in

Cities as hot stepping stones for tree migration

  • 1.

    Willis, K. J. & Petrokofsky, G. The natural capital of city trees. Science 356, 374–376 (2017).

    CAS 

    Google Scholar 

  • 2.

    Fontaine, L. C. & Larson, B. M. H. The right tree at the right place? Exploring urban foresters’ perceptions of assisted migration. Urban For. Urban Green. 18, 221–227 (2016).

    Google Scholar 

  • 3.

    Barnosky, A. D. et al. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science 355, eaah4787 (2017).

    Google Scholar 

  • 4.

    Nolan, C. et al. Past and future global transformation of terrestrial ecosystems under climate change. Science 361, 920–923 (2018).

    CAS 

    Google Scholar 

  • 5.

    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    Google Scholar 

  • 6.

    Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).

    CAS 

    Google Scholar 

  • 7.

    Araújo, M. B., Alagador, D., Cabeza, M., Nogués-Bravo, D. & Thuiller, W. Climate change threatens European conservation areas. Ecol. Lett. 14, 484–492 (2011).

    Google Scholar 

  • 8.

    Rehfeldt, G. E., Crookston, N. L., Warwell, M. V. & Evans, J. S. Empirical analyses of plant‐climate relationships for the Western United States. Int. J. Plant Sci. 167, 1123–1150 (2006).

    Google Scholar 

  • 9.

    Tomiolo, S. & Ward, D. Species migrations and range shifts: a synthesis of causes and consequences. Perspect. Plant Ecol. Evol. Syst. 33, 62–77 (2018).

    Google Scholar 

  • 10.

    Cavanaugh, K. C. et al. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proc. Natl. Acad. Sci. USA 111, 723–727 (2014).

    CAS 

    Google Scholar 

  • 11.

    Woodall, C. W. et al. An indicator of tree migration in forests of the eastern United States. For. Ecol. Manag. 257, 1434–1444 (2009).

    Google Scholar 

  • 12.

    Walther, G. R. et al. Palms tracking climate change. Glob. Ecol. Biogeogr. 16, 801–809 (2007).

    Google Scholar 

  • 13.

    Miller, K. M. & McGill, B. J. Land use and life history limit migration capacity of eastern tree species. Glob. Ecol. Biogeogr. 27, 57–67 (2018).

    Google Scholar 

  • 14.

    Ordonez, A., Williams, J. W. & Svenning, J. C. Mapping climatic mechanisms likely to favour the emergence of novel communities. Nat. Clim. Chang. 6, 1104–1109 (2016).

    Google Scholar 

  • 15.

    Lazarus, E. D. & McGill, B. J. Pushing the pace of tree species migration. PLoS ONE 9, e105380 (2014).

    Google Scholar 

  • 16.

    Cunze, S., Heydel, F. & Tackenberg, O. Are plant species able to keep pace with the rapidly changing climate? PLoS ONE 8, e67909 (2013).

    CAS 

    Google Scholar 

  • 17.

    Gray, L. K. & Hamann, A. Tracking suitable habitat for tree populations under climate change in western North America. Clim. Change 117, 289–303 (2013).

    Google Scholar 

  • 18.

    Petit, R. J., Hu, F. S. & Dick, C. W. Forests of the past: a window to future changes. Science 320, 1450–1452 (2008).

    CAS 

    Google Scholar 

  • 19.

    Jackson, S. T. & Weng, C. Late Quaternary extinction of a tree species in eastern North America. Proc. Natl Acad. Sci. USA 96, 13847–13852 (1999).

    CAS 

    Google Scholar 

  • 20.

    Mosblech, N. A. S., Bush, M. B. & van Woesik, R. On metapopulations and microrefugia: Palaeoecological insights. J. Biogeogr. 38, 419–429 (2011).

    Google Scholar 

  • 21.

    Davis, M. B. & Shaw, R. G. Range shifts and adaptive responses to Quaternary climate change. Science 292, 673–679 (2001).

    CAS 

    Google Scholar 

  • 22.

    Hu, F. S., Hampe, A. & Petit, R. J. Paleoecology meets genetics: deciphering past vegetational dynamics. Front. Ecol. Environ. 7, 371–379 (2009).

    Google Scholar 

  • 23.

    Parducci, L. et al. Glacial survival of boreal trees in northern Scandinavia. Science 335, 1083–1086 (2012).

    CAS 

    Google Scholar 

  • 24.

    Snell, R. S. & Cowling, S. A. Consideration of dispersal processes and northern refugia can improve our understanding of past plant migration rates in North America. J. Biogeogr. 42, 1677–1688 (2015).

    Google Scholar 

  • 25.

    Lopez, J. Single planting creates expanding naturalized population of quercus palustris far from its native range limit. Rhodora 120, 143–153 (2018).

    Google Scholar 

  • 26.

    Varquez, A. C. G. & Kanda, M. Global urban climatology: a meta-analysis of air temperature trends (1960–2009). npj Clim. Atmos. Sci. 1, 32 (2018).

    Google Scholar 

  • 27.

    Stewart, I. D. & Oke, T. R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 93, 1879–1900 (2012).

    Google Scholar 

  • 28.

    Rizwan, A. M., Dennis, L. Y. C. & Liu, C. A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci. 20, 120–128 (2008).

    CAS 

    Google Scholar 

  • 29.

    Parker, D. E. Urban heat island effects on estimates of observed climate change. WIREs Clim. Change 1, 123–133 (2010).

    Google Scholar 

  • 30.

    Peng, S. et al. Surface urban heat island across 419 global big cities. Environ. Sci. Technol. 46, 696–703 (2012).

    CAS 

    Google Scholar 

  • 31.

    IPCC. Global Warming of 1.5°C (World Meteorological Organization, 2018).

  • 32.

    George, K., Ziska, L. H., Bunce, J. A. & Quebedeaux, B. Elevated atmospheric CO2 concentration and temperature across an urban–rural transect. Atmos. Environ. 41, 7654–7665 (2007).

    CAS 

    Google Scholar 

  • 33.

    Dallimer, M., Tang, Z., Gaston, K. J. & Davies, Z. G. The extent of shifts in vegetation phenology between rural and urban areas within a human-dominated region. Ecol. Evol. 6, 1942–1953 (2016).

    Google Scholar 

  • 34.

    Dahlhausen, J., Rötzer, T., Biber, P., Uhl, E. & Pretzsch, H. Urban climate modifies tree growth in Berlin. Int. J. Biometeorol. 62, 795–808 (2018).

    Google Scholar 

  • 35.

    Pretzsch, H. et al. Climate change accelerates growth of urban trees in metropolises worldwide. Sci. Rep. 7, 15403 (2017).

    Google Scholar 

  • 36.

    Searle, S. Y. et al. Urban environment of New York city promotes growth in northern red oak seedlings. Tree Physiol. 32, 389–400 (2012).

    Google Scholar 

  • 37.

    McLachlan, J. S., Clark, J. S. & Manos, P. S. Molecular indicators of tree migration capacity under rapid climate change. Ecology 86, 2088–2098 (2005).

    Google Scholar 

  • 38.

    Chakraborty, T. & Lee, X. A simplified urban-extent algorithm to characterize surface urban heat islands on a global scale and examine vegetation control on their spatiotemporal variability. Int. J. Appl. Earth Obs. Geoinf. 74, 269–280 (2019).

    Google Scholar 

  • 39.

    Wang, K., Sun, J., Cheng, G. & Jiang, H. Effect of altitude and latitude on surface air temperature across the Qinghai-Tibet plateau. J. Mt. Sci. 8, 808–816 (2011).

    Google Scholar 

  • 40.

    Kendal, D., Williams, N. S. G. & Williams, K. J. H. A cultivated environment: exploring the global distribution of plants in gardens, parks and streetscapes. Urban Ecosyst. 15, 637–652 (2012).

    Google Scholar 

  • 41.

    Almas, A. D. & Conway, T. M. The role of native species in urban forest planning and practice: a case study of Carolinian Canada. Urban For. Urban Green. 17, 54–62 (2016).

    Google Scholar 

  • 42.

    Galera, H. & Sudnik-Wócikowska, B. Central European botanic gardens as centres of dispersal of alien plants. Acta Soc. Bot. Pol. 79, 147–156 (2010).

    Google Scholar 

  • 43.

    Van der Veken, S., Hermy, M., Vellend, M., Knapen, A. & Verheyen, K. Garden plants get a head start on climate change. Front. Ecol. Environ. 6, 212–216 (2008).

    Google Scholar 

  • 44.

    Smithers, R. J. et al. Comparing the relative abilities of tree species to cool the urban environment. Urban Ecosyst. 21, 851–862 (2018).

    Google Scholar 

  • 45.

    Gill, S. E., Handley, J. F., Ennos, A. R. & Pauleit, S. Adapting cities for climate change: The role of the green infrastructure. Built Environ. 33, 115–133 (2007).

    Google Scholar 

  • 46.

    Zipper, S. C. et al. Urban heat island impacts on plant phenology: intra-urban variability and response to land cover. Environ. Res. Lett. 11, 054023 (2016).

    Google Scholar 

  • 47.

    Woodall, C. W., Nowak, D. J., Liknes, G. C. & Westfall, J. A. Assessing the potential for urban trees to facilitate forest tree migration in the eastern United States. For. Ecol. Manage. 259, 1447–1454 (2010).

    Google Scholar 

  • 48.

    Horta, M. B. et al. Functional connectivity in urban landscapes promoted by Ramphastos toco (Toco Toucan) and its implications for policy making. Urban Ecosyst. 21, 1097–1111 (2018).

    Google Scholar 

  • 49.

    Marris, E. Forestry: planting the forest of the future. Nature 459, 906–908 (2009).

    CAS 

    Google Scholar 

  • 50.

    Harvey, B. et al. Climate Change Communication and Social Learning—Review and Strategy Development for CCAFS (CCAFS, 2012)

  • 51.

    Farrell, C., Szota, C. & Arndt, S. K. Urban plantings: ‘Living laboratories’ for climate change response. Trends Plant Sci. 20, 597–599 (2015).

    CAS 

    Google Scholar 

  • 52.

    Millar, C. I. & Stephenson, N. L. Temperate forest health in an era of emerging megadisturbance. Science 349, 823–826 (2015).

    CAS 

    Google Scholar 

  • 53.

    Hodgson, J. A., Thomas, C. D., Dytham, C., Travis, J. M. J. & Cornell, S. J. The speed of range shifts in fragmented landscapes. PLoS ONE 7, e47141 (2012).

    CAS 

    Google Scholar 

  • 54.

    Han, Q. & Keeffe, G. Mapping the flow of forest migration through the city under climate change. Urban Plan. 4, 139–151 (2019).

    Google Scholar 

  • 55.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Google Scholar 


  • Source: Ecology - nature.com

    Parental morph combination does not influence innate immune function in nestlings of a colour-polymorphic African raptor

    3Q: The socio-environmental complexities of renewable energy