Mendes, R., Garbeva, P. & Raaijmakers, J. M. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663. https://doi.org/10.1111/1574-6976.12028 (2013).
Google Scholar
Bhattarai, A., Bhattarai, B. & Pandey, S. Variation of soil microbial population in different soil horizons. J. Microbiol. Exp. 2, 00044. https://doi.org/10.15406/jmen.2015.02.00044 (2015).
Google Scholar
Liu, F. et al. Soil indigenous microbiome and plant genotypes cooperatively modify soybean rhizosphere microbiome assembly. BMC Microbiol. 19, 201. https://doi.org/10.1186/s12866-019-1572-x (2019).
Google Scholar
Edwards, J. et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl. Acad. Sci. U.S.A. 112, E911-920. https://doi.org/10.1073/pnas.1414592112 (2015).
Google Scholar
Vives-Peris, V., de Ollas, C., Gomez-Cadenas, A. & Perez-Clemente, R. M. Root exudates: From plant to rhizosphere and beyond. Plant Cell Rep. 39, 3–17. https://doi.org/10.1007/s00299-019-02447-5 (2020).
Google Scholar
Qu, Q. et al. Rhizosphere microbiome assembly and its impact on plant growth. J. Agric. Food Chem. 68, 5024–5038. https://doi.org/10.1021/acs.jafc.0c00073 (2020).
Google Scholar
Schmidt, J. E., Kent, A. D., Brisson, V. L. & Gaudin, A. C. M. Agricultural management and plant selection interactively affect rhizosphere microbial community structure and nitrogen cycling. Microbiome 7, 146. https://doi.org/10.1186/s40168-019-0756-9 (2019).
Google Scholar
Cordero, J., de Freitas, J. R. & Germida, J. J. Bacterial microbiome associated with the rhizosphere and root interior of crops in Saskatchewan, Canada. Can. J. Microbiol. 66, 71–85. https://doi.org/10.1139/cjm-2019-0330 (2020).
Google Scholar
Bulgarelli, D. et al. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17, 392–403. https://doi.org/10.1016/j.chom.2015.01.011 (2015).
Google Scholar
Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90. https://doi.org/10.1038/nature11237 (2012).
Google Scholar
Leoni, C. et al. Plant Health and Rhizosphere microbiome: Effects of the bionematicide Aphanocladium album in tomato plants infested by Meloidogyne javanica. Microorganisms https://doi.org/10.3390/microorganisms8121922 (2020).
Google Scholar
Vitulo, N. et al. Bark and grape microbiome of vitis vinifera: Influence of geographic patterns and agronomic management on bacterial diversity. Front. Microbiol. 9, 3203. https://doi.org/10.3389/fmicb.2018.03203 (2018).
Google Scholar
Hu, J. et al. Rhizosphere microbiome functional diversity and pathogen invasion resistance build up during plant development. Environ. Microbiol. 22, 5005–5018. https://doi.org/10.1111/1462-2920.15097 (2020).
Google Scholar
Qiao, Q. et al. The variation in the rhizosphere microbiome of cotton with soil type, genotype and developmental stage. Sci. Rep. 7, 3940. https://doi.org/10.1038/s41598-017-04213-7 (2017).
Google Scholar
Baudoin, E., Benizri, E. & Guckert, A. Impact of growth stage on the bacterial community structure along maize roots, as determined by metabolic and genetic fingerprinting. Appl. Soil. Ecol. 19, 135–145. https://doi.org/10.1016/S0929-1393(01)00185-8 (2002).
Google Scholar
DeAngelis, K. M. et al. Selective progressive response of soil microbial community to wild oat roots. ISME J. 3, 168–178. https://doi.org/10.1038/ismej.2008.103 (2009).
Google Scholar
Ding, L. J. et al. Microbiomes inhabiting rice roots and rhizosphere. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiz040 (2019).
Google Scholar
Fan, K. et al. Rhizosphere-associated bacterial network structure and spatial distribution differ significantly from bulk soil in wheat crop fields. Soil Biol. Biochem. 113, 275–284. https://doi.org/10.1016/j.soilbio.2017.06.020 (2017).
Google Scholar
Jaiswal, S. K., Mohammed, M. & Dakora, F. D. Microbial community structure in the rhizosphere of the orphan legume Kersting’s groundnut [Macrotyloma geocarpum (Harms) Marechal & Baudet]. Mol. Biol. Rep. 46, 4471–4481. https://doi.org/10.1007/s11033-019-04902-8 (2019).
Google Scholar
Kuramae, E. E. et al. Soil characteristics more strongly influence soil bacterial communities than land-use type. FEMS Microbiol. Ecol. 79, 12–24. https://doi.org/10.1111/j.1574-6941.2011.01192.x (2012).
Google Scholar
Lauber, C. L., Hamady, M., Knight, R. & Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120. https://doi.org/10.1128/AEM.00335-09 (2009).
Google Scholar
Mendes, L. W., Kuramae, E. E., Navarrete, A. A., van Veen, J. A. & Tsai, S. M. Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J. 8, 1577–1587. https://doi.org/10.1038/ismej.2014.17 (2014).
Google Scholar
Peiffer, J. A. et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl. Acad. Sci. U.S.A. 110, 6548–6553. https://doi.org/10.1073/pnas.1302837110 (2013).
Google Scholar
Perez-Jaramillo, J. E. et al. Deciphering rhizosphere microbiome assembly of wild and modern common bean (Phaseolus vulgaris) in native and agricultural soils from Colombia. Microbiome 7, 114. https://doi.org/10.1186/s40168-019-0727-1 (2019).
Google Scholar
Sugiyama, A., Ueda, Y., Zushi, T., Takase, H. & Yazaki, K. Changes in the bacterial community of soybean rhizospheres during growth in the field. PLoS ONE 9, e100709. https://doi.org/10.1371/journal.pone.0100709 (2014).
Google Scholar
Xu, J. et al. The structure and function of the global citrus rhizosphere microbiome. Nat. Commun. 9, 4894. https://doi.org/10.1038/s41467-018-07343-2 (2018).
Google Scholar
Haldar, S. & Sengupta, S. Impact of plant development on the rhizobacterial population of Arachis hypogaea: A multifactorial analysis. J. Basic Microbiol. 55, 922–928. https://doi.org/10.1002/jobm.201400683 (2015).
Google Scholar
Dai, L. et al. Effect of drought stress and developmental stages on microbial community structure and diversity in peanut rhizosphere soil. Int. J. Mol. Sci. https://doi.org/10.3390/ijms20092265 (2019).
Google Scholar
Desmae, H. et al. Genetics, genomics and breeding of groundnut (Arachis hypogaea L.). Plant Breed 138, 425–444. https://doi.org/10.1111/pbr.12645 (2019).
Google Scholar
Pandey, M. K. et al. Translational genomics for achieving higher genetic gains in groundnut. Theor. Appl. Genet. 133, 1679–1702. https://doi.org/10.1007/s00122-020-03592-2 (2020).
Google Scholar
Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583. https://doi.org/10.1038/nmeth.3869 (2016).
Google Scholar
Parks, D. H. et al. A complete domain-to-species taxonomy for bacteria and archaea. Nat. Biotechnol. 38, 1079–1086. https://doi.org/10.1038/s41587-020-0501-8 (2020).
Google Scholar
Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004. https://doi.org/10.1038/nbt.4229 (2018).
Google Scholar
Lalucat, J., Mulet, M., Gomila, M. & Garcia-Valdes, E. Genomics in bacterial taxonomy: impact on the genus pseudomonas. Genes https://doi.org/10.3390/genes11020139 (2020).
Google Scholar
Correa-Galeote, D., Bedmar, E. J., Fernandez-Gonzalez, A. J., Fernandez-Lopez, M. & Arone, G. J. Bacterial communities in the rhizosphere of Amilaceous Maize (Zea mays L.) as assessed by pyrosequencing. Front. Plant Sci. 7, 1016. https://doi.org/10.3389/fpls.2016.01016 (2016).
Google Scholar
Xu, Y. et al. Influence of salt stress on the rhizosphere soil bacterial community structure and growth performance of groundnut (Arachis hypogaea L.). Int. Microbiol. 23, 453–465. https://doi.org/10.1007/s10123-020-00118-0 (2020).
Google Scholar
Hamonts, K. et al. Field study reveals core plant microbiota and relative importance of their drivers. Environ. Microbiol. 20, 124–140. https://doi.org/10.1111/1462-2920.14031 (2018).
Google Scholar
Ansari, F. A. & Ahmad, I. Isolation, functional characterization and efficacy of biofilm-forming rhizobacteria under abiotic stress conditions. Antonie Van Leeuwenhoek 112, 1827–1839. https://doi.org/10.1007/s10482-019-01306-3 (2019).
Google Scholar
Singh, T. B. et al. Identification, characterization and evaluation of multifaceted traits of plant growth promoting rhizobacteria from soil for sustainable approach to agriculture. Curr. Microbiol. 77, 3633–3642. https://doi.org/10.1007/s00284-020-02165-2 (2020).
Google Scholar
Govindasamy, V. et al. Multi-trait PGP rhizobacterial endophytes alleviate drought stress in a senescent genotype of sorghum [Sorghum bicolor (L.) Moench]. 3 Biotech 10, 13. https://doi.org/10.1007/s13205-019-2001-4 (2020).
Google Scholar
Abedinzadeh, M., Etesami, H. & Alikhani, H. A. Characterization of rhizosphere and endophytic bacteria from roots of maize (Zea mays L.) plant irrigated with wastewater with biotechnological potential in agriculture. Biotechnol. Rep. 21, e00305. https://doi.org/10.1016/j.btre.2019.e00305 (2019).
Google Scholar
Hashem, A., Tabassum, B. & Allah, F. A. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J. Biol. Sci. 26, 1291–1297. https://doi.org/10.1016/j.sjbs.2019.05.004 (2019).
Google Scholar
Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542. https://doi.org/10.1038/s41564-017-0012-7 (2017).
Google Scholar
Gomez-Lama Cabanas, C. et al. Indigenous Pseudomonas spp. strains from the olive (Olea europaea L.) rhizosphere as effective biocontrol agents against Verticillium dahliae: From the host roots to the bacterial genomes. Front. Microbiol. 9, 277. https://doi.org/10.3389/fmicb.2018.00277 (2018).
Google Scholar
Ansari, F. A. & Ahmad, I. Fluorescent pseudomonas-FAP2 and Bacillus licheniformis interact positively in biofilm mode enhancing plant growth and photosynthetic attributes. Sci. Rep. 9, 4547. https://doi.org/10.1038/s41598-019-40864-4 (2019).
Google Scholar
Pandey, K. K., Mayilraj, S. & Chakrabarti, T. Pseudomonas indica sp. nov., a novel butane-utilizing species. Int. J. Syst. Evol. Microbiol. 52, 1559–1567. https://doi.org/10.1099/00207713-52-5-1559 (2002).
Google Scholar
Shade, A., Jacques, M. A. & Barret, M. Ecological patterns of seed microbiome diversity, transmission, and assembly. Curr. Opin. Microbiol. 37, 15–22. https://doi.org/10.1016/j.mib.2017.03.010 (2017).
Google Scholar
Adam, E., Bernhart, M., Müller, H., Winkler, J. & Berg, G. The Cucurbita pepo seed microbiome: Genotype-specific composition and implications for breeding. Plant Soil 422, 35–49. https://doi.org/10.1007/s11104-016-3113-9 (2018).
Google Scholar
Truyens, S., Weyens, N., Cuypers, A. & Vangronsveld, J. Bacterial seed endophytes: Genera, vertical transmission and interaction with plants. Environ. Microbiol. Rep. 7, 40–50. https://doi.org/10.1111/1758-2229.12181 (2015).
Google Scholar
Kong, H. G., Song, G. C. & Ryu, C.-M. Inheritance of seed and rhizosphere microbial communities through plant–soil feedback and soil memory. Environ. Microbiol. Rep. 11, 479–486. https://doi.org/10.1111/1758-2229.12760 (2019).
Google Scholar
Frindte, K., Pape, R., Werner, K., Loffler, J. & Knief, C. Temperature and soil moisture control microbial community composition in an arctic-alpine ecosystem along elevational and micro-topographic gradients. ISME J. 13, 2031–2043. https://doi.org/10.1038/s41396-019-0409-9 (2019).
Google Scholar
Cook, R. J. et al. Molecular mechanisms of defense by rhizobacteria against root disease. Proc. Natl. Acad. Sci. U.S.A. 92, 4197–4201. https://doi.org/10.1073/pnas.92.10.4197 (1995).
Google Scholar
Chaparro, J. M., Badri, D. V. & Vivanco, J. M. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 8, 790–803. https://doi.org/10.1038/ismej.2013.196 (2014).
Google Scholar
Sharma, S. B., Sayyed, R. Z., Trivedi, M. H. & Gobi, T. A. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2, 587. https://doi.org/10.1186/2193-1801-2-587 (2013).
Google Scholar
Kumar, A., Prakash, A. & Johri, B. N. In Bacteria in Agrobiology: Crop Ecosystems (ed. Maheshwari, D. K.) 37–59 (Springer, 2011).
Google Scholar
Sachdev, D., Nema, P., Dhakephalkar, P., Zinjarde, S. & Chopade, B. Assessment of 16S rRNA gene-based phylogenetic diversity and promising plant growth-promoting traits of Acinetobacter community from the rhizosphere of wheat. Microbiol. Res. 165, 627–638. https://doi.org/10.1016/j.micres.2009.12.002 (2010).
Google Scholar
Lareen, A., Burton, F. & Schafer, P. Plant root-microbe communication in shaping root microbiomes. Plant Mol. Biol. 90, 575–587. https://doi.org/10.1007/s11103-015-0417-8 (2016).
Google Scholar
Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1. https://doi.org/10.1093/nar/gks808 (2013).
Google Scholar
Callahan, B. J., Sankaran, K., Fukuyama, J. A., McMurdie, P. J. & Holmes, S. P. Bioconductor workflow for microbiome data analysis: From raw reads to community analyses. F1000Res 5, 1492. https://doi.org/10.12688/f1000research.8986.2 (2016).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (2019).
Alishum, A. DADA2 formatted 16S rRNA gene sequences for both bacteria & archaea. doi: 10.5281/zenodo.2541239 (2019).
Callahan, B. Silva taxonomic training data formatted for DADA2 (Silva version 132). doi: 10.5281/zenodo.1172783 (2018).
Callahan, B. RDP taxonomic training data formatted for DADA2 (RDP trainset 16/release 11.5). doi: 10.5281/zenodo.801828 (2017).
McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217. https://doi.org/10.1371/journal.pone.0061217 (2013).
Google Scholar
Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R package version 0.2.5. https://CRAN.R-project.org/package=ggpubr (2020).
Lahti, L. & Shetty, S. Tools for microbiome analysis in R Version 2.1.26. http://microbiome.github.com/microbiome (2017).
Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5–6. https://CRAN.R-project.org/package=vegan (2019).
Martinez Arbizu, P. pairwiseAdonis: Pairwise Multilevel Comparison using Adonis. R package version 0.0.1. (2017).
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. https://doi.org/10.1186/s13059-014-0550-8 (2014).
Google Scholar
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
Google Scholar
Martin, C. ggConvexHull: Add a convex hull geom to ggplot2. R package version 0.1.0. http://github.com/cmartin/ggConvexHull (2017).
Campitelli, E. ggnewscale: Multiple Fill and Colour Scales in ‘ggplot2’. R package version 0.4.1. https://CRAN.R-project.org/package=ggnewscale (2020).
Slowikowski, K. ggrepel: Automatically Position Non-Overlapping Text Labels with ‘ggplot2’. R package version 0.8.2. https://CRAN.R-project.org/package=ggrepel (2020).
Dowle, M. & Srinivasan, A. data.table: Extension of `data.frame`. R package version 1.12.8. https://CRAN.R-project.org/package=data.table (2019).
Ammar, R. randomcoloR: Generate Attractive Random Colors. R package version 1.1.0.1. https://CRAN.R-project.org/package=randomcoloR (2019).
Wickham, H. & Henry, L. tidyr: Tidy Messy Data. R package version 1.0.0. https://CRAN.R-project.org/package=tidyr (2019).
Wichmann, H. & Seidel, D. scales: Scale Functions for Visualization. R package version 1.1.0. https://CRAN.R-project.org/package=scales (2019).
Neuwirth, E. RColorBrewer: ColorBrewer Palettes. R package version 1.1–2. https://CRAN.R-project.org/package=RColorBrewer (2014).
Source: Ecology - nature.com