Somveille, M., Rodrigues, A. S. L. & Manica, A. Why do birds migrate? A macroecological perspective. Glob. Ecol. Biogeogr. 24, 664–674 (2015).
Google Scholar
Van Der Graaf, S., Stahl, J., Klimkowska, A., Bakker, J. P. & Drent, R. H. Surfing on a green wave—How plant growth drives spring migration in the Barnacle Goose Branta leucopsis. Ardea 94, 567–577 (2006).
Shariatinajafabadi, M. et al. Migratory herbivorous waterfowl track satellite-derived green wave index. PLoS ONE 9, 1–11 (2014).
Google Scholar
Bennetts, R. E. & Kitchens, W. M. Factors influencing movement probabilities of a nomadic food specialist: Proximate foraging benefits or ultimate gains from exploration?. Oikos 91, 459–467 (2000).
Google Scholar
Trierweiler, C. et al. A Palaearctic migratory raptor species tracks shifting prey availability within its wintering range in the Sahel. J. Anim. Ecol. 82, 107–120 (2013).
Google Scholar
Ma, Z., Cai, Y., Li, B. & Chen, J. Managing wetland habitats for waterbirds: An international perspective. Wetlands 30, 15–27 (2010).
Google Scholar
Smit, I. P. J. Resources driving landscape-scale distribution patterns of grazers in an African savanna. Ecography (Cop.) 34, 67–74 (2011).
Google Scholar
Donnelly, J. P. et al. Synchronizing conservation to seasonal wetland hydrology and waterbird migration in semi-arid landscapes. Ecosphere 10, 1–12 (2019).
Google Scholar
Bennitt, E., Bonyongo, M. C. & Harris, S. Habitat selection by African buffalo (Syncerus caffer) in response to landscape-level fluctuations in water availability on two temporal scales. PLoS ONE 9, 1–14 (2014).
Google Scholar
Kleyheeg, E. et al. Movement patterns of a keystone waterbird species are highly predictable from landscape configuration. Mov. Ecol. 5, 1–14 (2017).
Google Scholar
Roshier, D. A., Doerr, V. A. J. & Doerr, E. D. Animal movement in dynamic landscapes: Interaction between behavioural strategies and resource distributions. Oecologia 156, 465–477 (2008).
Google Scholar
Henry, D. A. W., Ament, J. M. & Cumming, G. S. Exploring the environmental drivers of waterfowl movement in arid landscapes using first-passage time analysis. Mov. Ecol. 4, 1–18 (2016).
Google Scholar
Cook, M. I., Call, E. M., Kobza, R., Mac Hill, S. D. & Saunders, C. J. Seasonal movements of crayfish in a fluctuating wetland: Implications for restoring wading bird populations. Freshw. Biol. 59, 1608–1621 (2014).
Google Scholar
Weimerskirch, H. et al. Lifetime foraging patterns of the wandering albatross: Life on the move!. J. Exp. Mar. Bio. Ecol. 450, 68–78 (2014).
Google Scholar
Krüger, S., Reid, T. & Amar, A. Differential range use between age classes of southern African bearded vultures Gypaetus barbatus. PLoS ONE 9, e114920 (2014).
Google Scholar
Wolfson, D. W., Fieberg, J. R. & Andersen, D. E. Juvenile Sandhill Cranes exhibit wider ranging and more exploratory movements than adults during the breeding season. Ibis 162, 556–562 (2019).
Google Scholar
Péron, C. & Grémillet, D. Tracking through life stages: Adult, immature and juvenile Autumn migration in a long-lived seabird. PLoS ONE 8, e72713 (2013).
Google Scholar
Hake, M., Kjellén, N. & Alerstam, T. Age-dependent migration strategy in honey buzzards Pernis apivorus tracked by satellite. Oikos 103, 385–396 (2003).
Google Scholar
Gschweng, M., Kalko, E. K. V., Querner, U., Fiedler, W. & Berthold, P. All across Africa: Highly individual migration routes of Eleonora’s falcon. Proc. R. Soc. B Biol. Sci. 275, 2887–2896 (2008).
Google Scholar
Miller, T. A. et al. Limitations and mechanisms influencing the migratory performance of soaring birds. Ibis 158, 116–134 (2016).
Google Scholar
Rotics, S. et al. The challenges of the first migration: movement and behaviour of juvenile vs. adult white storks with insights regarding juvenile mortality. J. Anim. Ecol. 85, 938–947 (2016).
Google Scholar
Sergio, F. et al. Individual improvements and selective mortality shape lifelong migratory performance. Nature 515, 410–413 (2014).
Google Scholar
Thorup, K. et al. Resource tracking within and across continents in long-distance bird migrants. Sci. Adv. 3, e1601360 (2017).
Google Scholar
Howison, R. A., Piersma, T., Kentie, R., Hooijmeijer, J. C. E. W. & Olff, H. Quantifying landscape-level land-use intensity patterns through radar-based remote sensing. J. Appl. Ecol. 55, 1276–1287 (2018).
Google Scholar
Wang, X. et al. Stochastic simulations reveal few green wave surfing populations among spring migrating herbivorous waterfowl. Nat. Commun. 10, 2187 (2019).
Google Scholar
McFeeters, S. K. The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 17, 1425–1432 (1996).
Google Scholar
Mcfeeters, S. K. Using the normalized difference water index (NDWI) within a geographic information system to detect swimming pools for mosquito abatement: A practical approach. Remote Sens. 5, 3544–3561 (2013).
Google Scholar
Yang, X., Zhao, S., Qin, X., Zhao, N. & Liang, L. Mapping of urban surface water bodies from Sentinel-2 MSI Imagery at 10m resolution via NDWI-based image sharpening. Remote Sens. 9, 1–19 (2017).
Google Scholar
Choi, C. Y. et al. Where to draw the line? Using movement data to inform protected area design and conserve mobile species. Biol. Conserv. 234, 64–71 (2019).
Google Scholar
Guillet, A. Distribution and conservation of the shoebill (Balaeniceps rex) in the southern Sudan. Biol. Conserv. 13, 39–49 (1978).
Google Scholar
BirdLife International. Species factsheet: Balaeniceps rex. https://www.birdlife.org. Accessed on Apr 14, 2020 (2020).
Dodman, T. International single species plan for the conservation of the Shoebill Balaeniceps rex. AEWA Technical Series 51 (2013).
Guillet, A. Aspects of the foraging behaviour of the shoebill. Ostritch J. Afr. Ornithol. 50, 252–255 (1979).
Google Scholar
Mullers, R. H. E. & Amar, A. Shoebill Balaeniceps rex foraging behaviour in the Bangweulu Wetlands, Zambia. Ostritch J. Afr. Ornithol. 86, 113–118 (2015).
Google Scholar
Roxburgh, L. & Buchanan, G. M. Revising estimates of the Shoebill (Balaeniceps rex) population size in the Bangweulu Swamp, Zambia, through a combination of aerial surveys and habitat suitability modelling. Ostrich J. Afr. Ornithol. 81, 25–30 (2010).
Google Scholar
John, J. R. M., Nahonyo, C. L., Lee, W. S. & Msuya, C. A. Observations on nesting of Shoebill Balaeniceps rex and Wattled Crane Bugeranus carunculatus in Malagari wetlands, western Tanzania. Afr. J. Ecol. 51, 184–187 (2013).
Google Scholar
Mullers, R. H. E. & Amar, A. Parental nesting behavior, chick growth and breeding success of Shoebills (Balaeniceps rex) in the Bangweulu Wetlands, Zambia. Waterbirds 38, 1–9 (2015).
Google Scholar
Elliott, A., Garcia, E. F. J. & Boesman, P. Shoebill (Balaeniceps rex). in Handbook of the Birds of the World (eds. del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. & de Juana, E.) (Lynx Edicions, 2020).
African Parks. African Parks: Unlocking the value of protected areas. African Parks Annual Report 2018. (2018).
Möller, W. Beobachtungen zum Nahrungserwerb des Schuhschnabels (Balaeniceps rex). J. Ornithol. 123, 19–28 (1982).
Google Scholar
Christensen, K. D., Falk, K., Jensen, F. P. & Petersen, B. S. Abdim’s Stork Ciconia abdimii in Niger: Population size, breeding ecology and home range. Ostritch J. Afr. Ornithol. 79, 177–185 (2008).
Google Scholar
McCann, K. I. & Benn, G. A. Land use patterns within Wattled Crane (Bugeranus carunculatus) home ranges in an agricultural landscape in KwaZulu-Natal, South Africa. Ostritch J. Afr. Ornithol. 77, 186–194 (2006).
Google Scholar
El-Hacen, E.-H.M., Overdijk, O., Lok, T., Olff, H. & Piersma, T. Home Range, habitat selection, and foraging rhythm in Mauritanian Spoonbills (Platalea leucorodia balsaci): A satellite tracking study. Waterbirds 36, 277–286 (2013).
Google Scholar
King, D. T. et al. Winter and summer home ranges of American White Pelicans (Pelecanus erythrorhynchos) captured at loafing sites in the Southeastern United States. Waterbirds 39, 287–294 (2016).
Google Scholar
Shaw, A. K. Drivers of animal migration and implications in changing environments. Evol. Ecol. 30, 991–1007 (2016).
Google Scholar
Folmer, E. O., Olff, H. & Piersma, T. The spatial distribution of flocking foragers: Disentangling the effects of food availability, interference and conspecific attraction by means of spatial autoregressive modeling. Oikos 121, 551–561 (2012).
Google Scholar
Folmer, E. O. & Piersma, T. The contributions of resource availability and social forces to foraging distributions: A spatial lag modelling approach. Anim. Behav. 84, 1371–1380 (2012).
Google Scholar
Mendez, L. & Weimerskirch, H. Ontogeny of foraging behaviour in juvenile red-footed boobies (Sula sula). Sci. Rep. 7, 13886 (2017).
Google Scholar
Patrick, S. C. & Weimerskirch, H. Consistency pays: Sex differences and fitness consequences of behavioural specialization in a wide-ranging seabird. Biol. Lett. 10, 20140630 (2014).
Google Scholar
Patrick, S. C. & Weimerskirch, H. Personality, foraging and fitness consequences in a long lived seabird. PLoS ONE 9, e87269 (2014).
Google Scholar
Doherty, T. S. & Driscoll, D. A. Coupling movement and landscape ecology for animal conservation in production landscapes. Proc. R. Soc. B Biol. Sci. 285, 20172272 (2018).
Google Scholar
Riotte-lambert, L. & Weimerskirch, H. Do naive juvenile seabirds forage differently from adults?. Proc. R. Soc. B Biol. Sci. 280, 20131434 (2013).
Google Scholar
Buxton, L., Slater, J. & Brown, L. The breeding behaviour of the shoebill or whale-headed stork Balaeniceps rex in the Bangweulu Swamps, Zambia. Afr. J. Ecol. 16, 201–220 (1978).
Google Scholar
Roshier, D. A., Robertson, A. I. & Kingsford, R. T. Responses of waterbirds to flooding in an arid region of Australia and implications for conservation. Biol. Conserv. 106, 399–411 (2002).
Google Scholar
Chevallier, D. et al. Human activity and the drying up of rivers determine abundance and spatial distribution of Black Storks Ciconia nigra on their wintering grounds determine abundance and spatial distribution of Black Storks Ciconia nigra on their wintering grounds. Bird Study 3657, 369–380 (2010).
Google Scholar
Ng’onga, M., Kalaba, F. K., Mwitwa, J. & Nyimbiri, B. The interactive effects of rainfall, temperature and water level on fish yield in Lake Bangweulu fishery, Zambia. J. Therm. Biol. 84, 45–52 (2019).
Grissac, S. D., Bartumeus, F., Cox, S. L. & Weimerskirch, H. Early-life foraging: Behavioral responses of newly fledged albatrosses to environmental conditions. Ecol. Evol. 7, 6766–6778 (2017).
Google Scholar
Bolduc, F. & Afton, A. D. Relationships between wintering waterbirds and invertebrates, sediments and hydrology of coastal marsh ponds. Waterbirds 27, 333–341 (2004).
Google Scholar
Ratcliffe, C. The fishery of the Lower Shire River area. Malawy Fisheries Bulletin No. 3. Fisheries Department, Malawi (1972).
Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 27, 3025–3033 (2006).
Google Scholar
Tian, S., Zhang, X., Tian, J. & Sun, Q. Random forest classification of wetland landcovers from multi-sensor data in the arid region of Xinjuang, China. Remote Sens. 8, 1–14 (2016).
Google Scholar
Kamweneshe, B. M. Ecology, Conservation and Management of the Black Lechwe (Kobus leche smithemani) in the Bangweulu Basin, Zambia. University of Pretoria (2000).
BirdLife International. Important Bird Areas Factsheet: Bangweulu Swamps. https://www.birdlife.org. Accessed on Oct 14, 2020 (2020).
Thurlow, J., Zhu, T. & Diao, X. The impact of climate variability and change on economic growth and poverty in Zambia. International Food Policy Research Institute (2009).
Evans, D. W. Lake Bangweulu: A study of the complex and fishery. Fisheries Service Reports, Zambia (1978).
Kolding, J. & van Zwieten, P. A. M. Relative lake level fluctuations and their influence on productivity and resilience in tropical lakes and reservoirs. Fish. Res. 115–116, 99–109 (2012).
Google Scholar
Howard, G. W. & Aspinwall, D. R. Aerial censuses of Shoebills, Saddlebilled Storks and Wattled Cranes at the Bangweulu Swamps and Kafue Flats, Zambia. Ostrich J. Afr. Ornithol. 55, 207–212 (1984).
Google Scholar
Microwave Telemetry. Microwave Telemetry Solar Argos/GPS 70g PTT. https://www.microwavetelemetry.com/. Accessed on Oct 14, 2020 (2020).
Calenge, C. The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 516–519 (2006).
Google Scholar
Hijmans, R. J. geosphere: Spherical trignometry. https://cran.r-project.org/package=geosphere (2019).
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.r-project.org/ (2019).
Pebesma, E. J. & Bivand, R. S. Classes and methods for spatial data in R. https://cran.r-project.org/package=sp (2005).
Bivand, R. S., Pebesma, E. J. & Gomez-Rubio, V. Applied Spatial Data Analysis with R. (Springer, 2013).
E. Vermote. MOD09A1 MODIS/Terra Surface Reflectance 8-Day L3 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MOD09A1.006 (2015).
Hijmans, R. J. raster: Geographic data analysis and modeling. https://cran.r-project.org/package=raster (2019).
Bivand, R. S., Keitt, T. & Rowlingson, B. rgdal: Bindings for the ‘geospatial’ abstraction library. https://cran.r-project.org/package=rgdal (2019).
Bivand, R. S. & Rundel, C. rgeos: Interface to geometry engine – Open source (GEOS). https://cran.r-project.org/package=rgeos (2019).
Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Google Scholar
Barton, K. MuMIn: Multi-Model Inference. https://cran.r-project.org/package=MuMIn (2019).
Source: Ecology - nature.com