van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).
Google Scholar
Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).
Google Scholar
Wepprich, T., Adrion, J. R., Ries, L., Wiedmann, J. & Haddad, N. M. Butterfly abundance declines over 20 years of systematic monitoring in Ohio, USA. PLoS ONE 14, e0216270 (2019).
Google Scholar
Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R. & Stopak, D. Insect decline in the Anthropocene: death by a thousand cuts. Proc. Natl Acad. Sci. USA 118, e2023989118 (2021).
Google Scholar
Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).
Google Scholar
Winfree, R., Fox, J. W., Williams, N. M., Reilly, J. R. & Cariveau, D. P. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635 (2015).
Google Scholar
Cardoso, P. et al. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. 242, 108426 (2020).
Brower, L. P. et al. Decline of monarch butterflies overwintering in Mexico: is the migratory phenomenon at risk? Insect Conserv. Divers. 5, 95–100 (2012).
Agrawal, A. A. & Inamine, H. Mechanisms behind the monarch’s decline. Science 360, 1294–1296 (2018).
Google Scholar
Schultz, C. B., Brown, L. M., Pelton, E. & Crone, E. E. Citizen science monitoring demonstrates dramatic declines of monarch butterflies in western North America. Biol. Conserv. 214, 343–346 (2017).
Thogmartin, W. E. et al. Monarch butterfly population decline in North America: identifying the threatening processes. R. Soc. Open Sci. 4, 170760 (2017).
Google Scholar
Boyle, J. H., Dalgleish, H. J. & Puzey, J. R. Monarch butterfly and milkweed declines substantially predate the use of genetically modified crops. Proc. Natl Acad. Sci. USA 116, 3006–3011 (2019).
Google Scholar
Hann, N. L. & Landis, D. A. The importance of shifting disturbance regimes in monarch butterfly decline and recovery. Front. Ecol. Evol. 7, 191 (2019).
Oberhauser, K. S. et al. Temporal and spatial overlap between monarch larvae and corn pollen. Proc. Natl Acad. Sci. USA 98, 11913–11918 (2001).
Google Scholar
Pleasants, J. M. & Oberhauser, K. S. Milkweed loss in agricultural fields because of herbicide use: effect on the monarch butterfly population. Insect Conserv. Divers. 6, 135–144 (2013).
Ries, L., Taron, D. J. & Rendón-Salinas, E. The disconnect between summer and winter monarch trends for the eastern migratory population: possible links to differing drivers. Ann. Entomol. Soc. Am. 108, 691–699 (2015).
Inamine, H., Ellner, S. P., Springer, J. P. & Agrawal, A. A. Linking the continental migratory cycle of the monarch butterfly to understand its population decline. Oikos 125, 1081–1091 (2016).
Saunders, S. P. et al. Multiscale seasonal factors drive the size of winter monarch colonies. Proc. Natl Acad. Sci. USA 116, 8609–8614 (2019).
Google Scholar
Zalucki, M. P. Temperature and rate of development in Danaus plexippus L. and D. chrysippus L. (Lepidoptera: Nymphalidae). Aust. J. Entomol. 21, 241–246 (1982).
Zipkin, E. F., Ries, L., Reeves, R., Regetz, J. & Oberhauser, K. S. Tracking climate impacts on the migratory monarch butterfly. Glob. Change Biol. 18, 3039–3049 (2012).
Saunders, S. P., Ries, L., Oberhauser, K. S., Thogmartin, W. E. & Zipkin, E. F. Local and cross-seasonal associations of climate and land use with abundance of monarch butterflies. Ecography 41, 278–290 (2018).
Batalden, R. V., Oberhauser, K. & Peterson, A. T. Ecological niches in sequential generations of eastern North American monarch butterflies: the ecology of migration and likely climate change implications. Environ. Entomol. 36, 1365–1373 (2007).
Google Scholar
Lemoine, N. P. Climate change may alter breeding ground distributions of eastern migratory monarchs via range expansion of Asclepias host plants. PLoS ONE 10, e0118614 (2015).
Google Scholar
Vidal, O. & Rendón-Salinas, E. Dynamics and trends of overwintering colonies of the monarch butterfly in Mexico. Biol. Conserv. 180, 165–175 (2014).
Thogmartin, W. E. et al. Density estimates of monarch butterflies overwintering in central Mexico. PeerJ 5, e3221 (2017).
Google Scholar
Flockhart, D. T. T., Pichancourt, J.-B., Norris, D. R. & Martin, T. G. Unravelling the annual cycle in a migratory animal: breeding-season habitat loss drives population declines of monarch butterflies. J. Anim. Ecol. 84, 155–165 (2015).
Google Scholar
Oberhauser, K. et al. A trans-national monarch butterfly population model and implications for regional conservation priorities. Ecol. Entomol. 42, 51–60 (2017).
Wilcox, A. A. E., Flockhart, D. T. T., Newman, A. E. M. & Norris, D. R. An evaluation of studies on the potential threats contributing to the decline of eastern migratory North American monarch butterflies (Danaus plexippus). Front. Ecol. Evol. 7, 99 (2019).
Chevan, A. & Sutherland, M. Hierarchical partitioning. Am. Stat. 45, 90–96 (1991).
Dai, S., Shulski, M. D., Hubbard, K. G. & Takle, E. S. A spatiotemporal analysis of Midwest US temperature and precipitation trends during the growing season from 1980 to 2013. Int. J. Climatol. 36, 517–525 (2016).
Feng, Z. et al. More frequent intense and long-lived storms dominate the springtime trend in central US rainfall. Nat. Commun. 7, 13429 (2016).
Google Scholar
Crimmins, T. M. & Crimmins, M. A. Biologically-relevant trends in springtime temperatures across the United States. Geophys. Res. Lett. 46, 12377–12387 (2019).
Roy, D. B., Rothery, P., Moss, D., Pollard, E. & Thomas, J. A. Butterfly numbers and weather: predicting historical trends in abundance and the future effects of climate change. J. Anim. Ecol. 70, 201–217 (2001).
Nelson, W. A., Bjørnstad, O. N. & Yamanaka, T. Recurrent insect outbreaks caused by temperature-driven changes in system stability. Science 341, 796–799 (2013).
Google Scholar
IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds. Field, C. B. et al.) (Cambridge Univ. Press, 2014).
Diffenbaugh, N. S. & Giorgi, F. Climate change hotspots in the CMIP5 global climate model ensemble. Clim. Change 114, 813–822 (2012).
Google Scholar
Cook, K. H., Vizy, E. K., Launer, Z. S. & Patricola, C. M. Springtime intensification of the Great Plains low-level jet and Midwest precipitation in GCM simulations of the twenty-first century. J. Clim. 21, 6321–6340 (2008).
Diffenbaugh, N. S. & Field, C. B. Changes in ecologically critical terrestrial climate conditions. Science 341, 486–492 (2013).
Google Scholar
Wagner, D. L. Insect declines in the Anthropocene. Ann. Rev. Entomol. 65, 457–480 (2020).
Google Scholar
Forister, M. L. et al. Fewer butterflies seen by community scientists across the warming and drying landscapes of the American West. Science 371, 1042–1045 (2021).
Google Scholar
Janzen, D. H. & Hallwachs, W. To us insectometers, it is clear that insect decline in our Costa Rican tropics is real, so let’s be kind to the survivors. Proc. Natl Acad. Sci. USA 118, e2002546117 (2021).
Google Scholar
Flockhart, D. T. T. et al. Regional climate on the breeding grounds predicts variation in the natal origin of monarch butterflies overwintering in Mexico over 38 years. Glob. Change Biol. 23, 2565–2576 (2017).
Wassenaar, L. I. & Hobson, K. A. Natal origins of migratory monarch butterflies at wintering colonies in Mexico: new isotopic evidence. Proc. Natl Acad. Sci. USA 95, 15436–15439 (1998).
Google Scholar
Oberhauser, K. S. et al. in Monarchs in a Changing World: Biology and Conservation of an Iconic Butterfly (eds. Oberhauser, K. S. et al.) 13–30 (Cornell Univ. Press, 2015).
Pollard, E. A method for assessing changes in the abundance of butterflies. Biol. Conserv. 12, 115–134 (1977).
Saunders, S. P., Ries, L., Obserhauser, K. S. & Zipkin, E. F. Evaluating confidence in climate-based predictions of population change in a migratory species. Glob. Ecol. Biogeogr. 25, 1000–1012 (2016).
Missrie, M. in The Monarch Butterfly: Biology and Conservation (eds. Obserhauser, K. S. & Solensky, M. J.) 141–150 (Cornell Univ. Press, 2004).
García-Serrano, E., Reyes, J. L. & Alvarez, B. X. M. in The Monarch Butterfly: Biology and Conservation (eds. Obserhauser, K. S. & Solensky, M. J.) 129–133 (Cornell Univ. Press, 2004).
Ramírez, M. I., Sáenz-Romero, C., Rehfeldt, G. & Salas-Canela, L. in Monarchs in a Changing World: Biology and Conservation of an Iconic Butterfly (eds. Oberhauser, K. S. et al.) 157–168 (Cornell Univ. Press, 2015).
Howard, E. & Davis, A. K. Investigating long-term changes in the spring migration of monarch butterflies (Lepidoptera: Nymphalidae) using 18 years of data from Journey North, a citizen science program. Ann. Entomol. Soc. Am. 108, 664–669 (2015).
McMaster, G. S. & Wilhelm, W. Growing degree-days: one equation, two interpretations. Agric. Meteorol. 87, 291–300 (1997).
Thornton, P. E. et al. Daymet: Daily Surface Weather Data on a 1-km Grid for North America Version 3 (ORNL DAAC, 2018); https://doi.org/10.3334/ORNLDAAC/1328
Hartzler, R. G. & Buhler, D. D. Occurrence of common milkweed (Asclepias syriaca) in cropland and adjacent areas. Crop Prot. 19, 363–366 (2000).
Hartzler, R. G. Reduction in common milkweed (Asclepias syriaca) occurrence in Iowa cropland from 1999 to 2009. Crop Prot. 29, 1542–1544 (2010).
Homer, C. G. et al. Completion of the 2011 National Land Cover Database for the conterminous United States—representing a decade of land cover change information. Photogramm. Eng. Remote Sens. 81, 345–354 (2015).
Douglas, M. R., Sponsler, D. B., Lonsdorf, E. V. & Grozinger, C. M. County-level analysis reveals a rapidly shifting landscape of insecticide hazard to honey bees (Apis mellifera) on US farmland. Sci. Rep. 10, 797 (2020).
Google Scholar
Benbrook, C. M. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. 28, 3 (2016).
Google Scholar
Pesticide National Synthesis Project (US Geological Survey, 2020); https://water.usgs.gov/nawqa/pnsp/usage/maps/county-level/
Quick Stats (US Department of Agriculture, National Agricultural Statistics Service, 2020); http://quickstats.nass.usda.gov
Crops (Ontario Ministry of Agriculture, Food and Rural Affairs, 2020); http://www.omafra.gov.on.ca/english/crops/
Batalden, R. V. & Oberhauser, K. S. in Monarchs in a Changing World: Biology and Conservation of an Iconic Butterfly (eds. Oberhauser, K. S. et al.) 215–224 (Cornell Univ. Press, 2015).
Alonso-Mejía, A., Rendón-Salinas, E., Montesinos-Patiño, E. & Brower, L. P. Use of lipid reserves by monarch butterflies overwintering in Mexico: implications for conservation. Ecol. Appl. 7, 934–947 (1997).
Brower, L. P., Fink, L. S. & Walford, P. Fueling the fall migration of the monarch butterfly. Integr. Comp. Biol. 46, 1123–1142 (2006).
Google Scholar
Tracy, J. L., Kantola, T., Baum, K. A. & Coulson, R. N. Modeling fall migration pathways and spatially identifying potential migratory hazards for the eastern monarch butterfly. Landsc. Ecol. 34, 443–458 (2019).
Feldman, R. E. & McGill, B. J. How important is nectar in shaping spatial variation in the abundance of temperate breeding hummingbirds? J. Biogeogr. 41, 489–500 (2014).
Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m SIN Grid V006 [Data set] (NASA EOSDIS Land Processes DAAC, 2015); https://doi.org/10.5067/MODIS/MOD13Q1.006
Vidal, O., López-García, J. & Rendón-Salinas, E. Trends in deforestation and forest degradation after a decade of monitoring in the Monarch Butterfly Biosphere Reserve in Mexico. Conserv. Biol. 28, 177–186 (2013).
Google Scholar
Williams, E. H. & Brower, L. P. in Monarchs in a Changing World: Biology and Conservation of an Iconic Butterfly (eds. Oberhauser, K. S. et al.) 109–116 (Cornell Univ. Press, 2015).
Brower, L. P. et al. in The Monarch Butterfly: Biology and Conservation (eds. Obserhauser, K. S. & Solensky, M. J.) 151–166 (Cornell Univ. Press, 2004).
Brower, L. P. et al. Butterfly mortality and salvage logging from the March 2016 storm in the Monarch Butterfly Biosphere Reserve in Mexico. Am. Entom. 63, 151–164 (2017).
Farfán-Gutiérrez, M. et al. Modeling anthropic factors as drivers of wildfire occurrence at the Monarch Butterfly Biosphere. Madera y Bosques 24, e2431591 (2018).
Ramírez, M. I., López-Sánchez, J. G. & Barrasa, S. Mapa de Vegetación y Cubiertas del Suelo, Reserva de la Biosfera Mariposa Monarca Vol. II (CIGA-UNAM, 2019).
Flores-Martínez, J. J. et al. Recent forest cover loss in the core zones of the Monarch Butterfly Biosphere Reserve in Mexico. Front. Ecol. Evol. 7, 167 (2019).
Ramírez, M. I., Gímenez-Azcárate, J. & Luna, L. Effects of human activities on monarch butterfly habitat in protected mountain forests, Mexico. For. Chron. 79, 242–246 (2003).
Ramírez, M. I., Miranda, R., Zubieta, R. & Jiménez, M. Land cover and road network map for the Monarch Butterfly Biosphere Reserve in Mexico 2003. J. Maps 3, 181–190 (2007).
Zuur, A. F. & Ieno, E. N. Beginner’s Guide to Zero-Inflated Models with R (Highland Statistics Ltd, 2016).
Yackulic, C. B., Dodrill, M., Dzul, M., Sanderlin, J. S. & Reid, J. A. A need for speed in Bayesian population models: a practical guide to marginalizing and recovering discrete latent states. Ecol. Appl. 30, e02112 (2020).
Google Scholar
Murray, K. & Conner, M. M. Methods to quantify variable importance: implications for the analysis of noisy ecological data. Ecology 90, 348–355 (2009).
Google Scholar
Mac Nally, R. Hierarchical partitioning as an interpretative tool in multivariate inference. Austral Ecol. 21, 224–228 (1996).
Gelman, A., Goodrich, B., Gabry, J. & Vehtari, A. R-squared for Bayesian regression models. Am. Stat. 73, 307–309 (2019).
Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1 (2017).
Stan Development Team. rstan: the R Interface to Stan. R package version 2.17.3 http://mc-stan.org/ (2018).
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019); https://www.R-project.org/
Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).
Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge Univ. Press, 2007).
Source: Ecology - nature.com