in

Climate change and specialty coffee potential in Ethiopia

  • 1.

    Agovino, M., Casaccia, M., Ciommi, M., Ferrara, M. & Marchesano, K. Agriculture, climate change and sustainability: The case of EU-28. Ecol. Ind. 105, 525–543 (2019).

    Article 

    Google Scholar 

  • 2.

    Vegro, C. L. R. & de Almeida, L. F. in Coffee Consumption and Industry Strategies in Brazil 3–19 (Elsevier, 2020).

  • 3.

    Bunn, C., Läderach, P., Jimenez, J. G. P., Montagnon, C. & Schilling, T. Multiclass classification of agro-ecological zones for Arabica coffee: An improved understanding of the impacts of climate change. PLoS ONE 10, e0140490 (2015).

    Article 

    Google Scholar 

  • 4.

    Bunn, C., Läderach, P., Rivera, O. O. & Kirschke, D. A bitter cup: climate change profile of global production of Arabica and Robusta coffee. Clim. Change 129, 89–101 (2015).

    ADS 
    Article 

    Google Scholar 

  • 5.

    Pham, Y., Reardon-Smith, K., Mushtaq, S. & Cockfield, G. The impact of climate change and variability on coffee production: A systematic review. Clim. Change 156, 609–630 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 6.

    Chemura, A., Kutywayo, D., Chidoko, P. & Mahoya, C. Bioclimatic modelling of current and projected climatic suitability of coffee (Coffea arabica) production in Zimbabwe. Reg. Environ. Change 16, 473–485 (2016).

    Article 

    Google Scholar 

  • 7.

    Laderach, P. et al. in The economic, social and political elements of climate change 703–723 (Springer, 2011).

  • 8.

    Baker, P. & Haggar, J. Global warming: Effects on global coffee (SCAA Conference Handout, Long Beach, 2007).

  • 9.

    Craparo, A., Van Asten, P. J., Läderach, P., Jassogne, L. T. & Grab, S. Coffea arabica yields decline in Tanzania due to climate change: Global implications. Agric. For. Meteorol. 207, 1–10 (2015).

    ADS 
    Article 

    Google Scholar 

  • 10.

    Alves, M. C., Carvalho, L. G., Pozza, E. A., Sanches, L. & Maia, J. Ecological zoning of soybean rust, coffee rust and banana sigatoka based on Brazilian climate changes. Earth Syst. Sci. Global Change Clim. People 6, 35–46. https://doi.org/10.1016/j.proenv.2011.05.005 (2011).

    Article 

    Google Scholar 

  • 11.

    Jaramillo, J., Muchugu, E., Vega, F. E., Davis, A. & Borgemesister, C. Some like it hot: The influence and implications of climate change on coffee berry borer (Hypothenemus hampei) and coffee production in East Africa. PLoS ONE 6, e24528. https://doi.org/10.1371/journal.pone.0024528 (2011).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Kutywayo, D., Chemura, A., Kusena, W., Chidoko, P. & Mahoya, C. The impact of climate change on the potential distribution of agricultural pests: The case of the coffee white stem borer (Monochamus leuconotus P.) in Zimbabwe. Plos One 8, e73432. https://doi.org/10.1371/journal.pone.0073432 (2013).

  • 13.

    Läderach, P. et al. Climate change adaptation of coffee production in space and time. Clim. Change 141, 47–62 (2017).

    Article 

    Google Scholar 

  • 14.

    Scholz, M. B. d. S., Kitzberger, C. S. G., Prudencio, S. H. & Silva, R. S. d. S. F. d. The typicity of coffees from different terroirs determined by groups of physico-chemical and sensory variables and multiple factor analysis. Food Res. Int. 114, 72–80. https://doi.org/10.1016/j.foodres.2018.07.058 (2018).

  • 15.

    Bertrand, B. et al. Comparison of the effectiveness of fatty acids, chlorogenic acids, and elements for the chemometric discrimination of coffee (Coffea arabica L.) varieties and growing origins. J. Agric. Food Chem. 56, 2273–2280 (2008).

  • 16.

    Cheng, B., Furtado, A., Smyth, H. E. & Henry, R. J. Influence of genotype and environment on coffee quality. Trends Food Sci. Technol. 57, 20–30 (2016).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Bote, A. D. & Vos, J. Tree management and environmental conditions affect coffee (Coffea arabica L.) bean quality. NJAS-Wageningen J. Life Sci. 83, 39–46 (2017).

  • 18.

    de Carvalho, A. M. et al. Relationship between the sensory attributes and the quality of coffee in different environments. Afr. J. Agric. Res. 11, 3607–3614 (2016).

    Article 

    Google Scholar 

  • 19.

    Sberveglieri, V. et al. in AIP Conference Proceedings. 86–87 (American Institute of Physics).

  • 20.

    Bertrand, B. et al. Climatic factors directly impact the volatile organic compound fingerprint in green Arabica coffee bean as well as coffee beverage quality. Food Chem. 135, 2575–2583 (2012).

    CAS 
    Article 

    Google Scholar 

  • 21.

    International Trade Centre. The Coffee Exporter’s Guide (World Trade Organization and the United Nations, 2011).

    Google Scholar 

  • 22.

    Lambot, C. et al. in The Craft and Science of Coffee (ed Britta Folmer) 17–49 (Academic Press, 2017).

  • 23.

    Ahmed, S. & Stepp, J. R. Beyond yields: Climate effects on specialty crop quality and agroecological management. Element. Sci. Anthropocene 4, 92 (2016).

  • 24.

    Purba, P., Sukartiko, A. & Ainuri, M. in IOP Conference Series: Earth and Environmental Science. 012021 (IOP Publishing).

  • 25.

    Traore, T. M., Wilson, N. L. & Fields, D. What explains specialty coffee quality scores and prices: A case study from the cup of excellence program. J. Agric. Appl. Econ. 50, 349–368 (2018).

    Article 

    Google Scholar 

  • 26.

    Barjolle, D., Quiñones-Ruiz, X. F., Bagal, M. & Comoé, H. The role of the state for geographical indications of coffee: Case studies from Colombia and Kenya. World Dev. 98, 105–119 (2017).

    Article 

    Google Scholar 

  • 27.

    Oguamanam, C. & Dagne, T. Geographical indication (GI) options for Ethiopian coffee and Ghanaian cocoa. Innovation and intellectual property: Collaborative dynamics in Africa, 77–108 (2014).

  • 28.

    Boaventura, P. S. M., Abdalla, C. C., Araujo, C. L. & Arakelian, J. S. Value co-creation in the specialty coffee value chain: The third-wave coffee movement. Revista de Administração de Empresas 58, 254–266 (2018).

    Article 

    Google Scholar 

  • 29.

    Lannigan, J. Making a space for taste: Context and discourse in the specialty coffee scene. Int. J. Inf. Manage. 51, 101987 (2020).

    Article 

    Google Scholar 

  • 30.

    Masters, G., Baker, P. & Flood, J. Climate change and agricultural commodities. CABI Work. Pap. 2, 1–38 (2010).

    Google Scholar 

  • 31.

    Rahman, S., Gross, M., Battiste, M. & Gacioch, M. Specialty Coffee Farmers’ Climate Change Concern and Perceived Ability to Adapt. (2016).

  • 32.

    Srinivasan, R., Giannikas, V., Kumar, M., Guyot, R. & McFarlane, D. Modelling food sourcing decisions under climate change: A data-driven approach. Comput. Ind. Eng. 128, 911–919 (2019).

    Article 

    Google Scholar 

  • 33.

    Chemura, A., Schauberger, B. & Gornott, C. Impacts of climate change on agro-climatic suitability of major food crops in Ghana. PLoS ONE 15, e0229881 (2020).

    CAS 
    Article 

    Google Scholar 

  • 34.

    FAO. (Food Agriculture Organization of the United Nations, Roma, 2012).

  • 35.

    Hirons, M. et al. Pursuing climate resilient coffee in Ethiopia: A critical review. Geoforum 91, 108–116 (2018).

    Article 

    Google Scholar 

  • 36.

    Central Statistical Agency (CSA). Agricultural Sample Survey 2018/19. (2019).

  • 37.

    Murken, L. et al. Climate Risk Analysis for Identifying and Weighing Adaptation Strategies in Ethiopia’s Agricultural Sector. (2020).

  • 38.

    Ridley, F. The past and future climatic suitability of arabica coffee (Coffea arabica L.) in East Africa, Durham University, (2011).

  • 39.

    Putri, S. P., Irifune, T. & Fukusaki, E. GC/MS based metabolite profiling of Indonesian specialty coffee from different species and geographical origin. Metabolomics 15, 126 (2019).

    Article 

    Google Scholar 

  • 40.

    Mengistie, G. in Extending the Protection of Geographical Indications: Case studies of Agricultural Products of Africa Vol. 15 (eds M Blakeney, T Coulet, Getachew Mengistie, & M.T Mahop) 150 (Routledge, 2011).

  • 41.

    Kufa, T., Ayano, A., Yilma, A., Kumela, T. & Tefera, W. The contribution of coffee research for coffee seed development in Ethiopia. J. Agric. Res. Dev. 1, 009–016 (2011).

    Google Scholar 

  • 42.

    Moat, J. et al. Resilience potential of the Ethiopian coffee sector under climate change. Nat. Plants 3, 17081 (2017).

    Article 

    Google Scholar 

  • 43.

    Moat, J., Gole, T. W. & Davis, A. P. Least Concern to Endangered: Applying climate change projections profoundly influences the extinction risk assessment for wild Arabica coffee. Glob. Change Biol. 25, 390–403 (2019).

    ADS 
    Article 

    Google Scholar 

  • 44.

    Davis, A. P., Gole, T. W., Baena, S. & Moat, J. The impact of climate change on indigenous arabica coffee (Coffea arabica): Predicting future trends and identifying priorities. PLoS ONE 7, e47981. https://doi.org/10.1371/journal.pone.0047981 (2012).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    CIAT. Future Climate Scenarios for Tanzania’s Arabica Coffee Growing Areas. 27 (International Center for Tropical Agriculture, Cali, Colombia: , 2012).

  • 46.

    Laderach, P., Jarvis, A. & Ramirez, J. The impact of climate change in coffee-growing regions: The case of 10 municipalities in Nicaragua. 4 (CafeDirect/GTZ, 2006).

  • 47.

    Gomes, L. C. et al. Agroforestry systems can mitigate the impacts of climate change on coffee production: A spatially explicit assessment in Brazil. Agr. Ecosyst. Environ. 294, 106858. https://doi.org/10.1016/j.agee.2020.106858 (2020).

    Article 

    Google Scholar 

  • 48.

    Brown, N. in Daily Coffee News (Roast Magazine, 2018).

  • 49.

    Labouisse, J.-P., Bellachew, B., Kotecha, S. & Bertrand, B. Current status of coffee (Coffea arabica L.) genetic resources in Ethiopia: implications for conservation. Genet. Resour. Crop Evol. 55, 1079 (2008).

  • 50.

    MFA. Coffee production in Ethiopia. The 4th World Coffee Conference in Addis Ababa, Ministry of Foreign Affairs of Ethiopia, Addis Ababa, Ethiopia (2016).

  • 51.

    Tolessa, K., D’heer, J., Duchateau, L. & Boeckx, P. Influence of growing altitude, shade and harvest period on quality and biochemical composition of Ethiopian specialty coffee. J. Sci. Food Agric. 97, 2849–2857 (2017).

  • 52.

    Chemura, A., Mahoya, C., Chidoko, P. & Kutywayo, D. Effect of soil moisture deficit stress on biomass accumulation of four coffee (Coffea arabica) varieties in Zimbabwe. ISRN Agron. 1–10, 2014. https://doi.org/10.1155/2014/767312 (2014).

    Article 

    Google Scholar 

  • 53.

    Hannah, L. et al. Climate change, wine, and conservation. Proc. Natl. Acad. Sci. 110, 6907–6912 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 54.

    Impact on variety and origin chemometric determination. Villarreal, D. et al. Genotypic and environmental effects on coffee (Coffea arabica L.) bean fatty acid profile. J. Agric. Food Chem. 57, 11321–11327 (2009).

    Article 

    Google Scholar 

  • 55.

    Sisay, B. T. in Sustainable agriculture reviews 33 99–113 (Springer, 2018).

  • 56.

    DaMatta, F. b. M., Avila, R. T., Cardoso, A. A., Martins, S. C. & Ramalho, J. C. Physiological and agronomic performance of the coffee crop in the context of climate change and global warming: A review. J. Agric. Food Chem. 66, 5264–5274 (2018).

  • 57.

    CABI. (2015).

  • 58.

    Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many?. Methods Ecol. Evol. 3, 327–338 (2012).

    Article 

    Google Scholar 

  • 59.

    Liu, C., Newell, G. & White, M. The effect of sample size on the accuracy of species distribution models: Considering both presences and pseudo-absences or background sites. Ecography 42, 535–548 (2019).

    Article 

    Google Scholar 

  • 60.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978. https://doi.org/10.1002/joc.1276 (2005).

    Article 

    Google Scholar 

  • 61.

    R Core Team. R: A language and environment for statistical computing. (2019).

  • 62.

    Hengl, T. et al. SoilGrids1km—global soil information based on automated mapping. PloS one 9 (2014).

  • 63.

    Nair, K. P. P. The Agronomy and Economy of Important Tree Crops of the Developing World. 368 (Elservier, 2010).

  • 64.

    Coste, J. Coffee: The plant and the product. (Longman, 1992).

  • 65.

    Lin, F.-J. Solving multicollinearity in the process of fitting regression model using the nested estimate procedure. Qual. Quant. 42, 417–426 (2008).

    Article 

    Google Scholar 

  • 66.

    Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).

    Article 

    Google Scholar 

  • 67.

    Breiman, L. Random forests machine learning. 45: 5–32. View Article PubMed/NCBI Google Scholar (2001).

  • 68.

    Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).

    CAS 
    Article 

    Google Scholar 

  • 69.

    Li, X. & Wang, Y. Applying various algorithms for species distribution modelling. Integr. Zool. 8, 124–135 (2013).

    Article 

    Google Scholar 

  • 70.

    Gobeyn, S. et al. Evolutionary algorithms for species distribution modelling: A review in the context of machine learning. Ecol. Model. 392, 179–195 (2019).

    Article 

    Google Scholar 

  • 71.

    Vapnik, V. The nature of statistical learning theory. (Springer science & business media, 2013).

  • 72.

    Choubin, B., Darabi, H., Rahmati, O., Sajedi-Hosseini, F. & Kløve, B. River suspended sediment modelling using the CART model: A comparative study of machine learning techniques. Sci. Total Environ. 615, 272–281 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 73.

    Pourghasemi, H. R., Yousefi, S., Kornejady, A. & Cerdà, A. Performance assessment of individual and ensemble data-mining techniques for gully erosion modeling. Sci. Total Environ. 609, 764–775 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 74.

    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).

    Article 

    Google Scholar 

  • 75.

    Chang, Y. & Bourque, C.P.-A. Relating modelled habitat suitability for Abies balsamea to on-the-ground species structural characteristics in naturally growing forests. Ecol. Ind. 111, 105981 (2020).

    Article 

    Google Scholar 

  • 76.

    Naimi, B. & Araújo, M. B. sdm: A reproducible and extensible R platform for species distribution modelling. Ecography 39, 368–375 (2016).

    Article 

    Google Scholar 

  • 77.

    Zurell, D. et al. A standard protocol for reporting species distribution models. Ecography (2020).

  • 78.

    ArcGIS Desktop v. 10.2 (Environmental Systems Research Institute, Redlands, CA, Redlands, 2012).

  • 79.

    WorldClim. Global climate and weather data. https://www.worldclim.org/data/cmip6/cmip6_clim2.5m.html ( 2020).

  • 80.

    Navarro-Racines, C., Tarapues, J., Thornton, P., Jarvis, A. & Ramirez-Villegas, J. High-resolution and bias-corrected CMIP5 projections for climate change impact assessments. Sci. Data 7, 1–14 (2020).

    Article 

    Google Scholar 

  • 81.

    van Vuuren, D. P. et al. A new scenario framework for Climate Change Research: scenario matrix architecture. Clim. Change 122, 373–386. https://doi.org/10.1007/s10584-013-0906-1 (2014).

    Article 

    Google Scholar 

  • 82.

    Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Chang. 42, 331–345. https://doi.org/10.1016/j.gloenvcha.2016.10.002 (2017).

    Article 

    Google Scholar 

  • 83.

    O’Neill, B. C. et al. The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Chang. 42, 169–180 (2017).

    Article 

    Google Scholar 

  • 84.

    Doelman, J. C. et al. Exploring SSP land-use dynamics using the IMAGE model: Regional and gridded scenarios of land-use change and land-based climate change mitigation. Glob. Environ. Chang. 48, 119–135 (2018).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Negative emissions, positive economy

    Individual US diets show wide variation in water scarcity footprints