in

Climate change drives mountain butterflies towards the summits

  • 1.

    Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. M. Biodiversity: The ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 2.

    Ripple, W. J., Wolf, C., Newsome, T. M., Barnard, P. & Moomaw, W. R. World scientists’ warning of a climate emergency. Bioscience https://doi.org/10.1093/biosci/biz088 (2019).

    Article 

    Google Scholar 

  • 3.

    Seneviratne, S. I., Lüthi, D., Litschi, M. & Schär, C. Land–atmosphere coupling and climate change in Europe. Nature 443, 205–209 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 4.

    Liu, H. et al. Shifting plant species composition in response to climate change stabilizes grassland primary production. Proc. Natl. Acad. Sci. 115, 4051–4056 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Schweiger, O., Settele, J., Kudrna, O., Klotz, S. & Kühn, I. Climate change can cause spatial mismatch of trophically interacting species. Ecology 89, 3472–3479 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 6.

    Parmesan, C. et al. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399, 579–583 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 7.

    Dieker, P., Drees, C. & Assmann, T. Two high-mountain burnet moth species (Lepidoptera, Zygaenidae) react differently to the global change drivers climate and land-use. Biol. Conserv. 144, 2810–2818 (2011).

    Article 

    Google Scholar 

  • 8.

    Habel, J. C., Rödder, D., Schmitt, T. & Nève, G. Global warming will affect the genetic diversity and uniqueness of Lycaena helle populations. Glob. Change Biol. 17, 194–205 (2011).

    ADS 
    Article 

    Google Scholar 

  • 9.

    Grabherr, G., Gottfried, M. & Pauli, H. Climate change impacts in alpine environments. Geogr. Compass 4, 1133–1153 (2010).

    Article 

    Google Scholar 

  • 10.

    Alexander, J. M. et al. Lags in the response of mountain plant communities to climate change. Glob. Change Biol. 24, 563–579 (2018).

  • 11.

    Renner, S. S. & Zohner, C. M. Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu. Rev. Ecol. Evol. Syst. 49, 165–182 (2018).

    Article 

    Google Scholar 

  • 12.

    Fleishman, E. & Murphy, D. D. A realistic assessment of the indicator potential of butterflies and other charismatic taxonomic groups. Conserv. Biol. 23, 1109–1116 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 13.

    Sexton, J. P., Montiel, J., Shay, J. E., Stephens, M. R. & Slatyer, R. A. Evolution of ecological niche breadth. Annu. Rev. Ecol. Evol. Syst. 48, 183–206 (2017).

    Article 

    Google Scholar 

  • 14.

    Herrera, J. M., Ploquin, E. F., Rasmont, P. & Obeso, J. R. Climatic niche breadth determines the response of bumblebees (Bombus spp.) to climate warming in mountain areas of the Northern Iberian Peninsula. J. Insect Conserv. 22, 771–779 (2018).

    Article 

    Google Scholar 

  • 15.

    Habel, J. C. et al. Butterfly community shifts over two centuries. Conserv. Biol. 30, 754–762 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 16.

    Descombes, P., Pradervand, J. N., Golay, J., Guisan, A. & Pellissier, L. Simulated shifts in trophic niche breadth modulate range loss of alpine butterflies under climate change. Ecography 39, 796–804 (2016).

    Article 

    Google Scholar 

  • 17.

    Kerr, J. T. Racing against change: Understanding dispersal and persistence to improve species’ conservation prospects. Proc. R. Soc. B 287, 20202061 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Dapporto, L., Cini, A., Voda, R., Dinca, V., Wiemers, M., Menchetti, M., Magini, G., Talavera, G., Shreeve, T., Bonelli, S., Casacci, L. P., Balletto, E., Scalercio, S. & Vila, R. Data from: Integrating three comprehensive datasets shows that mitochondrial DNA variation is linked to species traits and paleogeographic events in European butterflies. (Version 2, p. 4647103 bytes). Dryad (2019).

  • 19.

    Wiemers, M. et al. An updated checklist of the European butterflies (Lepidoptera, Papilionoidea). ZooKeys 811, 9–45 (2018).

    Article 

    Google Scholar 

  • 20.

    Wiemers, M., Chazot, N., Wheat, C., Schweiger, O. & Wahlberg, N. A complete time-calibrated multi-gene phylogeny of the European butterflies. ZooKeys 938, 97–124 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Middleton-Welling, J. et al. A new comprehensive trait database of European and Maghreb butterflies, Papilionoidea. Sci. Data 7, 351 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Weckström, K. et al. Impacts of climate warming on alpine lake biota over the past decade. Arct. Antarct. Alp. Res. 48, 361–376 (2016).

    Article 

    Google Scholar 

  • 23.

    Steinbauer, K., Lamprecht, A., Winkler, M., Bardy-Curchhalter, M., Kreiner, D., Suen, M. & Pauli, H. Shifting composition and functioning in alpine plant communities—Evidence of climate warming effects from 14 years biodiversity observation in the Northeastern Alps. In Conference Vol. 621–622 (2017).

  • 24.

    Bräu, M., Arbeitsgemeinschaft Bayerischer Entomologen & Bayerisches Landesamt für Umwelt (Eds.). Tagfalter in Bayern: 26 Tabellen. (Ulmer, 2013).

  • 25.

    Weidemann, H.-J. Tagfalter Vol. 1 (Neumann-Neudamm, 1986).

    Google Scholar 

  • 26.

    Weidemann, H.-J. Tagfalter: Biologie-Ökologie-Biotopschutz Vol. 2 (Neumann-Neudamm, 1988).

    Google Scholar 

  • 27.

    Konvicka, M., Maradova, M., Benes, J., Fric, Z. & Kepka, P. Uphill shifts in distribution of butterflies in the Czech Republic: Effects of changing climate detected on a regional scale. Glob. Ecol. Biogeogr. 12, 403–410 (2003).

    Article 

    Google Scholar 

  • 28.

    Wilson, R. J., Gutiérrez, D., Gutiérrez, J. & Monserrat, V. J. An elevational shift in butterfly species richness and composition accompanying recent climate change. Glob. Change Biol. 13, 1873–1887 (2007).

    ADS 
    Article 

    Google Scholar 

  • 29.

    Wilson, R. J. et al. Changes to the elevational limits and extent of species ranges associated with climate change: Elevational shifts accompany climate change. Ecol. Lett. 8, 1138–1146 (2005).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Forister, M. L. et al. Compounded effects of climate change and habitat alteration shift patterns of butterfly diversity. Proc. Natl. Acad. Sci. 107, 2088–2092 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Warren, M. S. et al. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414, 65–69 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 32.

    Hill, J. K. et al. Responses of butterflies to twentieth century climate warming: Implications for future ranges. Proc. R. Soc. Lond. Ser. B Biol. Sci. 269, 2163–2171 (2002).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Essens, T., van Langevelde, F., Vos, R. A., Van Swaay, C. A. M. & WallisDeVries, M. F. Ecological determinants of butterfly vulnerability across the European continent. J. Insect Conserv. 21, 439–450 (2017).

    Article 

    Google Scholar 

  • 34.

    van Swaay, C., Warren, M. & Loïs, G. Biotope use and trends of European butterflies. J. Insect Conserv. 10, 189–209 (2006).

    Article 

    Google Scholar 

  • 35.

    Pyke, G. H., Thomson, J. D., Inouye, D. W. & Miller, T. J. Effects of climate change on phenologies and distributions of bumble bees and the plants they visit. Ecosphere 7, e01267 (2016).

    Article 

    Google Scholar 

  • 36.

    Biella, P. et al. Distribution patterns of the cold adapted bumblebee Bombus alpinus in the Alps and hints of an uphill shift (Insecta: Hymenoptera: Apidae). J. Insect Conserv. 21, 357–366 (2017).

    Article 

    Google Scholar 

  • 37.

    Parolo, G. & Rossi, G. Upward migration of vascular plants following a climate warming trend in the Alps. Basic Appl. Ecol. 9, 100–107 (2008).

    Article 

    Google Scholar 

  • 38.

    Filazzola, A., Matter, S. F. & Roland, J. Inclusion of trophic interactions increases the vulnerability of an alpine butterfly species to climate change. Glob. Change Biol. 26, 2867–2877 (2020).

    ADS 
    Article 

    Google Scholar 

  • 39.

    Schweiger, O. et al. Multiple stressors on biotic interactions: How climate change and alien species interact to affect pollination. Biol. Rev. 85, 777–795 (2010).

    PubMed 

    Google Scholar 

  • 40.

    Inouye, B. D., Ehrlén, J. & Underwood, N. Phenology as a process rather than an event: From individual reaction norms to community metrics. Ecol. Monogr. 89, e01352 (2019).

    Article 

    Google Scholar 

  • 41.

    Birkhofer, K. et al. Land-use type and intensity differentially filter traits in above- and below-ground arthropod communities. J. Anim. Ecol. 86, 511–520 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 42.

    Dapporto, L. & Dennis, R. L. H. The generalist–specialist continuum: Testing predictions for distribution and trends in British butterflies. Biol. Conserv. 157, 229–236 (2013).

    Article 

    Google Scholar 

  • 43.

    Bartoňová, A., Benes, J. & Konvicka, M. Generalist–specialist continuum and life history traits of Central European butterflies (Lepidoptera)—Are we missing a part of the picture?. Eur. J. Entomol. 111, 543–553 (2014).

    Article 

    Google Scholar 

  • 44.

    Bartoňová, A. et al. Isolated Asian steppe element in the Balkans: Habitats of Proterebia afra (Lepidoptera: Nymphalidae: Satyrinae) and associated butterfly communities. J. Insect Conserv. 21, 559–571 (2017).

    Article 

    Google Scholar 

  • 45.

    Hodkinson, I. D. Terrestrial insects along elevation gradients: Species and community responses to altitude. Biol. Rev. 80, 489 (2005).

    PubMed 
    Article 

    Google Scholar 

  • 46.

    Roth, T., Plattner, M. & Amrhein, V. Plants, birds and butterflies: Short-term responses of species communities to climate warming vary by taxon and with altitude. PLoS ONE 9, e82490 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 47.

    Biesmeijer, J. C. et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 48.

    Filz, K. J., Engler, J. O., Stoffels, J., Weitzel, M. & Schmitt, T. Missing the target? A critical view on butterfly conservation efforts on calcareous grasslands in south-western Germany. Biodivers. Conserv. 22, 2223–2241 (2013).

    Article 

    Google Scholar 

  • 49.

    Hiebl, J. & Frei, C. Daily temperature grids for Austria since 1961—Concept, creation and applicability. Theor. Appl. Climatol. 124, 161–178 (2016).

    ADS 
    Article 

    Google Scholar 

  • 50.

    Hiebl, J. & Frei, C. Daily precipitation grids for Austria since 1961—Development and evaluation of a spatial dataset for hydroclimatic monitoring and modelling. Theor. Appl. Climatol. 132, 327–345 (2018).

    ADS 
    Article 

    Google Scholar 

  • 51.

    Bivand, R. & Yu, D. spgwr: Geographically Weighted Regression (R Package Version 0.6-34) [Computer Software]. https://CRAN.R-project.org/package=spgwr (2019).

  • 52.

    Hijmans, R. J. raster: Geographic Data Analysis and Modeling (R Package Version 3.3-13) [Computer Software]. https://CRAN.R-project.org/package=raster (2019).

  • 53.

    Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. dismo: Species Distribution Modeling (R Package Version 1.1-4) [Computer Software]. https://CRAN.R-project.org/package=dismo (2017)

  • 54.

    Höttinger, H. & Pennerstorfer, J. Rote Liste der Tagschmetterlinge Österreichs (Lepidoptera: Papilionoidea & Hesperioidea). In Rote Listen gefährdeter Tiere Österreichs. Checklisten, Gefährdungsanalysen, Handlungsbedarf. Teil 1: Säugetiere, Vögel, Heuschrecken, Wasserkäfer, Netzflügler, Schnabelfliegen, Tagfalter. Grüne Reihe des Bundesministeriums für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft (Gesamtherausgeberin Ruth Wallner) Band 14/1 (ed. Zulka, K. P.) 313–354 (Böhlau, 2005).

  • 55.

    Blonder, B. & Harris, D. J. hypervolume: High Dimensional Geometry and Set Operations Using Kernel Density Estimation, Support Vector Machines, and Convex Hulls (R Package Version 2.0.12) [Computer Software]. https://CRAN.R-project.org/package=hypervolume (2019).

  • 56.

    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).

    Article 

    Google Scholar 

  • 57.

    Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open-source release of Maxent. Ecography 40, 887–893 (2017).

    Article 

    Google Scholar 

  • 58.

    Phillips, S. J., Dudík, M. & Schapire, R. E. Maxent Software for Modeling Species Niches and Distributions (Version 3.4.1) [Computer Software]. http://biodiversityinformatics.amnh.org/open_source/maxent/ (2017).

  • 59.

    Swets, J. Measuring the accuracy of diagnostic systems. Science 240, 1285–1293 (1988).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 

  • 60.

    Weiss, M. & Banko, G. Ecosystem Type Map v3.1—Terrestrial and Marine Ecosystems. ETC/BD report to the EEA (2018).


  • Source: Ecology - nature.com

    3 Questions: Secretary Kathleen Theoharides on climate and energy in Massachusetts

    Forest canopy mitigates soil N2O emission during hot moments