in

Changes in soil microbial community and activity caused by application of dimethachlor and linuron

  • 1.

    Food and Agriculture Organization of the United Nations. FAOSTAT Database., http://www.fao.org/faostat/en/#home (2020).

  • 2.

    Sharma, A. et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 1, 1446. https://doi.org/10.1007/s42452-019-1485-1 (2019).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Peterson, M. A., Collavo, A., Ovejero, R., Shivrain, V. & Walsh, M. J. The challenge of herbicide resistance around the world: A current summary. Pest. Manag. Sci. 74, 2246–2259. https://doi.org/10.1002/ps.4821 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 4.

    Landrigan, P. J. & Benbrook, C. GMOs, herbicides, and public health. N. Engl. J. Med. 373, 693–695 (2015).

    Article 

    Google Scholar 

  • 5.

    Horwath, W. R. The role of the soil microbial biomass in cycling nutrients. Microbial biomass: A paradigm shift in terrestrial biogeochemistry. World Sci. 41–66 https://doi.org/10.1142/9781786341310_0002 (2017).

  • 6.

    Meena, R. S. et al. Impact of agrochemicals on soil microbiota and management: A review. Land 9, 34 (2020).

    Article 

    Google Scholar 

  • 7.

    Perucci, P., Vischetti, C. & Battistoni, F. Rimsulfuron in a silty clay loam soil: Effects upon microbiological and biochemical properties under varying microcosm conditions. Soil Biol. Biochem. 31, 195–204 (1999).

    Article 

    Google Scholar 

  • 8.

    Huang, X. et al. Microbial catabolism of chemical herbicides: Microbial resources, metabolic pathways and catabolic genes. Pestic. Biochem. Physiol. 143, 272–297 (2017).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Lewis, K. A., Tzilivakis, J., Warner, D. J. & Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. 22, 1050–1064. https://doi.org/10.1080/10807039.2015.1133242 (2016).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Syngenta. Teridox label, https://www.syngenta.sk/sites/g/files/zhg356/f/etiketa_teridox_500_ec.pdf (2014).

  • 11.

    European Food Safety Authority. Conclusion regarding the peer review of the pesticide risk assessment of the active substance dimethachlor. EFSA J. 6, 169r (2008).

    Google Scholar 

  • 12.

    López-Ruiz, R., Romero-González, R., Ortega-Carrasco, E., Martínez Vidal, J. L. & Garrido Frenich, A. Degradation studies of dimethachlor in soils and water by UHPLC-HRMS: Putative elucidation of unknown metabolites. Pest. Manag. Sci. 76, 721–729. https://doi.org/10.1002/ps.5570 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 13.

    Rasmussen, J., Aamand, J., Rosenberg, P., Jacobsen, O. S. & Sørensen, S. R. Spatial variability in the mineralisation of the phenylurea herbicide linuron within a Danish agricultural field: Multivariate correlation to simple soil parameters. Pest Manag. Sci. Formerly Pesticide Sci. 61, 829–837 (2005).

    CAS 
    Article 

    Google Scholar 

  • 14.

    European Food Safety Authority. Peer review of the pesticide risk assessment of the active substance linuron. EFSA J. 14, e04518 (2016).

    Google Scholar 

  • 15.

    Crouzet, O. et al. Response of soil microbial communities to the herbicide mesotrione: A dose-effect microcosm approach. Soil Biol. Biochem. 42, 193–202. https://doi.org/10.1016/j.soilbio.2009.10.016 (2010).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Latkovic, D. et al. Case study upon foliar application of biofertilizers affecting microbial biomass and enzyme activity in soil and yield related prop. Biology 9, 452 (2020).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Nannipieri, P. et al. Beyond microbial diversity for predicting soil functions: A mini review. Pedosphere 30, 5–17. https://doi.org/10.1016/S1002-0160(19)60824-6 (2020).

    Article 

    Google Scholar 

  • 18.

    Krogh, K. A., Halling-Sørensen, B., Mogensen, B. B. & Vejrup, K. V. Environmental properties and effects of nonionic surfactant adjuvants in pesticides: A review. Chemosphere 50, 871–901. https://doi.org/10.1016/S0045-6535(02)00648-3 (2003).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 19.

    García-Ortega, S., Holliman, P. J. & Jones, D. L. Toxicology and fate of Pestanal® and commercial propetamphos formulations in river and estuarine sediment. Sci. Total Environ. 366, 826–836. https://doi.org/10.1016/j.scitotenv.2005.08.008 (2006).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 20.

    Medo, J., Maková, J., Kovácsová, S., Majerčíková, K. & Javoreková, S. Effect of Dursban 480 EC (chlorpyrifos) and Talstar 10 EC (bifenthrin) on the physiological and genetic diversity of microorganisms in soil. J. Environ. Sci. Health B 50, 871–883 (2015).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Cycoń, M., Piotrowska-Seget, Z. & Kozdrój, J. Dehydrogenase activity as an indicator of different microbial responses to pesticide-treated soils. Chem. Ecol. 26, 243–250. https://doi.org/10.1080/02757540.2010.495062 (2010).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Singh, M. K., Singh, N. K. & Singh, S. P. In Plant Responses to Soil Pollution (eds Singh, P. et al.) 179–194 (Springer Singapore, 2020). https://doi.org/10.1007/978-981-15-4964-9_11

    Chapter 

    Google Scholar 

  • 23.

    Makova, J., Javorekova, S., Medo, J. & Majerčíková, K. Characteristics of microbial biomass carbon and respiration activities in arable soil and pasture grassland soil. J. Cent. Eur. Agric. 12, 0–0 (2011).

    Article 

    Google Scholar 

  • 24.

    Imfeld, G. & Vuilleumier, S. Measuring the effects of pesticides on bacterial communities in soil: A critical review. Eur. J. Soil Biol. 49, 22–30. https://doi.org/10.1016/j.ejsobi.2011.11.010 (2012).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Nguyen, D. B., Rose, M. T., Rose, T. J., Morris, S. G. & van Zwieten, L. Impact of glyphosate on soil microbial biomass and respiration: A meta-analysis. Soil Biol. Biochem. 92, 50–57. https://doi.org/10.1016/j.soilbio.2015.09.014 (2016).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Mesnage, R. & Antoniou, M. N. Ignoring adjuvant toxicity falsifies the safety profile of commercial pesticides. Front Public Health https://doi.org/10.3389/fpubh.2017.00361 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Haney, R., Senseman, S., Krutz, L. & Hons, F. Soil carbon and nitrogen mineralization as affected by atrazine and glyphosate. Biol. Fertil. Soils 35, 35–40. https://doi.org/10.1007/s00374-001-0437-1 (2002).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Ratcliff, A. W., Busse, M. D. & Shestak, C. J. Changes in microbial community structure following herbicide (glyphosate) additions to forest soils. Appl. Soil Ecol. 34, 114–124. https://doi.org/10.1016/j.apsoil.2006.03.002 (2006).

    Article 

    Google Scholar 

  • 29.

    Sofo, A., Scopa, A., Dumontet, S., Mazzatura, A. & Pasquale, V. Toxic effects of four sulphonylureas herbicides on soil microbial biomass. J. Environ. Sci. Health B 47, 653–659. https://doi.org/10.1080/03601234.2012.669205 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 30.

    Lee, S.-H., Kim, M.-S., Kim, J.-G. & Kim, S.-O. Use of soil enzymes as indicators for contaminated soil monitoring and sustainable management. Sustainability 12, 8209 (2020).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Wolińska, A. & Stępniewska, Z. Dehydrogenase activity in the soil environment. Dehydrogenases 10, 183–210 (2012).

    Google Scholar 

  • 32.

    Pozo, C., Salmeron, V., Rodelas, B., Martinez-Toledo, M. V. & Gonzalez-Lopez, J. Effects of the herbicide alachlor on soil microbial activities. Ecotoxicology 3, 4–10. https://doi.org/10.1007/BF00121384 (1994).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 33.

    Sebiomo, A., Ogundero, V. & Bankole, S. Effect of four herbicides on microbial population, soil organic matter and dehydrogenase activity. Afr. J. Biotechnol. 10, 770–778 (2011).

    CAS 

    Google Scholar 

  • 34.

    Pertile, M. et al. Responses of soil microbial biomass and enzyme activity to herbicides imazethapyr and flumioxazin. Sci. Rep. 10, 7694. https://doi.org/10.1038/s41598-020-64648-3 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Dzionek, A., Dzik, J., Wojcieszyńska, D. & Guzik, U. Fluorescein diacetate hydrolysis using the whole biofilm as a sensitive tool to evaluate the physiological state of immobilized bacterial cells. Catalysts 8, 434 (2018).

    Article 

    Google Scholar 

  • 36.

    Das, P., Pal, R. & Chowdhury, A. Effect of novaluron on microbial biomass, respiration, and fluorescein diacetate-hydrolyzing activity in tropical soils. Biol. Fertil. Soils 44, 387–391. https://doi.org/10.1007/s00374-007-0219-5 (2007).

    Article 

    Google Scholar 

  • 37.

    Zabaloy, M. C., Garland, J. L. & Gómez, M. A. An integrated approach to evaluate the impacts of the herbicides glyphosate, 2,4-D and metsulfuron-methyl on soil microbial communities in the Pampas region, Argentina. Appl. Soil. Ecol. 40, 1–12. https://doi.org/10.1016/j.apsoil.2008.02.004 (2008).

    Article 

    Google Scholar 

  • 38.

    Perucci, P., Dumontet, S., Bufo, S. A., Mazzatura, A. & Casucci, C. Effects of organic amendment and herbicide treatment on soil microbial biomass. Biol. Fertil. Soils 32, 17–23. https://doi.org/10.1007/s003740000207 (2000).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Medo, J. et al. Effects of sulfonylurea herbicides chlorsulfuron and sulfosulfuron on enzymatic activities and microbial communities in two agricultural soils. Environ. Sci. Pollut. Res. 27, 41265–41278 (2020).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Dennis, P. G., Kukulies, T., Forstner, C., Orton, T. G. & Pattison, A. B. The effects of glyphosate, glufosinate, paraquat and paraquat-diquat on soil microbial activity and bacterial, archaeal and nematode diversity. Sci. Rep. 8, 2119 (2018).

    ADS 
    Article 

    Google Scholar 

  • 41.

    Du, P. et al. Clomazone influence soil microbial community and soil nitrogen cycling. Sci. Total Environ. 644, 475–485. https://doi.org/10.1016/j.scitotenv.2018.06.214 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 42.

    Elsayed, O. F., Maillard, E., Vuilleumier, S., Millet, M. & Imfeld, G. Degradation of chloroacetanilide herbicides and bacterial community composition in lab-scale wetlands. Sci. Total Environ. 520, 222–231. https://doi.org/10.1016/j.scitotenv.2015.03.061 (2015).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 43.

    Chauhan, A., Pathak, A., Ewida, A. Y., Griffiths, Z. & Stothard, P. Whole genome sequence analysis of an Alachlor and Endosulfan degrading Pseudomonas strain W15Feb9B isolated from Ochlockonee River, Florida. Genom. Data 8, 134–138 (2016).

    Article 

    Google Scholar 

  • 44.

    Xu, C., Ding, J., Qiu, J. & Ma, Y. Biodegradation of acetochlor by a newly isolated Achromobacter sp. strain D-12. J. Environ. Sci. Health B 48, 960–966. https://doi.org/10.1080/03601234.2013.816601 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 45.

    Dwivedi, S., Singh, B., Al-Khedhairy, A., Alarifi, S. & Musarrat, J. Isolation and characterization of butachlor-catabolizing bacterial strain Stenotrophomonas acidaminiphila JS-1 from soil and assessment of its biodegradation potential. Lett. Appl. Microbiol. 51, 54–60 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 46.

    Mohanty, S. S. & Jena, H. M. Degradation kinetics and mechanistic study on herbicide bioremediation using hyper butachlor-tolerant Pseudomonas putida G3. Process Saf. Environ. Prot. 125, 172–181 (2019).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Öztürk, B. et al. Comparative genomics suggests mechanisms of genetic adaptation towards the catabolism of the phenylurea herbicide linuron in Variovorax. Genome Biol. Evol. https://doi.org/10.1093/gbe/evaa085 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Sørensen, S. R., Ronen, Z. & Aamand, J. Isolation from agricultural soil and characterization of a Sphingomonas sp. able to mineralize the phenylurea herbicide isoproturon. Appl. Environ. Microbiol. 67, 5403–5409 (2001).

    Article 

    Google Scholar 

  • 49.

    Batisson, I., Pesce, S., Besse-Hoggan, P., Sancelme, M. & Bohatier, J. Isolation and characterization of diuron-degrading bacteria from lotic surface water. Microb. Ecol. 54, 761–770 (2007).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Villaverde, J., Rubio-Bellido, M., Merchán, F. & Morillo, E. Bioremediation of diuron contaminated soils by a novel degrading microbial consortium. J. Environ. Manag. 188, 379–386 (2017).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Cassel, D. & Nielsen, D. Field capacity and available water capacity. Methods Soil Anal. Part 1 Phys. Mineral. Methods 5, 901–926 (1986).

    Google Scholar 

  • 52.

    Alef, K. Soil respiration. In Methods in Applied Soil Microbiology and Biochemistry (eds Alef, P. & Nannipieri, K.) 214–218 (Academic Press, 1995).

    Google Scholar 

  • 53.

    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41, e1–e1 (2013).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Fadrosh, D. W. et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2, 6 (2014).

    Article 

    Google Scholar 

  • 55.

    Vetrovský, T., Baldrian, P., Morais, D. & Berger, B. SEED 2: A user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics 1, 3 (2018).

    Google Scholar 

  • 56.

    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS 
    Article 

    Google Scholar 

  • 58.

    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Douglas, G. M. et al. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 1–5 https://doi.org/10.1038/s41587-020-0548-6 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).

    Article 

    Google Scholar 

  • 61.

    Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J. & Knight, R. UniFrac: An effective distance metric for microbial community comparison. ISME J 5, 169–172 (2011).

    Article 

    Google Scholar 

  • 62.

    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Casida, L. Jr., Klein, D. & Santoro, T. Soil dehydrogenase activity. Soil Sci. 98, 371–376 (1964).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 64.

    Green, V. S., Stott, D. E. & Diack, M. Assay for fluorescein diacetate hydrolytic activity: Optimization for soil samples. Soil Biol. Biochem. 38, 693–701. https://doi.org/10.1016/j.soilbio.2005.06.020 (2006).

    CAS 
    Article 

    Google Scholar 

  • 65.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).

  • 66.

    Oksanen, J. et al. Package ‘vegan’. Community ecology package, version 2 (2013).


  • Source: Ecology - nature.com

    Imagining the distant past — and finding keys to the future

    Salmon going viral