Dairy Production and Products: Milk and Milk Products (FAO, 2013); http://www.fao.org/dairy-production-products/production/dairy-animals/cattle/en/
Background: Corn and Other Feedgrains (USDA ERS, 2018); https://www.ers.usda.gov/topics/animal-products/dairy/background/
National Agricultural Statistics Service (US Department of Agriculture); https://www.nass.usda.gov/index.php
Capper, J. L., Cady, R. A. & Bauman, D. E. The environmental impact of dairy production: 1944 compared with 2007. J. Anim. Sci. 87, 2160–2167 (2009).
Google Scholar
Niles, M. T. & Wiltshire, S. Tradeoffs in US dairy manure greenhouse gas emissions, productivity, climate, and manure management strategies. Environ. Res. Commun 1, 075003 (2019).
Google Scholar
Field, T. G. & Taylor, R. E. Scientific Farm Animal Production: An Introduction, Eleventh Edition (Pearson, 2018).
Fuquay, J. W. Heat stress as it affects animal production. J. Anim. Sci. 52, 164–174 (1981).
Google Scholar
St-Pierre, N. R., Cobanov, B. & Schnitkey, G. Economic losses from heat stress by US livestock industries. J. Dairy Sci. 86, E52–E77 (2003).
Google Scholar
Kadzere, C. T., Murphy, M. R., Silanikove, N. & Maltz, E. Heat stress in lactating dairy cows: a review. Livest. Prod. Sci. 77, 59–91 (2002).
Google Scholar
Bouraoui, R., Lahmar, M., Majdoub, A., Djemali, M. & Belyea, R. The relationship of temperature–humidity index with milk production of dairy cows in a Mediterranean climate. Anim. Res. 51, 479–491 (2002).
Google Scholar
West, J. W. Effects of heat-stress on production in dairy cattle. J. Dairy Sci. 86, 2131–2144 (2003).
Google Scholar
Vitali, A. et al. Seasonal pattern of mortality and relationships between mortality and temperature–humidity index in dairy cows. J. Dairy Sci. 92, 3781–3790 (2009).
Google Scholar
Pragna, P. et al. Heat stress and dairy cow: impact on both milk yield and composition. Int. J. Dairy Sci. 12, 1–11 (2017).
Google Scholar
Hoffmann, I. Climate change and the characterization, breeding and conservation of animal genetic resources. Anim. Genet. 41, 32–46 (2010).
Google Scholar
Qi, L., Bravo-Ureta, B. E. & Cabrera, V. E. From cold to hot: a preliminary analysis of climatic effects on the productivity of Wisconsin dairy farms. AgEconSearch https://doi.org/10.22004/ag.econ.172411 (2014).
Bohmanova, J., Misztal, I. & Cole, J. B. Temperature–humidity indices as indicators of milk production losses due to heat stress. J. Dairy Sci. 90, 1947–1956 (2007).
Google Scholar
Field, C. B. et al. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (IPCC, 2021); https://www.ipcc.ch/report/managing-the-risks-of-extreme-events-and-disasters-to-advance-climate-change-adaptation/
Mueller, N. D. et al. Cooling of US Midwest summer temperature extremes from cropland intensification. Nat. Clim. Chang. 6, 317–322 (2016).
Google Scholar
Seneviratne, S. I., Donat, M. G., Mueller, B. & Alexander, L. V. No pause in the increase of hot temperature extremes. Nat. Clim. Chang. 4, 161–163 (2014).
Google Scholar
Dairy 2014: Dairy Cattle Management Practices in the United States, 2014 (USDA, APHIS, NAHMS, 2016); https://www.aphis.usda.gov/animal_health/nahms/dairy/downloads/dairy14/Dairy14_dr_PartI_1.pdf
Mondaca, M. R. & Cook, N. B. Modeled construction and operating costs of different ventilation systems for lactating dairy cows. J. Dairy Sci. 102, 896–908 (2019).
Google Scholar
Ferreira, F. C., Gennari, R. S., Dahl, G. E. & De Vries, A. Economic feasibility of cooling dry cows across the United States. J. Dairy Sci. 99, 9931–9941 (2016).
Google Scholar
Hayhoe, K. et al. Emissions pathways, climate change, and impacts on California. Proc. Natl Acad. Sci. USA 101, 12422–12427 (2004).
Google Scholar
Klinedinst, P. L., Wilhite, D. A., Hahn, L. G. & Hubbard, K. G. The potential effects of climate change on summer seasonal dairy cattle milk production and reproduction. Clim. Chang. 23, 21–36 (1993).
Google Scholar
Mauger, G., Bauman, Y., Nennich, T. & Salathé, E. Impacts of climate change on milk production in the United States. Prof. Geogr. 67, 121–131 (2015).
Google Scholar
Key, N. & Sneeringer, S. Potential effects of climate change on the productivity of U.S. dairies. Am. J. Agric. Econ. 96, 1136–1156 (2014).
Google Scholar
Ortiz-Bobea, A., Knippenberg, E. & Chambers, R. G. Growing climatic sensitivity of U.S. agriculture linked to technological change and regional specialization. Sci. Adv. 4, eaat4343 (2018).
Google Scholar
Butler, E. E., Mueller, N. D. & Huybers, P. Peculiarly pleasant weather for US maize. Proc. Natl Acad. Sci. USA 115, 11935–11940 (2018).
Google Scholar
Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).
Google Scholar
Tigchelaar, M., Battisti, D. S., Naylor, R. L. & Ray, D. K. Future warming increases probability of globally synchronized maize production shocks. Proc. Natl Acad. Sci. U. S. A. 115, 6644–6649 (2018).
Google Scholar
PRISM Climate Data (Oregon State Univ., 2019); http://www.prism.oregonstate.edu/
Daly, C. et al. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol. https://doi.org/10.1002/joc.1688 (2008).
National Research Council. Nutrient Requirements of Dairy Cattle, Seventh Revised Edition (National Academies Press, 2001).
Auldist, M. J., Walsh, B. J. & Thomson, N. A. Seasonal and lactational influences on bovine milk composition in New Zealand. J. Dairy Res. 65, 401–411 (1998).
Google Scholar
Lobell, D. B. Climate change adaptation in crop production: beware of illusions. Glob. Food Sec. 3, 72–76 (2014).
Google Scholar
Mukherjee, D., Bravo-Ureta, B. E. & De Vries, A. Dairy productivity and climatic conditions: econometric evidence from South-eastern United States. Aust. J. Agric. Resour. Econ. 57, 123–140 (2013).
Google Scholar
Milk Cost of Production Estimates: Cost-of-Production Estimates-2016 Base (USDA ERS, 2021); https://www.ers.usda.gov/data-products/milk-cost-of-production-estimates/milk-cost-of-production-estimates/#Milk
Liang, X. Z. et al. Determining climate effects on US total agricultural productivity. Proc. Natl Acad. Sci. USA 114, E2285–E2292 (2017).
Google Scholar
Malikov, E., Miao, R. & Zhang, J. Distributional and temporal heterogeneity in the climate change effects on U.S. agriculture. J. Environ. Econ. Manage. 104, 102386 (2020).
Google Scholar
MacDonald, J. M., Law, J. & Mosheim, R. Consolidation in U.S. Dairy Farming Economic Research Report No. 274 (ERS, USDA, 2020); https://www.ers.usda.gov/publications/pub-details/?pubid=98900
Hemme, T. & Otte, J. Pro-Poor Livestock Policy Initiative Status and Prospects for Smallholder Milk Production a Global Perspective (Food and Agriculture Organization of the United Nations, 2010).
Osei-Amponsah, R. et al. Heat stress impacts on lactating cows grazing Australian summer pastures on an automatic robotic dairy. Animals 10, 869 (2020).
Google Scholar
Chang-Fung-Martel, J., Harrison, M. T., Rawnsley, R., Smith, A. P. & Meinke, H. The impact of extreme climatic events on pasture-based dairy systems: a review. Crop Pasture Sci 68, 1158 (2017).
Google Scholar
Livestock Hot Weather Stress. Operations Manual (NOAA, 1976); https://scirp.org/reference/referencespapers.aspx?referenceid=1913216
Pinheiro J., Bates D., Debroy S. S. D. Linear and nonlinear mixed effects models, R package nlme version 3.1-152 (2021).
Conley, T. G. GMM estimation with cross sectional dependence. J. Econom. 92, 1–45 (1999).
Google Scholar
Borchers, H. W. pracma: practical numerical math functions, version 2.2.9.1–393 (2019).
Colin Cameron, A., Gelbach, J. B. & Miller, D. L. Robust inference with multiway clustering. J. Bus. Econ. Stat. 29, 238–249 (2011).
Google Scholar
Zeileis, A., Köll, S. & Graham, N. Various versatile variances: an object-oriented implementation of clustered covariances in R. J. Stat. Softw. https://doi.org/10.18637/jss.v095.i01 (2020).
Source: Ecology - nature.com