Addo-Bediako, A., Chown, S. L. & Gaston, K. J. Thermal tolerance, climatic variability and latitude. Proc. R. Soc. B. 267, 739–745 (2000).
Google Scholar
Andersen, J. L. et al. How to assess Drosophila cold tolerance: chill coma temperature and lower lethal temperature are the best predictors of cold distribution limits. Funct. Ecol. 29, 55–65 (2015).
Google Scholar
Kimura, M. T. Cold and heat tolerance of drosophilid flies with reference to their latitudinal distributions. Oecologia 140, 442–449 (2004).
Google Scholar
Gaston, K. J. & Chown, S. L. Elevation and climatic tolerance: A test using dung beetles. Oikos 86, 584–590 (1999).
Google Scholar
MacMillan, H. A. Dissecting cause from consequence: a systematic approach to thermal limits. J. Exp. Biol. 222, jeb191593 (2019).
Overgaard, J. & MacMillan, H. A. The integrative physiology of insect chill tolerance. Annu. Rev. Physiol. 79, 187–208 (2017).
Google Scholar
Armstrong, G. A. B., Rodríguez, E. C. & Meldrum Robertson, R. Cold hardening modulates K+ homeostasis in the brain of Drosophila melanogaster during chill coma. J. Insect Physiol. 58, 1511–1516 (2012).
Rodgers, C. I., Armstrong, G. A. B. & Robertson, R. M. Coma in response to environmental stress in the locust: a model for cortical spreading depression. J. Insect Physiol. 56, 980–990 (2010).
Google Scholar
Andersen, M. K. & Overgaard, J. The central nervous system and muscular system play different roles for chill coma onset and recovery in insects. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 233, 10–16 (2019).
Koštál, V., Vambera, J. & Bastl, J. On the nature of pre-freeze mortality in insects: Water balance, ion homeostasis and energy charge in the adults of Pyrrhocoris apterus. J. Exp. Biol. 207, 1509–1521 (2004).
Google Scholar
Zachariassen, K. E., Kristiansen, E. & Pedersen, S. A. Inorganic ions in cold-hardiness. Cryobiology 48, 126–133 (2004).
Google Scholar
MacMillan, H. A. & Sinclair, B. J. The role of the gut in insect chilling injury: Cold-induced disruption of osmoregulation in the fall field cricket, Gryllus pennsylvanicus. J. Exp. Biol. 214, 726–734 (2011).
Google Scholar
MacMillan, H. A., Williams, C. M., Staples, J. F. & Sinclair, B. J. Reestablishment of ion homeostasis during chill-coma recovery in the cricket Gryllus pennsylvanicus. PNAS 109, 20750–20755 (2012).
Google Scholar
MacMillan, H. A., Findsen, A., Pedersen, T. H. & Overgaard, J. Cold-induced depolarization of insect muscle: Differing roles of extracellular K+ during acute and chronic chilling. J. Exp. Biol. 217, 2930–2938 (2014).
Google Scholar
Bayley, J. S., Sørensen, J. G., Moos, M., Koštál, V. & Overgaard, J. Cold-acclimation increases depolarization resistance and tolerance in muscle fibers from a chill-susceptible insect, Locusta migratoria. Am. J. Physiol. Regul. Integr. Comp. Physiol. 319, R439–R447 (2020).
Google Scholar
Bayley, J. S. et al. Cold exposure causes cell death by depolarization-mediated Ca2+ overload in a chill-susceptible insect. PNAS 115, E9737–E9744 (2018).
Google Scholar
Carrington, J., Andersen, M. K., Brzezinski, K. & MacMillan, H. A. Hyperkalemia, not apoptosis, accurately predicts chilling injury in individual locusts. Proc. R. Soc. B. (in press).
Koštál, V., Yanagimoto, M. & Bastl, J. Chilling-injury and disturbance of ion homeostasis in the coxal muscle of the tropical cockroach (Nauphoeta cinerea). Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 143, 171–179 (2006).
MacMillan, H. A., Baatrup, E. & Overgaard, J. Concurrent effects of cold and hyperkalaemia cause insect chilling injury. Proc. R. Soc. B. 282 (2015).
Garcia, M. J., Littler, A. S., Sriram, A. & Teets, N. M. Distinct cold tolerance traits independently vary across genotypes in Drosophila melanogaster. Evolution 74, 1437–1450 (2020).
Google Scholar
Gerken, A. R., Mackay, T. F. C. & Morgan, T. J. Artificial selection on chill-coma recovery time in Drosophila melanogaster: Direct and correlated responses to selection. J. Therm. Biol. 59, 77–85 (2016).
Google Scholar
Colinet, H. & Hoffmann, A. A. Comparing phenotypic effects and molecular correlates of developmental, gradual and rapid cold acclimation responses in Drosophila melanogaster. Funct. Ecol. 26, 84–93 (2012).
Google Scholar
MacMillan, H. A., Andersen, J. L., Loeschcke, V. & Overgaard, J. Sodium distribution predicts the chill tolerance of Drosophila melanogaster raised in different thermal conditions. Am. J. Physiol. Regul. Integr. Comp. Physiol. 308, R823–R831 (2015).
Google Scholar
Ransberry, V. E., MacMillan, H. A. & Sinclair, B. J. The relationship between chill-coma onset and recovery at the extremes of the thermal window of Drosophila melanogaster. Physiol. Biochem. Zool. 84, 553–559 (2011).
Google Scholar
Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B. 278, 1823–1830 (2011).
Google Scholar
Hoffmann, A. A., Anderson, A. & Hallas, R. Opposing clines for high and low temperature resistance in Drosophila melanogaster. Ecol. Lett. 5, 614–618 (2002).
Google Scholar
Hoffmann, A. A., Shirriffs, J. & Scott, M. Relative importance of plastic vs genetic factors in adaptive differentiation: Geographical variation for stress resistance in Drosophila melanogaster from eastern Australia. Funct. Ecol. 19, 222–227 (2005).
Google Scholar
Overgaard, J., Hoffmann, A. A. & Kristensen, T. N. Assessing population and environmental effects on thermal resistance in Drosophila melanogaster using ecologically relevant assays. J. Therm. Biol. 36, 409–416 (2011).
Google Scholar
Ayrinhac, A. et al. Cold adaptation in geographical populations of Drosophila melanogaster: Phenotypic plasticity is more important than genetic variability. Funct. Ecol. 18, 700–706 (2004).
Google Scholar
Gibert, P. & Huey, R. B. Chill-coma temperature in Drosophila: Effects of developmental temperature, latitude, and phylogeny. Physiol. Biochem. Zool. 74, 429–434 (2001).
Google Scholar
Hori, Y. & Kimura, M. T. Relationship between cold stupor and cold tolerance in Drosophila (Diptera: Drosophilidae). Environ. Entomol. 27, 1297–1302 (1998).
Google Scholar
Teets, N. M. & Hahn, D. A. Genetic variation in the shape of cold-survival curves in a single fly population suggests potential for selection from climate variability. J. Evol. Biol. 31, 543–555 (2018).
Google Scholar
Kellermann, V. et al. Phylogenetic constraints in key functional traits behind species’ climate niches: Patterns of desiccation and cold resistance across 95 Drosophila species. Evolution 66, 3377–3389 (2012).
Google Scholar
Pool, J. E., Braun, D. T. & Lack, J. B. Parallel evolution of cold tolerance within Drosophila melanogaster. Mol. Biol. Evol. 34, 349–360 (2017).
Google Scholar
Mansourian, S. et al. Wild African Drosophila melanogaster are seasonal specialists on marula fruit. Curr. Biol. 28, 3960-3968.e3 (2018).
Google Scholar
Pool, J. E. et al. Population genomics of Sub-Saharan Drosophila melanogaster: African diversity and non-African admixture. PLoS Genetics 8, e1003080 (2012).
Baudry, E., Viginier, B. & Veuille, M. Non-African populations of Drosophila melanogaster have a unique origin. Mol. Biol. Evol. 21, 1482–1491 (2004).
Google Scholar
MacMillan, H. A., Andersen, J. L., Davies, S. A. & Overgaard, J. The capacity to maintain ion and water homeostasis underlies interspecific variation in Drosophila cold tolerance. Sci. Rep. 5, 18607 (2015).
Google Scholar
Chen, C.-P. & Walker, V. K. Cold-shock and chilling tolerance in Drosophila. J. Insect Physiol. 40, 661–669 (1994).
Google Scholar
Hoffmann, A. A. & Watson, M. Geographical variation in the acclimation responses of Drosophila to temperature extremes. Am. Nat. 142, S93–S113 (1993).
Google Scholar
Ørsted, M., Hoffmann, A. A., Rohde, P. D., Sørensen, P. & Kristensen, T. N. Strong impact of thermal environment on the quantitative genetic basis of a key stress tolerance trait. Heredity 122, 315–325 (2019).
Google Scholar
Gerken, A. R., Eller, O. C., Hahn, D. A. & Morgan, T. J. Constraints, independence, and evolution of thermal plasticity: probing genetic architecture of long- and short-term thermal acclimation. PNAS 112, 4399–4404 (2015).
Google Scholar
Nyamukondiwa, C., Terblanche, J. S., Marshall, K. E. & Sinclair, B. J. Basal cold but not heat tolerance constrains plasticity among Drosophila species (Diptera: Drosophilidae). J. Evol. Biol. 24, 1927–1938 (2011).
Google Scholar
van Heerwaarden, B. & Kellermann, V. Does plasticity trade off with basal heat tolerance?. Trends Ecol. Evol. 35, 874–885 (2020).
Google Scholar
Gilchrist, G. W., Huey, R. B. & Partridge, L. Thermal sensitivity of Drosophila melanogaster: evolutionary responses of adults and eggs to laboratory natural selection at different temperatures. Physiol. Zool. 70, 403–414 (1997).
Google Scholar
Maclean, H. J., Kristensen, T. N., Sørensen, J. G. & Overgaard, J. Laboratory maintenance does not alter ecological and physiological patterns among species: A Drosophila case study. J. Evol. Biol. 31, 530–542 (2018).
Google Scholar
Henry, Y., Renault, D. & Colinet, H. Hormesis-like effect of mild larval crowding on thermotolerance in Drosophila flies. J. Exp. Biol. 221, jeb169342 (2018).
Nilson, T. L., Sinclair, B. J. & Roberts, S. P. The effects of carbon dioxide anesthesia and anoxia on rapid cold-hardening and chill coma recovery in Drosophila melanogaster. J. Insect Physiol. 52, 1027–1033 (2006).
Google Scholar
Hazell, S. P. & Bale, J. S. Low temperature thresholds: are chill coma and CTmin synonymous?. J. Insect Physiol. 57, 1085–1089 (2011).
Google Scholar
Bertram, G. C. L. The low temperature limit of activity of arctic insects. J. Anim. Ecol. 4, 35–42 (1935).
Google Scholar
Sinclair, B. J., Coello Alvarado, L. E. & Ferguson, L. V. An invitation to measure insect cold tolerance: Methods, approaches, and workflow. J. Therm. Biol. 53, 180–197 (2015).
MacMillan, H. A. et al. Anti-diuretic activity of a CAPA neuropeptide can compromise Drosophila chill tolerance. J. Exp. Biol. 221, jeb185884 (2018).
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).
Source: Ecology - nature.com