Reading, C. J. et al. Are snake populations in widespread decline?. Biol. Lett. 6, 777–780 (2010).
Google Scholar
Gibbons, J. W. et al. The Global Decline of Reptiles, Déja Vu Amphibians. Bioscience 50, 653–666 (2000).
Google Scholar
Wilcove, D. S., Rothstein, D., Dubow, J., Phillips, A. & Losos, E. Quantifying threats to imperiled species in the United States. Bioscience 48, 607–615 (1998).
Google Scholar
Stenseth, N. C. et al. Ecological effects of climate fluctuations. Science 297, 1292–1296 (2002).
Google Scholar
IUCN. Wildlife in a Changing World: An Analysis of the 2008 IUCN Red List of Threatened Species. (IUCN, 2009).
Needleman, R. K., Neylan, I. P. & Erickson, T. Potential environmental and ecological effects of global climate change on venomous terrestrial species in the wilderness. Wilderness Environ. Med. 29, 226–238 (2018).
Google Scholar
Segura, C., Feriche, M., Pleguezuelos, J. M. & Santos, X. Specialist and generalist species in habitat use: Implications for conservation assessment in snakes. J. Nat. Hist. 41, 2765–2774 (2007).
Google Scholar
Moreno-Rueda, G., Pleguezuelos, J. M. & Alaminos, E. Climate warming and activity period extension in the Mediterranean snake Malpolon monspessulanus. Clim. Change 92, 235–242 (2009).
Google Scholar
Brown, G. P. & Shine, R. Effects of nest temperature and moisture on phenotypic traits of hatchling snakes (Tropidonophis mairii, Colubridae) from tropical Australia. Biol. J. Linn. Soc. 89, 159–168 (2006).
Google Scholar
Lourenço-de-Moraes, R. et al. Climate change will decrease the range size of snake species under negligible protection in the Brazilian Atlantic Forest hotspot. Sci. Rep. 9, 1–14 (2019).
Google Scholar
Uetz, P., Freed, P. & Hošek, J. The Reptile Database. http://www.reptile-database.org (2019).
Wallach, V., Wüster, W. & Broadley, D. G. In praise of subgenera: Taxonomic status of cobras of the genus. Zootaxa 2236, 26–36 (2009).
Google Scholar
Wüster, W. Taxonomic changes and toxinology: Systematic revisions of the Asiatic cobras (Naja naja species complex). Toxicon 34, 399–406 (1996).
Google Scholar
Wüster, W., Thorpe, R. S., Cox, M., Jintakune, P. & Nabhitabhata, J. Population systematics of the snake genus Naja (Reptilia: Serpentes: Elapidae) in Indochina: Multivariate morphometrics and comparative mitochondrial DNA sequencing (cytochrome oxidase I). J. Evol. Biol. 8, 493–510 (1995).
Google Scholar
Smith, M. A. The Fauna of British India Vol. 3 (Taylor and Francis, 1943).
Wüster, W. & Thorpe, R. S. Asiatic Cobras: Population systematics of the Naja naja Species Complex (Serpentes: Elapidae) in India and Central Asia. Herpetologica 48, 69–85 (1992).
IUCN. The IUCN Red List of Threatened Species. Version 2019-3. https://www.iucnredlist.org (2019).
Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–243 (2014).
Google Scholar
Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).
Google Scholar
United Nations. World Population Prospects 2019. Department of Economic and Social Affairs. World Population Prospects 2019. (2019).
UNESCAP. Factsheet: Urbanization trends in Asia and the Pacific 4 (2013).
Zhou, Z. & Jiang, Z. International trade status and crisis for snake species in China. Conserv. Biol. 18, 1386–1394 (2004).
Google Scholar
Li, Y. & Li, D. The dynamics of trade in live wildlife across the Guangxi border between China and Vietnam during 1993–1996 and its control strategies. Biodivers. Conserv. 7, 895–914 (1998).
Google Scholar
CITES. CITES Appendices I, II, and III. (2019).
Gutiérrez, J. M., Williams, D., Fan, H. W. & Warrell, D. A. Snakebite envenoming from a global perspective: Towards an integrated approach. Toxicon 56, 1223–1235 (2010).
Google Scholar
Kasturiratne, A. et al. The global burden of snakebite: A literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med. 5, 1591–1604 (2008).
Google Scholar
Longbottom, J. et al. Vulnerability to snakebite envenoming: A global mapping of hotspots. Lancet 392, 673–684 (2018).
Google Scholar
Warrell, D. A. Clinical toxicology of snakebite in Asia. In Handbook of Clinical Toxicology of Animal Venoms and Poisons (eds Meier, J. & White, J.) 493–594 (CRC Press, 1995).
Seto, K. C., Güneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 109, 16083–16088 (2012).
Google Scholar
Yue, S., BoneBrake, T. C. & GiBSon, L. Human-snake conflict patterns in a dense urban-forest mosaic landscape. Herpetol. Conserv. Biol. 14, 143–154 (2019).
Yousefi, M., Kafash, A., Khani, A. & Nabati, N. Applying species distribution models in public health research by predicting snakebite risk using venomous snakes’ habitat suitability as an indicating factor. Sci. Rep. 10, 1–11 (2020).
Google Scholar
Slowinski, J. B. & Wüster, W. A New Cobra (Elapidae: Naja) from Myanmar (Burma). Herpetologica 56, 257–270 (2000).
Wüster, W. & Thorpe, R. S. Population affinities of the asiatic cobra (Naja naja) species complex in south-east Asia: Reliability and random resampling. Biol. J. Linn. Soc. 36, 391–409 (1989).
Google Scholar
Wüster, W., Warrell, D. A., Cox, M. J., Jintakune, P. & Nabhitabhata, J. Redescription of Naja siamensis (Serpentes: Elapidae), a widely overlooked spitting cobra from S.E. Asia: Geographic variation, medical importance and designation of a neotype. J. Zool. 243, 771–788 (1997).
Google Scholar
Kuch, U. et al. A new species of krait (Squamata: Elapidae) from the Red River System of Northern Vietnam. Copeia 2005, 818–833 (2005).
Google Scholar
Journé, V., Barnagaud, J. Y., Bernard, C., Crochet, P. A. & Morin, X. Correlative climatic niche models predict real and virtual species distributions equally well. Ecology 101, 1–14 (2020).
Google Scholar
Kelly, M. Adaptation to climate change through genetic accommodation and assimilation of plastic phenotypes. Philos. Trans. R. Soc. B 374, 20180176 (2019).
Google Scholar
Siqueira, L. H. C. & Marques, O. A. V. Effects of Urbanization on Bothrops jararaca Populations in São Paulo Municipality, Southeastern Brazil. J. Herpetol. 52, 299–306 (2018).
Google Scholar
Santra, V. et al. Confirmation of Naja oxiana in Himachal Pradesh, India. Herpetol. Bull. https://doi.org/10.33256/hb150.2628 (2019).
Google Scholar
IUCN Standards and Petitions Committee. Guidelines for Using the IUCN Red List Categories and Criteria, Vol. 1 (2019).
IUCN. Guidelines for Application of IUCN Red List Criteria At Regional And National Levels. (IUCN, 2012).
Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).
Google Scholar
Sahlean, T. C., Gherghel, I., Papeş, M., Strugariu, A. & Zamfirescu, ŞR. Refining climate change projections for organisms with low dispersal abilities: A case study of the Caspian whip snake. PLoS ONE 9, e91994 (2014).
Google Scholar
Wolfe, A. K., Fleming, P. A. & Bateman, P. W. Impacts of translocation on a large urban-adapted venomous snake. Wildl. Res. 45, 316–324 (2018).
Google Scholar
Visser, M. E. Keeping up with a warming world; assessing the rate of adaptation to climate change. Proc. R. Soc. B Biol. Sci. 275, 649–659 (2008).
Google Scholar
Chen, C., Qu, Y., Zhou, X. & Wang, Y. Human overexploitation and extinction risk correlates of Chinese snakes. Ecography (Cop.) 42, 1777–1788 (2019).
Google Scholar
CITES. Full CITES Trade Database 2000–2018. https://trade.cites.org/ (2018).
Braimoh, A. K., Subramanian, S. M., Elliot, W. & Gasparatos, A. Climate and Human-Related Drivers of Biodiversity Decline in Southeast Asia. (United Nations University Institute of Advanced Studies, 2010) https://unu.edu/publications/articles/unraveling-the-drivers-of-southeast-asia-biodiversity-loss.html#info.
Wood, S., Sebastian, K. & Scherr, S. Pilot Analysis of Global Ecosystems: Agroecosystems: A Joint Study (International Food Policy Research Institute and World Resources Institute, 2000).
Castelletta, M., Sodhi, N. S. & Subaraj, R. Heavy extinctions of forest avifauna in Singapore: Lessons for biodiversity conservation in Southeast Asia. Conserv. Biol. 14, 1870–1880 (2000).
Google Scholar
Zhao, S. et al. Land use change in Asia and the ecological consequences. Ecol. Res. 21, 890–896 (2006).
Google Scholar
Estoque, R. C. & Murayama, Y. Trends and spatial patterns of urbanization in Asia and Africa: A comparative analysis. In Urban Development in Asia and Africa 393–414 (2017).
Shankar, P. G., Singh, A., Ganesh, S. R. & Whitaker, R. Factors influencing human hostility to King Cobras (Ophiophagus hannah) in the Western Ghats of India. Hamadryad 36, 91–100 (2013).
United Nations. Progress Towards the Sustainable Development Goals. https://undocs.org/en/E/2020/57 (2020).
Nori, J., Carrasco, P. A. & Leynaud, G. C. Venomous snakes and climate change: Ophidism as a dynamic problem. Clim. Change 122, 67–80 (2014).
Google Scholar
Organization, W. H. Snakebite Envenoming: A Strategy for Prevention and Control (World Health Organization, 2019).
Zancolli, G. et al. When one phenotype is not enough: Divergent evolutionary trajectories govern venom variation in a widespread rattlesnake species. Proc. R. Soc. B Biol. Sci. 286, 20182735 (2019).
Google Scholar
Wüster, W. & Thorpe, R. S. Systematics and biogeography of the Asiatic cobra (Naja naja) species complex in the Philippine Islands. In Vertebrates in the Tropics (eds Peters, G. & Hutterer, R.) 333–344 (Museum Alexander Koenig, 1990).
Kazemi, E., Kaboli, M., Khosravi, R. & Khorasani, N. Evaluating the importance of environmental variables on spatial distribution of caspian cobra naja oxiana (Eichwald, 1831) in Iran. Asian Herpetol. Res. 10, 129–138 (2019).
Khan, M. The snakebite problem in Pakistan. Bull. Chicago Herp. Soc 49, 165–167 (2014).
Showler, D. A. A Checklist of the Amphibians and Reptiles of the Republic of Uzbekistan with a Review and Summary of Species Distribution. https://www.sustainablehoubaramanagement.org/wp-content/uploads/2018/09/Uzbekistan-Amphibian-Reptile-Checklist-14Sept2018-PDF.pdf (2018).
Prakash, S., Kumar Mishra, A. & Raziuddin, M. A new record of cream coloured morph of Naja kaouthia Lesson, 1831 (Reptilia, Serpentes, Elapidae) from Hazaribag, Jharkhand, India. Biodivers. J. 3, 153–155 (2012).
Kazemi, E., Nazarizadeh, M., Fatemizadeh, F., Khani, A. & Kaboli, M. The phylogeny, phylogeography, and diversification history of the westernmost Asian cobra (Serpentes: Elapidae: Naja oxiana) in the Trans-Caspian region. Ecol. Evol. https://doi.org/10.1002/ece3.7144 (2020).
Google Scholar
Bivand, R. et al. Tools for Handling Spatial Objects. (2019).
Lima-Ribeiro, M. et al. The ecoClimate Database. http://ecoclimate.org.
Rangel, T. F. & Loyola, R. D. Labeling ecological niche models. Nat. Conserv. 10, 119–126 (2012).
Google Scholar
Beaumont, L. J., Hughes, L. & Poulsen, M. Predicting species distributions: Use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecol. Model. 186, 251–270 (2005).
Google Scholar
Hijmans, R. J. et al. Geographic Data Analysis and Modeling. https://cran.r-project.org/package=raster (2019).
Bivand, R. et al. Bindings for the ‘Geospatial’ Data Abstraction Library Version. Cran (2019).
Pebesma, E. et al. Classes and Methods for Spatial Data. (R News, 2019).
Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. Species Distribution Modeling. (2017).
Sharma, S. K. et al. Venomous Snakes of Nepal. (2013).
Whitaker, R. & Captain, A. Snakes of India: The Field Guide. Draco Books (Chennai), (2008).
Gao, J. Downscaling Global Spatial Population Projections from 1/8-degree to 1-km Grid Cells. NCAR Technical Note NCAR/TN-537+STR https://sedac.ciesin.columbia.edu/data/set/popdynamics-pop-projection-ssp-downscaled-1km-2010-2100. https://doi.org/10.5065/D60Z721H (2017).
van Vuuren, D. P. et al. A new scenario framework for Climate Change Research: Scenario matrix architecture. Clim. Change 122, 373–386 (2014).
Google Scholar
Source: Ecology - nature.com