in

Climate change and the increase of human population will threaten conservation of Asian cobras

  • 1.

    Reading, C. J. et al. Are snake populations in widespread decline?. Biol. Lett. 6, 777–780 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 2.

    Gibbons, J. W. et al. The Global Decline of Reptiles, Déja Vu Amphibians. Bioscience 50, 653–666 (2000).

    Article 

    Google Scholar 

  • 3.

    Wilcove, D. S., Rothstein, D., Dubow, J., Phillips, A. & Losos, E. Quantifying threats to imperiled species in the United States. Bioscience 48, 607–615 (1998).

    Article 

    Google Scholar 

  • 4.

    Stenseth, N. C. et al. Ecological effects of climate fluctuations. Science 297, 1292–1296 (2002).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    IUCN. Wildlife in a Changing World: An Analysis of the 2008 IUCN Red List of Threatened Species. (IUCN, 2009).

  • 6.

    Needleman, R. K., Neylan, I. P. & Erickson, T. Potential environmental and ecological effects of global climate change on venomous terrestrial species in the wilderness. Wilderness Environ. Med. 29, 226–238 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Segura, C., Feriche, M., Pleguezuelos, J. M. & Santos, X. Specialist and generalist species in habitat use: Implications for conservation assessment in snakes. J. Nat. Hist. 41, 2765–2774 (2007).

    Article 

    Google Scholar 

  • 8.

    Moreno-Rueda, G., Pleguezuelos, J. M. & Alaminos, E. Climate warming and activity period extension in the Mediterranean snake Malpolon monspessulanus. Clim. Change 92, 235–242 (2009).

    ADS 
    Article 

    Google Scholar 

  • 9.

    Brown, G. P. & Shine, R. Effects of nest temperature and moisture on phenotypic traits of hatchling snakes (Tropidonophis mairii, Colubridae) from tropical Australia. Biol. J. Linn. Soc. 89, 159–168 (2006).

    Article 

    Google Scholar 

  • 10.

    Lourenço-de-Moraes, R. et al. Climate change will decrease the range size of snake species under negligible protection in the Brazilian Atlantic Forest hotspot. Sci. Rep. 9, 1–14 (2019).

    Article 
    CAS 

    Google Scholar 

  • 11.

    Uetz, P., Freed, P. & Hošek, J. The Reptile Database. http://www.reptile-database.org (2019).

  • 12.

    Wallach, V., Wüster, W. & Broadley, D. G. In praise of subgenera: Taxonomic status of cobras of the genus. Zootaxa 2236, 26–36 (2009).

    Article 

    Google Scholar 

  • 13.

    Wüster, W. Taxonomic changes and toxinology: Systematic revisions of the Asiatic cobras (Naja naja species complex). Toxicon 34, 399–406 (1996).

    PubMed 
    Article 

    Google Scholar 

  • 14.

    Wüster, W., Thorpe, R. S., Cox, M., Jintakune, P. & Nabhitabhata, J. Population systematics of the snake genus Naja (Reptilia: Serpentes: Elapidae) in Indochina: Multivariate morphometrics and comparative mitochondrial DNA sequencing (cytochrome oxidase I). J. Evol. Biol. 8, 493–510 (1995).

    Article 

    Google Scholar 

  • 15.

    Smith, M. A. The Fauna of British India Vol. 3 (Taylor and Francis, 1943).

    Google Scholar 

  • 16.

    Wüster, W. & Thorpe, R. S. Asiatic Cobras: Population systematics of the Naja naja Species Complex (Serpentes: Elapidae) in India and Central Asia. Herpetologica 48, 69–85 (1992).

    Google Scholar 

  • 17.

    IUCN. The IUCN Red List of Threatened Species. Version 2019-3. https://www.iucnredlist.org (2019).

  • 18.

    Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–243 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 19.

    Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).

    CAS 
    Article 

    Google Scholar 

  • 20.

    United Nations. World Population Prospects 2019. Department of Economic and Social Affairs. World Population Prospects 2019. (2019).

  • 21.

    UNESCAP. Factsheet: Urbanization trends in Asia and the Pacific 4 (2013).

  • 22.

    Zhou, Z. & Jiang, Z. International trade status and crisis for snake species in China. Conserv. Biol. 18, 1386–1394 (2004).

    Article 

    Google Scholar 

  • 23.

    Li, Y. & Li, D. The dynamics of trade in live wildlife across the Guangxi border between China and Vietnam during 1993–1996 and its control strategies. Biodivers. Conserv. 7, 895–914 (1998).

    Article 

    Google Scholar 

  • 24.

    CITES. CITES Appendices I, II, and III. (2019).

  • 25.

    Gutiérrez, J. M., Williams, D., Fan, H. W. & Warrell, D. A. Snakebite envenoming from a global perspective: Towards an integrated approach. Toxicon 56, 1223–1235 (2010).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 26.

    Kasturiratne, A. et al. The global burden of snakebite: A literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med. 5, 1591–1604 (2008).

    Article 

    Google Scholar 

  • 27.

    Longbottom, J. et al. Vulnerability to snakebite envenoming: A global mapping of hotspots. Lancet 392, 673–684 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    Warrell, D. A. Clinical toxicology of snakebite in Asia. In Handbook of Clinical Toxicology of Animal Venoms and Poisons (eds Meier, J. & White, J.) 493–594 (CRC Press, 1995).

    Google Scholar 

  • 29.

    Seto, K. C., Güneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 109, 16083–16088 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Yue, S., BoneBrake, T. C. & GiBSon, L. Human-snake conflict patterns in a dense urban-forest mosaic landscape. Herpetol. Conserv. Biol. 14, 143–154 (2019).

    Google Scholar 

  • 31.

    Yousefi, M., Kafash, A., Khani, A. & Nabati, N. Applying species distribution models in public health research by predicting snakebite risk using venomous snakes’ habitat suitability as an indicating factor. Sci. Rep. 10, 1–11 (2020).

    Article 
    CAS 

    Google Scholar 

  • 32.

    Slowinski, J. B. & Wüster, W. A New Cobra (Elapidae: Naja) from Myanmar (Burma). Herpetologica 56, 257–270 (2000).

    Google Scholar 

  • 33.

    Wüster, W. & Thorpe, R. S. Population affinities of the asiatic cobra (Naja naja) species complex in south-east Asia: Reliability and random resampling. Biol. J. Linn. Soc. 36, 391–409 (1989).

    Article 

    Google Scholar 

  • 34.

    Wüster, W., Warrell, D. A., Cox, M. J., Jintakune, P. & Nabhitabhata, J. Redescription of Naja siamensis (Serpentes: Elapidae), a widely overlooked spitting cobra from S.E. Asia: Geographic variation, medical importance and designation of a neotype. J. Zool. 243, 771–788 (1997).

    Article 

    Google Scholar 

  • 35.

    Kuch, U. et al. A new species of krait (Squamata: Elapidae) from the Red River System of Northern Vietnam. Copeia 2005, 818–833 (2005).

    Article 

    Google Scholar 

  • 36.

    Journé, V., Barnagaud, J. Y., Bernard, C., Crochet, P. A. & Morin, X. Correlative climatic niche models predict real and virtual species distributions equally well. Ecology 101, 1–14 (2020).

    Article 

    Google Scholar 

  • 37.

    Kelly, M. Adaptation to climate change through genetic accommodation and assimilation of plastic phenotypes. Philos. Trans. R. Soc. B 374, 20180176 (2019).

    Article 

    Google Scholar 

  • 38.

    Siqueira, L. H. C. & Marques, O. A. V. Effects of Urbanization on Bothrops jararaca Populations in São Paulo Municipality, Southeastern Brazil. J. Herpetol. 52, 299–306 (2018).

    Article 

    Google Scholar 

  • 39.

    Santra, V. et al. Confirmation of Naja oxiana in Himachal Pradesh, India. Herpetol. Bull. https://doi.org/10.33256/hb150.2628 (2019).

    Article 

    Google Scholar 

  • 40.

    IUCN Standards and Petitions Committee. Guidelines for Using the IUCN Red List Categories and Criteria, Vol. 1 (2019).

  • 41.

    IUCN. Guidelines for Application of IUCN Red List Criteria At Regional And National Levels. (IUCN, 2012).

  • 42.

    Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 43.

    Sahlean, T. C., Gherghel, I., Papeş, M., Strugariu, A. & Zamfirescu, ŞR. Refining climate change projections for organisms with low dispersal abilities: A case study of the Caspian whip snake. PLoS ONE 9, e91994 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 44.

    Wolfe, A. K., Fleming, P. A. & Bateman, P. W. Impacts of translocation on a large urban-adapted venomous snake. Wildl. Res. 45, 316–324 (2018).

    Article 

    Google Scholar 

  • 45.

    Visser, M. E. Keeping up with a warming world; assessing the rate of adaptation to climate change. Proc. R. Soc. B Biol. Sci. 275, 649–659 (2008).

    Article 

    Google Scholar 

  • 46.

    Chen, C., Qu, Y., Zhou, X. & Wang, Y. Human overexploitation and extinction risk correlates of Chinese snakes. Ecography (Cop.) 42, 1777–1788 (2019).

    Article 

    Google Scholar 

  • 47.

    CITES. Full CITES Trade Database 2000–2018. https://trade.cites.org/ (2018).

  • 48.

    Braimoh, A. K., Subramanian, S. M., Elliot, W. & Gasparatos, A. Climate and Human-Related Drivers of Biodiversity Decline in Southeast Asia. (United Nations University Institute of Advanced Studies, 2010) https://unu.edu/publications/articles/unraveling-the-drivers-of-southeast-asia-biodiversity-loss.html#info.

  • 49.

    Wood, S., Sebastian, K. & Scherr, S. Pilot Analysis of Global Ecosystems: Agroecosystems: A Joint Study (International Food Policy Research Institute and World Resources Institute, 2000).

    Google Scholar 

  • 50.

    Castelletta, M., Sodhi, N. S. & Subaraj, R. Heavy extinctions of forest avifauna in Singapore: Lessons for biodiversity conservation in Southeast Asia. Conserv. Biol. 14, 1870–1880 (2000).

    Article 

    Google Scholar 

  • 51.

    Zhao, S. et al. Land use change in Asia and the ecological consequences. Ecol. Res. 21, 890–896 (2006).

    Article 

    Google Scholar 

  • 52.

    Estoque, R. C. & Murayama, Y. Trends and spatial patterns of urbanization in Asia and Africa: A comparative analysis. In Urban Development in Asia and Africa 393–414 (2017).

  • 53.

    Shankar, P. G., Singh, A., Ganesh, S. R. & Whitaker, R. Factors influencing human hostility to King Cobras (Ophiophagus hannah) in the Western Ghats of India. Hamadryad 36, 91–100 (2013).

    Google Scholar 

  • 54.

    United Nations. Progress Towards the Sustainable Development Goals. https://undocs.org/en/E/2020/57 (2020).

  • 55.

    Nori, J., Carrasco, P. A. & Leynaud, G. C. Venomous snakes and climate change: Ophidism as a dynamic problem. Clim. Change 122, 67–80 (2014).

    ADS 
    Article 

    Google Scholar 

  • 56.

    Organization, W. H. Snakebite Envenoming: A Strategy for Prevention and Control (World Health Organization, 2019).

    Google Scholar 

  • 57.

    Zancolli, G. et al. When one phenotype is not enough: Divergent evolutionary trajectories govern venom variation in a widespread rattlesnake species. Proc. R. Soc. B Biol. Sci. 286, 20182735 (2019).

    CAS 
    Article 

    Google Scholar 

  • 58.

    Wüster, W. & Thorpe, R. S. Systematics and biogeography of the Asiatic cobra (Naja naja) species complex in the Philippine Islands. In Vertebrates in the Tropics (eds Peters, G. & Hutterer, R.) 333–344 (Museum Alexander Koenig, 1990).

    Google Scholar 

  • 59.

    Kazemi, E., Kaboli, M., Khosravi, R. & Khorasani, N. Evaluating the importance of environmental variables on spatial distribution of caspian cobra naja oxiana (Eichwald, 1831) in Iran. Asian Herpetol. Res. 10, 129–138 (2019).

    Google Scholar 

  • 60.

    Khan, M. The snakebite problem in Pakistan. Bull. Chicago Herp. Soc 49, 165–167 (2014).

    Google Scholar 

  • 61.

    Showler, D. A. A Checklist of the Amphibians and Reptiles of the Republic of Uzbekistan with a Review and Summary of Species Distribution. https://www.sustainablehoubaramanagement.org/wp-content/uploads/2018/09/Uzbekistan-Amphibian-Reptile-Checklist-14Sept2018-PDF.pdf (2018).

  • 62.

    Prakash, S., Kumar Mishra, A. & Raziuddin, M. A new record of cream coloured morph of Naja kaouthia Lesson, 1831 (Reptilia, Serpentes, Elapidae) from Hazaribag, Jharkhand, India. Biodivers. J. 3, 153–155 (2012).

    Google Scholar 

  • 63.

    Kazemi, E., Nazarizadeh, M., Fatemizadeh, F., Khani, A. & Kaboli, M. The phylogeny, phylogeography, and diversification history of the westernmost Asian cobra (Serpentes: Elapidae: Naja oxiana) in the Trans-Caspian region. Ecol. Evol. https://doi.org/10.1002/ece3.7144 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Bivand, R. et al. Tools for Handling Spatial Objects. (2019).

  • 65.

    Lima-Ribeiro, M. et al. The ecoClimate Database. http://ecoclimate.org.

  • 66.

    Rangel, T. F. & Loyola, R. D. Labeling ecological niche models. Nat. Conserv. 10, 119–126 (2012).

    Article 

    Google Scholar 

  • 67.

    Beaumont, L. J., Hughes, L. & Poulsen, M. Predicting species distributions: Use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecol. Model. 186, 251–270 (2005).

    Article 

    Google Scholar 

  • 68.

    Hijmans, R. J. et al. Geographic Data Analysis and Modeling. https://cran.r-project.org/package=raster (2019).

  • 69.

    Bivand, R. et al. Bindings for the ‘Geospatial’ Data Abstraction Library Version. Cran (2019).

  • 70.

    Pebesma, E. et al. Classes and Methods for Spatial Data. (R News, 2019).

  • 71.

    Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. Species Distribution Modeling. (2017).

  • 72.

    Sharma, S. K. et al. Venomous Snakes of Nepal. (2013).

  • 73.

    Whitaker, R. & Captain, A. Snakes of India: The Field Guide. Draco Books (Chennai), (2008).

  • 74.

    Gao, J. Downscaling Global Spatial Population Projections from 1/8-degree to 1-km Grid Cells. NCAR Technical Note NCAR/TN-537+STR https://sedac.ciesin.columbia.edu/data/set/popdynamics-pop-projection-ssp-downscaled-1km-2010-2100. https://doi.org/10.5065/D60Z721H (2017).

  • 75.

    van Vuuren, D. P. et al. A new scenario framework for Climate Change Research: Scenario matrix architecture. Clim. Change 122, 373–386 (2014).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Non-diphtheriae Corynebacterium species are associated with decreased risk of pneumococcal colonization during infancy

    Researchers design sensors to rapidly detect plant hormones