Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).
Google Scholar
Diagne, C. et al. InvaCost, a public database of the economic costs of biological invasions worldwide. Sci. Data 7, 277 (2020).
Google Scholar
Bradshaw, C. J. A. et al. Massive yet grossly underestimated global costs of invasive insects. Nat. Commun. 7, 12986 (2016).
Google Scholar
Meyerson, L. A. & Reaser, J. K. Biosecurity: moving toward a comprehensive approach. Bioscience 52, 593 (2002).
Google Scholar
Carvajal-Yepes, M. et al. A global surveillance system for crop diseases. Science 364, 1237–1239 (2019).
Google Scholar
Torres, A., David, M. & Bowman, Q. Risk management of international trade: emergency preparedness. Rev. Sci. Tech. Off. Int. Épizooties 21, 493–496 (2002).
Google Scholar
Ricciardi, A. et al. Invasion science: a horizon scan of emerging challenges and opportunities. Trends Ecol. Evol. 32, 464–474 (2017).
Google Scholar
Giovani, B. et al. Science diplomacy for plant health. Nat. Plants 6, 902–905 (2020).
Google Scholar
Reaser, J. K. et al. The early detection of and rapid response (EDRR) to invasive species: a conceptual framework and federal capacities assessment. Biol. Invasions 22, 1–19 (2020).
Google Scholar
Delaney, D. G., Sperling, C. D., Adams, C. S. & Leung, B. Marine invasive species: validation of citizen science and implications for national monitoring networks. Biol. Invasions 10, 117–128 (2008).
Google Scholar
Crall, A. W. et al. Improving and integrating data on invasive species collected by citizen scientists. Biol. Invasions 12, 3419–3428 (2010).
Google Scholar
Maistrello, L. et al. Tracking the spread of sneaking aliens by integrating crowdsourcing and spatial modeling: the Italian invasion of halyomorpha halys. Bioscience https://doi.org/10.1093/biosci/biy112 (2018).
Google Scholar
Lepczyk, C. A., Boyle, O. D., Vargo, T. L. V. & Noss, R. F. Handbook of Citizen Science in Ecology and Conservation (University of California Press, Oakland, 2020).
Devorshak, C. Plant pest risk analysis: concepts and applications. (CAB International, Wallingford, 2012).
IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge and New York, 2014).
Hijmans, R. J. & Graham, C. H. The ability of climate envelope models to predict the effect of climate change on species distributions. Glob. Change Biol. 12, 2272–2281 (2006).
Google Scholar
Broennimann, O. & Guisan, A. Predicting current and future biological invasions: both native and invaded ranges matter. Biol. Lett. 4, 585–589 (2008).
Google Scholar
Godefroid, M., Meurisse, N., Groenen, F., Kerdelhué, C. & Rossi, J.-P. Current and future distribution of the invasive oak processionary moth. Biol. Invasions 22, 523–534 (2020).
Google Scholar
Crall, A. W. et al. Citizen science contributes to our knowledge of invasive plant species distributions. Biol. Invasions 17, 2415–2427 (2015).
Google Scholar
Petrovan, S. O., Vale, C. G. & Sillero, N. Using citizen science in road surveys for large-scale amphibian monitoring: are biased data representative for species distribution?. Biodivers. Conserv. 29, 1767–1781 (2020).
Google Scholar
Hannah, L. J. Climate Change Biology (Academic Press, 2015).
Buisson, L., Thuiller, W., Casajus, N., Lek, S. & Grenouillet, G. Uncertainty in ensemble forecasting of species distribution. Glob. Change Biol. 16, 1145–1157 (2010).
Google Scholar
Porfirio, L. L. et al. Improving the use of species distribution models in conservation planning and management under climate change. PLoS ONE 9, e113749 (2014).
Google Scholar
Hamilton, G. C., Ahn, J. J., Bu, W., Leskey, T. C., Nielsen, A. L., Park, Y.-L., Rabitsch, W. & Hoelmer, K.A. Halyomorpha halys (Stål). In Invasive stink bugs and related species (Pentatomoidea): biology, higher systematics, semiochemistry, and management (ed McPherson, J. E.) 243–292 (CRC Press, Taylor & Francis, Boca Raton, 2018).
Bergmann, E. J., Venugopal, P. D., Martinson, H. M., Raupp, M. J. & Shrewsbury, P. M. Host plant use by the invasive Halyomorpha halys (Stål) on woody ornamental trees and shrubs. PLoS ONE 11, e0149975 (2016).
Google Scholar
Gapon, D. A. First records of the brown marmorated stink bug Halyomorpha halys (Stål, 1855) (Heteroptera, Pentatomidae) in Russia, Abkhazia, and Georgia. Entomol. Rev. 96, 1086–1088 (2016).
Google Scholar
Faúndez, E. I. & Rider, D. A. The brown marmorated stink bug Halyomorpha halys (Stål, 1855) (Heteroptera: Pentatomidae) in Chile. Arq. Entomolóxicos 17, 305–307 (2017).
McPherson, J. E., ed. Invasive stink bugs and related species (Pentatomoidea): biology, higher systematics, semiochemistry, and management (CRC Press, Taylor & Francis, Boca Raton, 2018).
Maistrello, L. et al. Halyomorpha halys in Italy: first results of field monitoring in fruit orchards. Integr. Prot. Fruit Crops IOBC-WPRS Bull. 112, 1–5 (2016).
Bariselli, M., Bugiani, R. & Maistrello, L. Distribution and damage caused by Halyomorpha halys in Italy. EPPO Bull. 46, 332–334 (2016).
Google Scholar
Zhu, G., Bu, W., Gao, Y. & Liu, G. Potential geographic distribution of brown marmorated stink bug invasion (Halyomorpha halys). PLoS ONE 7, e31246 (2012).
Google Scholar
Kriticos, D. J. et al. The potential global distribution of the brown marmorated stink bug, Halyomorpha halys, a critical threat to plant biosecurity. J. Pest Sci. 90, 1033–1043 (2017).
Google Scholar
Kistner, E. J. Climate change impacts on the potential distribution and abundance of the brown marmorated stink bug (Hemiptera: Pentatomidae) with special reference to North America and Europe. Environ. Entomol. 46, 1212–1224 (2017).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, 2021).
Vaclavik, T., Kanaskie, A., Hansen, E. M., Ohmann, J. L. & Meentemeyer, R. K. Predicting potential and actual distribution of sudden oak death in Oregon: prioritizing landscape contexts for early detection and eradication of disease outbreaks. For. Ecol. Manag. 260, 1026–1035 (2010).
Google Scholar
Lobo, J. M., Jiménez-Valverde, A. & Hortal, J. The uncertain nature of absences and their importance in species distribution modelling. Ecography 33, 103–114 (2010).
Google Scholar
Elith, J. et al. A statistical explanation of MaxEnt for ecologists: statistical explanation of MaxEnt. Divers. Distrib. 17, 43–57 (2011).
Google Scholar
Merow, C., Smith, M. J. & Silander, J. A. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36, 1058–1069 (2013).
Google Scholar
Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
Google Scholar
Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).
Google Scholar
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Google Scholar
Wu, T. et al. The Beijing climate center climate system model (BCC-CSM): the main progress from CMIP5 to CMIP6. Geosci. Model Dev. 12, 1573–1600 (2019).
Google Scholar
Voldoire, A. et al. Evaluation of CMIP6 DECK experiments With CNRM-CM6-1. J. Adv. Model. Earth Syst. 11, 2177–2213 (2019).
Google Scholar
Séférian, R. et al. Evaluation of CNRM earth system model, CNRM-ESM2-1: role of earth system processes in present-day and future climate. J. Adv. Model. Earth Syst. 11, 4182–4227 (2019).
Google Scholar
Swart, N. C. et al. The Canadian earth system model version 5 (CanESM5.0.3). Geosci. Model Dev. 12, 4823–4873 (2019).
Google Scholar
Hajima, T. et al. Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks. Geosci. Model Dev. 13, 2197–2244 (2020).
Google Scholar
Tatebe, H. et al. Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci. Model Dev. 12, 2727–2765 (2019).
Google Scholar
Meinshausen, M. et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 13, 3571–3605 (2020).
Google Scholar
Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models with Applications in R (Cambridge University Press, 2017).
Google Scholar
Broennimann, O. et al. Evidence of climatic niche shift during biological invasion. Ecol. Lett. 10, 701–709 (2007).
Google Scholar
Kramer-Schadt, S. et al. The importance of correcting for sampling bias in MaxEnt species distribution models. Divers. Distrib. 19, 1366–1379 (2013).
Google Scholar
Varela, S., Anderson, R. P., García-Valdés, R. & Fernández-González, F. Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography https://doi.org/10.1111/j.1600-0587.2013.00441.x (2014).
Google Scholar
VanDerWal, J., Shoo, L. P., Graham, C. & Williams, S. E. Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know?. Ecol. Model. 220, 589–594 (2009).
Google Scholar
Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).
Google Scholar
Legendre, P. & Legendre, L. Numerical Ecology (Elsevier, 2012).
Google Scholar
Godefroid, M., Cruaud, A., Streito, J.-C., Rasplus, J.-Y. & Rossi, J.-P. Xylella fastidiosa: climate suitability of European continent. Sci. Rep. 9, 8844 (2019).
Google Scholar
Vollering, J., Halvorsen, R. & Mazzoni, S. The MIAmaxent R package: variable transformation and model selection for species distribution models. Ecol. Evol. 9, 12051–12068 (2019).
Google Scholar
Mazzoni, S., Halvorsen, R. & Bakkestuen, V. MIAT: modular R-wrappers for flexible implementation of MaxEnt distribution modelling. Ecol. Inform. 30, 215–221 (2015).
Google Scholar
Elith, J., Kearney, M. & Phillips, S. The art of modelling range-shifting species: the art of modelling range-shifting species. Methods Ecol. Evol. 1, 330–342 (2010).
Google Scholar
Halvorsen, R., Mazzoni, S., Bryn, A. & Bakkestuen, V. Opportunities for improved distribution modelling practice via a strict maximum likelihood interpretation of MaxEnt. Ecography 38, 172–183 (2015).
Google Scholar
Halvorsen, R. A strict maximum likelihood explanation of MaxEnt, and some implications for distribution modelling. Sommerfeltia 36, 1–132 (2013).
Google Scholar
Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. A. Evaluating resource selection functions. Ecol. Model. 157, 281–300 (2002).
Google Scholar
Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 199, 142–152 (2006).
Google Scholar
Jiménez, L. & Soberón, J. Leaving the area under the receiving operating characteristic curve behind: an evaluation method for species distribution modeling applications based on presence-only data. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.13479 (2020).
Google Scholar
Chartois, M., Streito, J.-C., Pierre, E., Armand, J.-M., Gaudin, J., Rossi, J.-P. A crowdsourcing approach to track the expansion of the brown marmorated stinkbug Halyomorpha halys (Stål, 1855) in France. Biodivers. Data J. 9, e66335. https://doi.org/10.3897/BDJ.9.e66335 (2021)
Maurel, J.-P., Blaye G., Valladares L., Roinel, E. & Cochard, P.-O. Halyomorpha halys (Stål, 1855), la punaise diabolique en France, à Toulouse (Heteroptera ; Pentatomidae). Carnets Nat. 3, 21–25 (2016).
Cherpitel, T. & Casset, L. Halyomorpha halys (Stål, 1855), la Punaise diabolique, atteint la façade atlantique (Heteroptera Pentatomidae). L’Entomologiste 75, 59–60 (2018).
Pagola-Carte, S. & Zabalegui, I. D. hemípteros asiáticos nuevos para Gipuzkoa, norte de la Península Ibérica (Hemiptera: Pentatomidae, Cicadellidae). Heteropterus Rev. Entomol. 19, 355–360 (2019).
Streito, J. C., Rossi, J.-P., Haye, T., Hoelmer, K. & Tassus, X. La punaise diabolique à la conquête de la France. Phytoma 677, 26–30 (2014).
Maistrello, L., Dioli, P., Bariselli, M., Mazzoli, G. L. & Giacalone-Forini, I. Citizen science and early detection of invasive species: phenology of first occurrences of Halyomorpha halys in Southern Europe. Biol. Invasions 18, 3109–3116 (2016).
Google Scholar
Stoeckli, S., Felber, R. & Haye, T. Current distribution and voltinism of the brown marmorated stink bug, Halyomorpha halys, in Switzerland and its response to climate change using a high-resolution CLIMEX model. Int. J. Biometeorol. https://doi.org/10.1007/s00484-020-01992-z (2020).
Google Scholar
Leskey, T. C., Lee, D.-H., Glenn, D. M. & Morrison, W. R. Behavioral responses of the invasive Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) to light-based stimuli in the laboratory and field. J. Insect Behav. 28, 674–692 (2015).
Google Scholar
Inkley, D. B. Characteristics of home invasion by the brown marmorated stink bug (Hemiptera: Pentatomidae). J. Entomol. Sci. 47, 125–130 (2012).
Google Scholar
Cambridge, J., Payenski, A. & Hamilton, G. C. The distribution of overwintering brown marmorated stink bugs (Hemiptera: Pentatomidae) in college dormitories. Fla. Entomol. 98, 1257–1259 (2015).
Google Scholar
Hancock, T. J., Lee, D.-H., Bergh, J. C., Morrison, W. R. & Leskey, T. C. Presence of the invasive brown marmorated stink bug Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) on home exteriors during the autumn dispersal period: results generated by citizen scientists: presence of H. halys during the autumn dispersal. Agric. For. Entomol. 21, 99–108 (2019).
Google Scholar
Streito, J.-C., Chartois, M., Pierre, É. & Rossi, J.-P. Beware the brown marmorated stink bug!. IVES Tech Rev. Vine Wine https://doi.org/10.20870/IVES-TR.2020.3304 (2020).
Google Scholar
Haye, T. et al. Range expansion of the invasive brown marmorated stinkbug, Halyomorpha halys: an increasing threat to field, fruit and vegetable crops worldwide. J. Pest Sci. 88, 665–673 (2015).
Google Scholar
Zhu, G., Gariepy, T. D., Haye, T. & Bu, W. Patterns of niche filling and expansion across the invaded ranges of Halyomorpha halys in North America and Europe. J. Pest Sci. 90, 1045–1057 (2017).
Google Scholar
Shabani, F., Kumar, L. & Ahmadi, M. A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area. Ecol. Evol. 6, 5973–5986 (2016).
Google Scholar
Leskey, T. C. & Nielsen, A. L. Impact of the invasive brown marmorated stink bug in North America and Europe: history, biology, ecology, and management. Annu. Rev. Entomol. 63, 599–618 (2018).
Google Scholar
Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N. & Zimmermann, N. E. Uncertainty in ensembles of global biodiversity scenarios. Nat. Commun. 10, 1446 (2019).
Google Scholar
Pearman, P. B., Guisan, A., Broennimann, O. & Randin, C. F. Niche dynamics in space and time. Trends Ecol. Evol. 23, 149–158 (2008).
Google Scholar
Jump, A. S. & Penuelas, J. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8, 1010–1020 (2005).
Google Scholar
Urvois, T., Auger-Rozenberg, M. A., Roques, A., Rossi, J. P. & Kerdelhue, C. Climate change impact on the potential geographical distribution of two invading Xylosandrus ambrosia beetles. Sci. Rep. 11, 1339 (2021).
Google Scholar
Wiens, J. J. & Graham, C. H. Niche conservatism: integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).
Google Scholar
Source: Ecology - nature.com