Baul, T. K., Datta, D. & Alam, A. A comparative study on household level energy consumption and related emissions from renewable (biomass) and non-renewable energy sources in Bangladesh. Energy Policy https://doi.org/10.1016/j.enpol.2017.12.037 (2018).

    Article 

    Google Scholar 

  • 37.

    Mackey, B. et al. Understanding the importance of primary tropical forest protection as a mitigation strategy. Mitig. Adapt. Strateg. Glob. Change 25, 763–787 (2020).

    Article 

    Google Scholar 

  • 38.

    Zaman, M. A., Osman, K. T. & Sirajul Haque, S. M. Comparative study of some soil properties in forested and deforested areas in Cox’s Bazar and Rangamati Districts, Bangladesh. J. For. Res. 21, 319–322 (2010).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Akhtaruzzaman, M., Osman, K. T. & Sirajul Haque, S. M. Soil properties in two forest sites in Cox’s Bazar, Bangladesh. J. For. Environ. Sci. 31, 280–287 (2015).

    Google Scholar 

  • 40.

    Islam, M., Deb, G. P. & Rahman, M. Forest fragmentation reduced carbon storage in a moist tropical forest in Bangladesh: Implications for policy development. Land Use Policy 65, 15–25 (2017).

    Article 

    Google Scholar 

  • 41.

    Nair, P. K. R., Nair, V. D., Kumar, B. M. & Haile, S. G. Soil carbon sequestration in tropical agroforestry systems: A feasibility appraisal. Environ. Sci. Policy 12, 1099–1111 (2009).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Aryal, D. R., Gómez-González, R. R., Hernández-Nuriasmú, R. & Morales-Ruiz, D. E. Carbon stocks and tree diversity in scattered tree silvopastoral systems in Chiapas, Mexico. Agrofor. Syst. 93, 213–227 (2019).

    Article 

    Google Scholar 

  • 43.

    Islam, M., Dey, A. & Rahman, M. Effect of tree diversity on soil organic carbon content in the homegarden agroforestry system of North-Eastern Bangladesh. Small-scale For. 14, 91–101 (2015).

    Article 

    Google Scholar 

  • 44.

    Saha, S. K., Nair, P. K. R., Nair, V. D. & Kumar, B. M. Soil carbon stock in relation to plant diversity of homegardens in Kerala, India. Agrofor. Syst. 76, 53–65 (2009).

    Article 

    Google Scholar 

  • 45.

    Kothandaraman, S., Dar, J. A., Sundarapandian, S., Dayanandan, S. & Khan, M. L. Ecosystem-level carbon storage and its links to diversity, structural and environmental drivers in tropical forests of Western Ghats, India. Sci. Rep. 10, 1–15 (2020).

    Article 
    CAS 

    Google Scholar 

  • 46.

    Youkhana, A. & Idol, T. Tree pruning mulch increases soil C and N in a shaded coffee agroecosystem in Hawaii. Soil Biol. Biochem. 41, 2527–2534 (2009).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Flessa, H. et al. Storage and stability of organic matter and fossil carbon in a Luvisol and Phaeozem with continuous maize cropping: A synthesis. J. Plant Nutr. Soil Sci. 171, 36–51 (2008).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Semere, M. Biomass and soil carbon stocks assessment of agroforestry systems and adjacent cultivated land, in Cheha Wereda, Gurage Zone, Ethiopia. Int. J. Environ. Sci. Nat. Resour. 20, 119–125 (2019).

    Google Scholar 

  • 49.

    Ramachandran Nair, P. K., Nair, V. D., Mohan Kumar, B. & Showalter, J. M. Carbon sequestration in agroforestry systems. Adv. Agron. 108, 237–307 (2010).

    Article 
    CAS 

    Google Scholar 

  • 50.

    Mustafa, A. et al. Soil aggregation and soil aggregate stability regulate organic carbon and nitrogen storage in a red soil of southern China. J. Environ. Manag. 270, 110894 (2020).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Sayer, E. J. et al. Tropical forest soil carbon stocks do not increase despite 15 years of doubled litter inputs. Sci. Rep. 9, 1–9 (2019).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 52.

    Rahman, M., Biswas, J., Maniruzzaman, M., Choudhury, A. & Ahmed, F. Effect of tillage practices and rice straw management on soil environment and carbon dioxide emission. Agriculture 15, 127–142 (2017).

    Google Scholar 

  • 53.

    Day, M., Baldauf, C., Rutishauser, E. & Sunderland, T. C. H. Relationships between tree species diversity and above-ground biomass in Central African rainforests: Implications for REDD. Environ. Conserv. 41, 64–72 (2014).

    Article 

    Google Scholar 

  • 54.

    Poorter, L. et al. Diversity enhances carbon storage in tropical forests. Glob. Ecol. Biogeogr. 24, 1314–1328 (2015).

    Article 

    Google Scholar 

  • 55.

    Rahman, M. M., Kabir, M. E., Jahir Uddin Akon, A. S. M. & Ando, K. High carbon stocks in roadside plantations under participatory management in Bangladesh. Glob. Ecol. Conserv. 3, 412–423 (2015).

    Article 

    Google Scholar 

  • 56.

    Kamruzzaman, M., Ahmed, S., Paul, S., Rahman, M. M. & Osawa, A. Stand structure and carbon storage in the oligohaline zone of the Sundarbans mangrove forest, Bangladesh. For. Sci. Technol. 14, 23–28 (2018).

    Google Scholar 

  • 57.

    Asok, S. & Sobha, V. Analysis of variation of soil bulk densities with respect to different vegetation classes, in a tropical rain forest—A study in Shendurney Wildlife Sanctuary, S. Kerala, India. Glob. J. Environ. Res. 8, 17–20 (2014).

    Google Scholar 

  • 58.

    Périé, C. & Ouimet, R. Organic carbon, organic matter and bulk density relationships in boreal forest soils. Can. J. Soil Sci. 88, 315–325 (2008).

    Article 

    Google Scholar 

  • 59.

    Biswas, A., Alamgir, M., Haque, S. M. S. & Osman, K. T. Study on soils under shifting cultivation and other land use categories in Chittagong Hill Tracts, Bangladesh. J. For. Res. 23, 261–265 (2012).

    CAS 
    Article 

    Google Scholar 

  • 60.

    Leff, J. W. et al. Experimental litterfall manipulation drives large and rapid changes in soil carbon cycling in a wet tropical forest. Glob. Change Biol. 18, 2969–2979 (2012).

    ADS 
    Article 

    Google Scholar 

  • 61.

    Wang, Q., He, T., Wang, S. & Liu, L. Carbon input manipulation affects soil respiration and microbial community composition in a subtropical coniferous forest. Agric. For. Meteorol. 178–179, 152–160 (2013).

    ADS 
    Article 

    Google Scholar 

  • 62.

    Ali Shah, S. A. et al. Long-term fertilization affects functional soil organic carbon protection mechanisms in a profile of Chinese loess plateau soil. Chemosphere 267, 128897 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 63.

    Miah, D., Uddin, M. F., Bhuiyan, M. K., Koike, M. & Shin, M. Y. Carbon sequestration by the indigenous tree species in the reforestation program in Bangladesh-aphanamixis polystachya Wall. and Parker. Forest Sci. Technol. 5, 62–65 (2009).

    Article 

    Google Scholar 

  • 64.

    Kibria, M. G. & Saha, N. Analysis of existing agroforestry practices in Madhupur Sal forest: An assessment based on ecological and economic perspectives. J. For. Res. 22, 533–542 (2011).

    CAS 
    Article 

    Google Scholar 

  • 65.

    Mikrewongel Tadesse, A. B. Estimation of carbon stored in agroforestry practices in Gununo Watershed, Wolayitta Zone, Ethiopia. J. Ecosyst. Ecogr. 05, 1–5 (2015).

    Article 

    Google Scholar 

  • 66.

    Abrar, M. M. et al. Carbon, nitrogen, and phosphorus stoichiometry mediate sensitivity of carbon stabilization mechanisms along with surface layers of a Mollisol after long-term fertilization in Northeast China. J. Soils Sediments 21, 705–723 (2021).

    CAS 
    Article 

    Google Scholar 

  • 67.

    Ahmed, N. & Glaser, M. Coastal aquaculture, mangrove deforestation and blue carbon emissions: Is REDD+ a solution?. Mar. Policy 66, 58–66 (2016).

    Article 

    Google Scholar 

  • 68.

    BBS [Bangladesh Bureau of Statistics]. Statistical yearbook of Bangladesh 2018. Statistics Division, Ministry of Planning, Government of the People’s Republic of Bangladesh (2019).

  • 69.

    BMD [Bangladesh Metereological Department]. Cox’s Bazar region, Chittagong, Bangladesh (2020).

  • 70.

    Osman, K. S., Jashimuddin, M., Haque, S. M. S. & Miah, S. Effect of shifting cultivation on soil physical and chemical properties in Bandarban hill district, Bangladesh. J. For. Res. 24, 791–795 (2013).

    CAS 
    Article 

    Google Scholar 

  • 71.

    SRDI. Soil resource development institute. Annu. Report. Soil Resour. Dev. Institute, Dhaka, Bangladesh (2018).

  • 72.

    Upazila Parishad Office. Bandarban Sadar Upazila, Bandarban District, Chittagong Hill Trcats, Bangladesh (2019).

  • 73.

    Blake, G. R. Bulk density. In Methods of Soil Analysis. Part 1 (eds Black, C. A. et al.) 894–895 (American Society of Agronomy Inc., 1965).

    Google Scholar 

  • 74.

    Chave, J. et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 20, 3177–3190 (2014).

    ADS 
    Article 

    Google Scholar 

  • 75.

    Macdicken, K. G. A guide to monitoring carbon storage in forestry and agroforestry projects (2015).

  • 76.

    Sattar, M. A., Bhattacharje, D. K. & Kabir, M. F. Physical and Mechanical Properties and Uses of Timbers of Bangladesh (Bangladesh Forest Research Institute, 1999).

    Google Scholar 

  • 77.

    Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).

    Article 

    Google Scholar 

  • 78.

    Data Set. Definitions (2020). https://doi.org/10.32388/5b0dft.

  • 79.

    Hairiah, K. Measuring carbon stocks: Across land use systems: a manual. Published in close cooperation with Brawijaya University and ICALRRD (Indonesian Center for Agricultural Land Resources Research and Development) (2011).

  • 80.

    Frangi, J. L., Lugo, A. E., Forest, F., Frangi, J. L. & Service, F. Ecosystem dynamics of a subtropical floodplain forest published by: Ecological Society of America. Ecosyst. Dyn. Subtrop. 55, 351–369 (2016).

    Google Scholar 

  • 81.

    Issa, S., Dahy, B., Ksiksi, T. & Saleous, N. Development of a new allometric equation correlated WTH RS variables for the assessment of date palm biomass. Proc. 39th Asian Conf. Remote Sens. Remote Sens. Enabling Prosper. ACRS 2018 2, 730–739 (2018).

  • 82.

    Brown, S. Estimating biomass and biomass change of tropical forests: A Primer. FAO For. Pap. 134, 13–33 (1997).

    Google Scholar 

  • 83.

    Margalef, R. Information theory in ecology. Gen. Syst. 3, 36–71 (1958).

    Google Scholar 

  • 84.

    Michael, P. Ecological Methods for Field and Laboratory Investigation (Tata Mc Graw Hill, 1990).

    Google Scholar 

  • 85.

    Shukla, R. S. & Chandel, P. S. Plant Ecology and Soil Science 9th edn. (S. Chand and Company, 2000).

    Google Scholar 

  • 86.

    Ball, D. F. Loss-on-ignition as an estimate. J. Soil Sci. 15, 84–92 (1964).

    CAS 
    Article 

    Google Scholar 

  • 87.

    Pearson, T., Walker, S. & Brown, S. Sourcebook for Land Use, Land-Use Change and Forestry Projects 29 (Winrock International and the BioCarbon Fund of the World Bank, 2005).

    Google Scholar 

  • 88.

    Pearson, T. R. H., Brown, S. L. & Birdsey, R. A. Measurement guidelines for the sequestration of forest carbon. Gen. Tech. Rep. NRS-18. Delaware United States Dep. Agric. For. Serv. 18, 42 (2007).

  • 89.

    Coleman, D. C. Soil carbon balance in a successional grassland. Oikos 24, 195–199. https://doi.org/10.2307/3543875 (1973).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Q&A: Vivienne Sze on crossing the hardware-software divide for efficient artificial intelligence

    China’s transition to electric vehicles