Willis, K. J. & Petrokofsky, G. The natural capital of city trees. Science 356, 374–376 (2017).
Google Scholar
Fontaine, L. C. & Larson, B. M. H. The right tree at the right place? Exploring urban foresters’ perceptions of assisted migration. Urban For. Urban Green. 18, 221–227 (2016).
Barnosky, A. D. et al. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science 355, eaah4787 (2017).
Nolan, C. et al. Past and future global transformation of terrestrial ecosystems under climate change. Science 361, 920–923 (2018).
Google Scholar
Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).
Google Scholar
Araújo, M. B., Alagador, D., Cabeza, M., Nogués-Bravo, D. & Thuiller, W. Climate change threatens European conservation areas. Ecol. Lett. 14, 484–492 (2011).
Rehfeldt, G. E., Crookston, N. L., Warwell, M. V. & Evans, J. S. Empirical analyses of plant‐climate relationships for the Western United States. Int. J. Plant Sci. 167, 1123–1150 (2006).
Tomiolo, S. & Ward, D. Species migrations and range shifts: a synthesis of causes and consequences. Perspect. Plant Ecol. Evol. Syst. 33, 62–77 (2018).
Cavanaugh, K. C. et al. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proc. Natl. Acad. Sci. USA 111, 723–727 (2014).
Google Scholar
Woodall, C. W. et al. An indicator of tree migration in forests of the eastern United States. For. Ecol. Manag. 257, 1434–1444 (2009).
Walther, G. R. et al. Palms tracking climate change. Glob. Ecol. Biogeogr. 16, 801–809 (2007).
Miller, K. M. & McGill, B. J. Land use and life history limit migration capacity of eastern tree species. Glob. Ecol. Biogeogr. 27, 57–67 (2018).
Ordonez, A., Williams, J. W. & Svenning, J. C. Mapping climatic mechanisms likely to favour the emergence of novel communities. Nat. Clim. Chang. 6, 1104–1109 (2016).
Lazarus, E. D. & McGill, B. J. Pushing the pace of tree species migration. PLoS ONE 9, e105380 (2014).
Cunze, S., Heydel, F. & Tackenberg, O. Are plant species able to keep pace with the rapidly changing climate? PLoS ONE 8, e67909 (2013).
Google Scholar
Gray, L. K. & Hamann, A. Tracking suitable habitat for tree populations under climate change in western North America. Clim. Change 117, 289–303 (2013).
Petit, R. J., Hu, F. S. & Dick, C. W. Forests of the past: a window to future changes. Science 320, 1450–1452 (2008).
Google Scholar
Jackson, S. T. & Weng, C. Late Quaternary extinction of a tree species in eastern North America. Proc. Natl Acad. Sci. USA 96, 13847–13852 (1999).
Google Scholar
Mosblech, N. A. S., Bush, M. B. & van Woesik, R. On metapopulations and microrefugia: Palaeoecological insights. J. Biogeogr. 38, 419–429 (2011).
Davis, M. B. & Shaw, R. G. Range shifts and adaptive responses to Quaternary climate change. Science 292, 673–679 (2001).
Google Scholar
Hu, F. S., Hampe, A. & Petit, R. J. Paleoecology meets genetics: deciphering past vegetational dynamics. Front. Ecol. Environ. 7, 371–379 (2009).
Parducci, L. et al. Glacial survival of boreal trees in northern Scandinavia. Science 335, 1083–1086 (2012).
Google Scholar
Snell, R. S. & Cowling, S. A. Consideration of dispersal processes and northern refugia can improve our understanding of past plant migration rates in North America. J. Biogeogr. 42, 1677–1688 (2015).
Lopez, J. Single planting creates expanding naturalized population of quercus palustris far from its native range limit. Rhodora 120, 143–153 (2018).
Varquez, A. C. G. & Kanda, M. Global urban climatology: a meta-analysis of air temperature trends (1960–2009). npj Clim. Atmos. Sci. 1, 32 (2018).
Stewart, I. D. & Oke, T. R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 93, 1879–1900 (2012).
Rizwan, A. M., Dennis, L. Y. C. & Liu, C. A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci. 20, 120–128 (2008).
Google Scholar
Parker, D. E. Urban heat island effects on estimates of observed climate change. WIREs Clim. Change 1, 123–133 (2010).
Peng, S. et al. Surface urban heat island across 419 global big cities. Environ. Sci. Technol. 46, 696–703 (2012).
Google Scholar
IPCC. Global Warming of 1.5 °C (World Meteorological Organization, 2018).
George, K., Ziska, L. H., Bunce, J. A. & Quebedeaux, B. Elevated atmospheric CO2 concentration and temperature across an urban–rural transect. Atmos. Environ. 41, 7654–7665 (2007).
Google Scholar
Dallimer, M., Tang, Z., Gaston, K. J. & Davies, Z. G. The extent of shifts in vegetation phenology between rural and urban areas within a human-dominated region. Ecol. Evol. 6, 1942–1953 (2016).
Dahlhausen, J., Rötzer, T., Biber, P., Uhl, E. & Pretzsch, H. Urban climate modifies tree growth in Berlin. Int. J. Biometeorol. 62, 795–808 (2018).
Pretzsch, H. et al. Climate change accelerates growth of urban trees in metropolises worldwide. Sci. Rep. 7, 15403 (2017).
Searle, S. Y. et al. Urban environment of New York city promotes growth in northern red oak seedlings. Tree Physiol. 32, 389–400 (2012).
McLachlan, J. S., Clark, J. S. & Manos, P. S. Molecular indicators of tree migration capacity under rapid climate change. Ecology 86, 2088–2098 (2005).
Chakraborty, T. & Lee, X. A simplified urban-extent algorithm to characterize surface urban heat islands on a global scale and examine vegetation control on their spatiotemporal variability. Int. J. Appl. Earth Obs. Geoinf. 74, 269–280 (2019).
Wang, K., Sun, J., Cheng, G. & Jiang, H. Effect of altitude and latitude on surface air temperature across the Qinghai-Tibet plateau. J. Mt. Sci. 8, 808–816 (2011).
Kendal, D., Williams, N. S. G. & Williams, K. J. H. A cultivated environment: exploring the global distribution of plants in gardens, parks and streetscapes. Urban Ecosyst. 15, 637–652 (2012).
Almas, A. D. & Conway, T. M. The role of native species in urban forest planning and practice: a case study of Carolinian Canada. Urban For. Urban Green. 17, 54–62 (2016).
Galera, H. & Sudnik-Wócikowska, B. Central European botanic gardens as centres of dispersal of alien plants. Acta Soc. Bot. Pol. 79, 147–156 (2010).
Van der Veken, S., Hermy, M., Vellend, M., Knapen, A. & Verheyen, K. Garden plants get a head start on climate change. Front. Ecol. Environ. 6, 212–216 (2008).
Smithers, R. J. et al. Comparing the relative abilities of tree species to cool the urban environment. Urban Ecosyst. 21, 851–862 (2018).
Gill, S. E., Handley, J. F., Ennos, A. R. & Pauleit, S. Adapting cities for climate change: The role of the green infrastructure. Built Environ. 33, 115–133 (2007).
Zipper, S. C. et al. Urban heat island impacts on plant phenology: intra-urban variability and response to land cover. Environ. Res. Lett. 11, 054023 (2016).
Woodall, C. W., Nowak, D. J., Liknes, G. C. & Westfall, J. A. Assessing the potential for urban trees to facilitate forest tree migration in the eastern United States. For. Ecol. Manage. 259, 1447–1454 (2010).
Horta, M. B. et al. Functional connectivity in urban landscapes promoted by Ramphastos toco (Toco Toucan) and its implications for policy making. Urban Ecosyst. 21, 1097–1111 (2018).
Marris, E. Forestry: planting the forest of the future. Nature 459, 906–908 (2009).
Google Scholar
Harvey, B. et al. Climate Change Communication and Social Learning—Review and Strategy Development for CCAFS (CCAFS, 2012)
Farrell, C., Szota, C. & Arndt, S. K. Urban plantings: ‘Living laboratories’ for climate change response. Trends Plant Sci. 20, 597–599 (2015).
Google Scholar
Millar, C. I. & Stephenson, N. L. Temperate forest health in an era of emerging megadisturbance. Science 349, 823–826 (2015).
Google Scholar
Hodgson, J. A., Thomas, C. D., Dytham, C., Travis, J. M. J. & Cornell, S. J. The speed of range shifts in fragmented landscapes. PLoS ONE 7, e47141 (2012).
Google Scholar
Han, Q. & Keeffe, G. Mapping the flow of forest migration through the city under climate change. Urban Plan. 4, 139–151 (2019).
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Source: Ecology - nature.com