in

Climate variables effect on fruiting pattern of Kinnow mandarin (Citrus nobilis Lour × C. deliciosa Tenora) grown at different agro-climatic regions

  • 1.

    Singh, M. & Bhatia, H. S. Thermal time requirement for phenophases of apple genotypes in Kullu valley. J. Agrometeorol. 13(1), 46–49 (2011).

    Google Scholar 

  • 2.

    Amgain, L. P. Agro-meteorological indices in relation to phenology and yields of promising wheat cultivars in Chitwan, Nepal. J. Agric. Environ. 14, 111–120 (2013).

    Article 

    Google Scholar 

  • 3.

    Nawaz, R., Abbasi, N. A., Hafiz, I. A. & Khalid, A. Color-break effect on Kinnow (Citrus nobilis Lour x Citrus deliciosa Tenora) fruit‘s internal quality at early ripening stages under varying environmental conditions. Sci. Hortic. 256, 108514 (2019).

    Article 

    Google Scholar 

  • 4.

    Singh, M. & Jangra, S. Thermal indices and heat use cultivars in Himachal Himalay. Clim. Change 4(14), 224–234 (2018).

    Google Scholar 

  • 5.

    Singh, M., Niwas, R., Godara, A. K. & Khichar, M. L. Pheno-thermal response of plum genotypes in semi-arid region of Haryana. J. Agrometeorol 17(2), 230–233 (2015).

    Google Scholar 

  • 6.

    Nawaz, R., Abbasi, N. A., Hafiz, I. A. & Khalid, A. Impact of varying agrometeorological indices on peel color and composition of Kinnow fruit (Citrus nobilis Lour x Citrus deliciosa Tenora) grown at different ecological zones. J. Sci. Food Agric. 100(6), 2688–2704 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Nawaz, R., Abbasi, N. A., Hafiz, I. A., Khan, M. F. & Khalid, A. Environmental variables influence the developmental stages of the citrus leafminer, infestation level and mined leaves physiological response of Kinnow mandarin. Sci. Rep. 11(1), 1–20 (2021).

    Article 
    CAS 

    Google Scholar 

  • 8.

    Plett, S. Comparison of seasonal thermal indices for measurement of corn maturity in a prairie environment. Can. J. Plant Sci. 72(4), 1157–1162 (1992).

    Article 

    Google Scholar 

  • 9.

    Dalal, R. P. S., Kumar, A. & Singh, R. Agrometeorological-heat and energy use of Kinnow Mandarin (Citrus nobilis Lour* Citrus deliciosa Tenore). Int. J. Pure App. Biosci 5(2), 506–512 (2017).

    Article 

    Google Scholar 

  • 10.

    Nawaz, R., Abbasi, N. A., Hafiz, I. A. & Khalid, A. Impact of climate variables on growth and development of Kinnow fruit (Citrus nobilis Lour x Citrus deliciosa Tenora) grown at different ecological zones under climate change scenario. Sci. Hortic. 260, 108868 (2020).

    Article 

    Google Scholar 

  • 11.

    Nawaz, R., Abbasi, N. A., Hafiz, I. A. & Khalid, A. Increasing level of abiotic and biotic stress on Kinnow fruit quality at different ecological zones in climate change scenario. Environ. Exp. Bot. 171, 103936 (2020).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Nawaz, R., Abbasi, N. A., Hafiz, I. A. & Khalid, A. Impact of climate variables on fruit internal quality of Kinnow mandarin (Citrus nobilis Lour x Citrus deliciosa Tenora) in ripening phase grown under varying environmental conditions. Sci. Hortic. 265, 109235 (2020).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Nawaz, R., Abbasi, N. A., Hafiz, I. A., Khalid, A. & Ahmad, T. Economic analysis of citrus (Kinnow Mandarin) during on-year and off-year in the Punjab Province. Pakistan. J Hortic 5(250), 2376–3354 (2018).

    Google Scholar 

  • 14.

    Khalid, M. S., Malik, A. U., Saleem, B. A., Khan, A. S. & Javed, N. Horticultural mineral oil application and tree canopy management improve cosmetic fruit quality of Kinnow mandarin. Afr. J. Agric. Res. 7(23), 3464–3472 (2012).

    Article 

    Google Scholar 

  • 15.

    Nawaz, R. et al. Impact of climate change on kinnow fruit industry of Pakistan. Agrotechnology https://doi.org/10.4172/2168-9881.1000186 (2019).

    Article 

    Google Scholar 

  • 16.

    Mazhar, M. S., Malik, A. U., Jabbar, A., Malik, O. H. & Khan, M. N. Fruit blemishes caused by abiotic and biotic factors in Kinnow mandarin. Acta Hortic. 1120, 483–490 (2016).

    Article 

    Google Scholar 

  • 17.

    Solomon. Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: The Physical Science Basis. Contributions of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2007).

  • 18.

    Ullah, R., Shivakoti, G. P. & Ali, G. Factors effecting farmers’ risk attitude and risk perceptions: The case of Khyber Pakhtunkhwa, Pakistan. Int. J. Disast. Risk Reduct. 13, 151–157 (2015).

    Article 

    Google Scholar 

  • 19.

    Ward, N. L. & Masters, G. J. Linking climate change and species invasion: An illustration using insect herbivores. Glob. Change Biol. 13(8), 1605–1615 (2007).

    ADS 
    Article 

    Google Scholar 

  • 20.

    Hellmann, J. J., Byers, J. E., Bierwagen, B. G. & Dukes, J. S. Five potential consequences of climate change for invasive species. Conserv. Biol. 22(3), 534–543 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Bale, J. S. et al. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8(1), 1–6 (2002).

    ADS 
    Article 

    Google Scholar 

  • 22.

    Stocker, T.F. et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of IPCC the Intergovernmental Panel on Climate Change (2014).

  • 23.

    Jones, G. V., White, M. A., Cooper, O. R. & Storchmann, K. Climate change and global wine quality. Clim. Change. 73, 319–343 (2005).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Webb, L., Whetton, P. & Barlow, E. W. R. Modeled impact of future climate change on phenology of wine grapes in Australia. Aust. J. Grape Wine Res. 13, 165–175 (2007).

    Article 

    Google Scholar 

  • 25.

    Ferguson, J. J., Koch, K. E. & Huang, T. B. 240 Fruit removal effects on growth and carbon allocation in young citrus trees. HortScience 34(3), 483D – 483 (1999).

    Article 

    Google Scholar 

  • 26.

    Zekri, M. Factors affecting citrus production and quality, Citrus Industry. ifas.ufl.edu (2011).

  • 27.

    Ladaniya, M. S. Physico−chemical, respiratory and fungicide residue changes in wax coated mandarin fruit stored at chilling temperature with intermittent warming. J. Food Sci. Technol. 48(2), 150–158 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Monselise, S. P. & Goldschmidt, E. E. Alternate bearing in fruit trees. Hort. Rev. (Am. Soc. Hort. Sci.) 4, 128–173 (1982).

    Google Scholar 

  • 29.

    Garcia-Luis, A., Fornes, F. & Guardiola, J. L. Leaf carbohydrates and flower formation in Citrus. J. Am. Soc. Hort. Sci. 120, 222–227 (1995).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Dalezios, N. R., Loukas, A. & Bampzelis, D. Assessment of NDVI and agrometeorological indices for major crops in central Greece. Phys. Chem. Earth,Parts A/B/C 27(23–24), 1025–1029 (2002).

    ADS 
    Article 

    Google Scholar 

  • 31.

    Dalezios, N. R., Loukas, A. & Bampzelis, D. The role of agrometeorological and agrohydrological indices in the phenology of wheat in central Greece. Phys. Chem. Earth Parts A/B/C 27(23–24), 1019–1023 (2002).

    ADS 
    Article 

    Google Scholar 

  • 32.

    Schmidt, D. et al. Base temperature, thermal time and phyllochron of escarole cultivation. Hortic. Bras. 36(4), 466–472 (2018).

    Article 

    Google Scholar 

  • 33.

    Forland, E. J., Skaugen, T. E., Benestad, R. E., Hanssen-Bauer, I. & Tveito, O. E. Variations in thermal growing, heating, and freezing indices in the Nordic Arctic, 1900–2050. Arct. Antarct. Alp. Res. 36(3), 347–356 (2004).

    Article 

    Google Scholar 

  • 34.

    Gavilan, R. G. The use of climatic parameters and indices in vegetation distribution. A case study in the Spanish Sistema Central. Int. J. Biometeorol. 50(2), 111–120 (2005).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 35.

    Schwartz, M. D., Ahas, R. & Aasa, A. Onset of spring starting earlier across the Northern Hemisphere. Glob. Change Biol. 12(2), 343–351 (2006).

    ADS 
    Article 

    Google Scholar 

  • 36.

    Kaleem, S., Hassan, F. & Saleem, A. Influence of environmental variations on physiological attributes of sunflower. Afr. J. Biotechnol. 8(15) (2009).

  • 37.

    Monselise, S. P., Brosh, P. & Costo, J. Off-season bloom in ‘Temple’ orange repressed by Gibberellin [Treatment]. HortScience (1981).

  • 38.

    Davies, F. S. & Albrigo, L. G. Citrus Crop Production Science in Agriculture (CAB International, 1994).

    Google Scholar 

  • 39.

    Wheaton, T. A. Alternate bearing of citrus. Proc. Int. Semin. Citric. 1, 224–228 (1992).

    Google Scholar 

  • 40.

    Flore, J. A. & Lakso, A. N. Environmental and physiological regulation of photosynthesis in fruit crops. Hortic. Rev. 11, 111–157 (1986).

    Google Scholar 

  • 41.

    Goldschmidt, E. E. Carbohydrate supply as a critical factor for citrus fruit development and productivity. Hort. Sci. 34, 1020–1024 (1999).

    Google Scholar 

  • 42.

    Stander, O. P. J. 2018. Critical factors concomitant to the physiological development of alternate bearing in citrus (Citrus spp.) (Doctoral dissertation, Stellenbosch: Stellenbosch University) (2018).

  • 43.

    Iglesias, D. J. et al. Physiology of citrus fruiting. Braz. J. Plant. Physiol. 19(4), 333–362 (2007).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Scholefield, P. B., Oag, D. R. & Sedgley, M. The relationship between vegetative and reproductive development in the mango in northern Australia. Aust. J. Agric. Res. 37(4), 425–433 (1986).

    Article 

    Google Scholar 

  • 45.

    Goldschmidt, E. E. & Golomb, A. The carbohydrate balance of alternate-bearing citrus trees and the significance of reserves for flowering and fruiting. J. Am. Soc. Hort. Sci. 107, 206–208 (1982).

    Google Scholar 

  • 46.

    Hodgson, R. W. & Cameron, S. H. Studies on the bearing behavior of the “Fuerte” avocado variety. Calif. Avocado Soc. Yrbk. 1935, 150–165 (1935).

    Google Scholar 

  • 47.

    Seyyednejad, M., Ebrahimzadeh, H. & Talaie, A. Carbohydrate content in olive Zard cv and alternate bearing pattern. Int. Sugar J. 103(1226), 84–87 (2001).

    CAS 

    Google Scholar 

  • 48.

    Chacko, E. K., Reddy, Y. T. N. & Ananthanarayanan, T. V. Studies on the relationship between leaf number and area and fruit development in mango (Mangifera indica L). J. Hort. Sci. 57, 483–492 (1982).

    Article 

    Google Scholar 

  • 49.

    Nishikawa, F., Iwasaki, M., Fukamachi, H. & Matsumoto, H. The effect of fruit bearing on low-molecular-weight metabolites in stems of Satsuma Mandarin (Citrus unshiu Marc.). Hortic. J. 85(1), 23–29 (2016).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Verreynne, J. S. & Lovatt, C. J. The effect of crop load on budbreak influences return bloom in alternate bearing ‘Pixie’mandarin. J. Am. Soc. Hortic. Sci. 134(3), 299–307 (2009).

    Article 

    Google Scholar 

  • 51.

    Dovis, V. L. et al. Roots are important sources of carbohydrates during flowering and fruiting in ‘Valencia’sweet orange trees with varying fruit load. Sci. Hortic. 174, 87–95 (2014).

    CAS 
    Article 

    Google Scholar 

  • 52.

    Martínez-Alcántara, B. et al. Carbon utilization by fruit limits shoot growth in alternate-bearing citrus trees. J. Plant Physiol. 176, 108–117 (2015).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 53.

    Monerri, C. et al. Relation of carbohydrate reserves with the forthcoming crop, flower formation and photosynthetic rate, in the alternate bearing ‘Salustiana’ sweet orange (Citrus sinensis L.). Sci. Hortic. 129(1), 71–78 (2011).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Khan, S. R. A. Citrus Quality to meet Global Demand. Pakissan.com. http://www.pakissan.com/english/agri.overview/citrus.quality.to.meet.global.demand (2008).

  • 55.

    Moss, G. I., Bellamy, J. & Bevington, K. B. Controlling biennial bearing. Austral. Citrus News 50, 6–7 (1974).

    Google Scholar 

  • 56.

    Davis, K., Stover, E. & Wirth, F. Economic of fruit thinning: A review focusing on apple and citrus Production and marketing reports. Hort. Technol. 14(2), 282–289 (2004).

    Article 

    Google Scholar 

  • 57.

    Usman, M., Ashraf, I., Chaudhary, K. M. & Talib, U. Factors impeding citrus supply chain in central Punjab, Pakistan. Int. J. Agric. Ext. 6, 01–05 (2018).

    Article 

    Google Scholar 

  • 58.

    Ghafoor, U., Muhammad, S. & Chaudhary, K. M. Constrains in availability of inputs and information to citrus (Kinnow) growers of tehsil Toba Tek Singh, Pakistan. J. Agric. Sci. 45(4), 520–522 (2008).

    Google Scholar 

  • 59.

    Choudhary, D., Singh, R., Dagar, C. S., Kumar, A. & Singh, S. Temperature based agrometeorological indices for Indian mustard under different growing environments in western Haryana, India. Int. J. Curr. Microbiol. App. Sci. 7(1), 1025–1035 (2018).

    Article 

    Google Scholar 

  • 60.

    Hardy, S. & Khurshid, T. Calculating heat units for citrus. In Primefacts (NSW Department of Primary Industries, 2007).

    Google Scholar 

  • 61.

    Bootsma, A., Anderson, D. & Gameda, S. Potential impacts of climate change on agroclimatic indices in southern regions of Ontario and Quebec. Tech. Bull. ECORC Contrib. 03–284, 69–92 (2004).

    Google Scholar 

  • 62.

    Gordeev, A. V., Kleschenko, A. D., Chernyakov, B. A. & Sirotenko, O. D. Bioclimatic Potential of Russia: Theory and Practice (Tovarischestvo nauchnykh izdanyi KMK, 2006) ((in Russian)).

    Google Scholar 

  • 63.

    Karing, P., Kallis, A. & Tooming, H. Adaptation principles of agriculture to climate change. Climate Res. 12(2–3), 175–183 (1999).

    ADS 
    Article 

    Google Scholar 

  • 64.

    Chen, C. S. Digital computer simulation of heat units and their use for predicting plant maturity. Int. J. Biometeorol. 17(4), 329–335 (1973).

    ADS 
    Article 

    Google Scholar 

  • 65.

    Darby, H. M. & Lauer, J. G. Harvest date and hybrid influence on corn forage yield, quality, and preservation. Agron. J. 94(3), 559–566 (2002).

    Article 

    Google Scholar 

  • 66.

    Cesaraccio, C., Spano, D., Duce, P. & Snyder, R. L. An improved model for determining degree-day values from daily temperature data. Int. J. Biometeorol. 45(4), 161–169 (2001).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 67.

    Fealy, R. & Fealy, R. M. The spatial variation in degree days derived from locational attributes for the 1961 to 1990 period. Ir. J. Agric. Food Res. 47, 1–11 (2008).

    Google Scholar 

  • 68.

    Dolkar, D. et al. Effect of meteorological parameters on plant growth and fruit quality of Kinnow mandarin. Indian J. Agric. Sci. 88(7), 1004–1012 (2018).

    Google Scholar 

  • 69.

    Ferree, D. C. & Warrington, I. J. (eds) Apples: Botany, Production, and Uses (CABI, 2003).

    Google Scholar 

  • 70.

    Moretti, C. L., Mattos, L. M., Calbo, A. G. & Sargent, S. A. Climate changes and potential impacts on postharvest quality of fruit and vegetable crops: A review. Food Res. Int. 43(7), 1824–1832 (2010).

    CAS 
    Article 

    Google Scholar 

  • 71.

    Chelong, I. A. & Sdoodee, S. Pollen viability, pollen germination and pollen tube growth of shogun (Citrus reticulate Blanco) under climate variability in southern Thailand. J. Agric. Technol 8, 2297–2307 (2012).

    Google Scholar 

  • 72.

    García-Tejero, I. et al. Positive impact of regulated deficit irrigation on yield and fruit quality in a commercial citrus orchard [Citrus sinensis (L.) Osbeck, cv. salustiano]. Agric. Water Manag. 97(5), 614–622 (2010).

    Article 

    Google Scholar 

  • 73.

    Zekri, M. & Rouse, R. E. Citrus Problems in the Home Landscape (University of Florida Cooperative Extension Service, 2002).

    Google Scholar 

  • 74.

    Barkhordarian, A., Saatchi, S. S., Behrangi, A., Loikith, P. C. & Mechoso, C. R. A recent systematic increase in vapor pressure deficit over tropical South America. Sci. Rep. 9(1), 1–12 (2019).

    CAS 
    Article 

    Google Scholar 

  • 75.

    Li, M., Yao, J., Guan, J. & Zheng, J. Observed changes in vapor pressure deficit suggest a systematic drying of the atmosphere in Xinjiang of China. Atmos. Res. 248, 105199 (2020).

    Article 

    Google Scholar 

  • 76.

    Carnicer, J., Barbeta, A., Sperlich, D., Coll, M. & Peñuelas, J. Contrasting trait syndromes in angiosperms and conifers are associated with different responses of tree growth to temperature on a large scale. Front. Plant Sci. 4, 409 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 77.

    Hatfield, J. L. & Prueger, J. H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extrem. 10, 4–10 (2015).

    Article 

    Google Scholar 

  • 78.

    Brodribb, T. J. & McAdam, S. A. Passive origins of stomatal control in vascular plants. Science 331(6017), 582–585 (2011).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 79.

    Mott, K. A. & Peak, D. Testing a vapour-phase model of stomatal responses to humidity. Plant Cell Environ. 36(5), 936–944 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 80.

    Allen, L. H. & Vu, J. C. Carbon dioxide and high temperature effects on growth of young orange trees in a humid, subtropical environment. Agric. For. Meteorol. 149(5), 820–830 (2009).

    ADS 
    Article 

    Google Scholar 

  • 81.

    Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6(11), 1023–1027 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 82.

    De Carcer, P. S., Signarbieux, C., Schlaepfer, R., Buttler, A. & Vollenweider, P. Responses of antinomic foliar traits to experimental climate forcing in beech and spruce saplings. Environ. Exp. Bot. 140, 128–140 (2017).

    Article 

    Google Scholar 

  • 83.

    Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3(1), 52–58 (2013).

    ADS 
    Article 

    Google Scholar 

  • 84.

    Franks, P. J., Cowan, I. R. & Farquhar, G. D. The apparent feedforward response of stomata to air vapour pressure deficit: Information revealed by different experimental procedures with two rainforest trees. Plant Cell Environ. 20(1), 142–145 (1997).

    Article 

    Google Scholar 

  • 85.

    Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226(6), 1550–1566 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 86.

    do Carmo Araújo, S. A. et al. Photosynthetic characteristics of dwarf elephant grass (Pennisetum purpureum Schum.) genotypes, under stress water. Acta Sci. Anim. Sci. 32(1), 1–7 (2010).

    Google Scholar 

  • 87.

    Shirke, P. A. & Pathre, U. V. Influence of leaf-to-air vapour pressure deficit (VPD) on the biochemistry and physiology of photosynthesis in Prosopis juliflora. J. Exp. Bot. 55(405), 2111–2120 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 88.

    Ribeiro, R. V., Machado, E. C., Santos, M. G. & Oliveira, R. F. Photosynthesis and water relations of well-watered orange plants as affected by winter and summer conditions. Photosynthetica 47(2), 215–222 (2009).

    Article 

    Google Scholar 

  • 89.

    Ribeiro, R. V., Machado, E. C., Santos, M. G. & Oliveira, R. F. Seasonal and diurnal changes in photosynthetic limitation of young sweet orange trees. Environ. Exp. Bot. 66(2), 203–211 (2009).

    CAS 
    Article 

    Google Scholar 

  • 90.

    Wong, S. C., Cowan, I. R. & Farquhar, G. D. Stomatal conductance correlates with photosynthetic capacity. Nature 282(5737), 424–426 (1979).

    ADS 
    Article 

    Google Scholar 

  • 91.

    Bevington, K. B. & Castle, W. S. Annual root growth pattern of young citrus trees in relation to shoot growth, soil temperature, and soil water content. J. Am. Soc. Hortic. Sci. 110(6), 840–845 (1985).

    Google Scholar 

  • 92.

    Khurshid, T. & Hutton, R. J. Heat unit mapping a decision support system for selection and evaluation of citrus cultivars. In International Symposium on Harnessing the Potential of Horticulture in the Asian-Pacific Region 694, 265–269 (2004).

  • 93.

    Dalal, R. P. S. & Raj Singh, A. K. ,. Prevailing weather condition impact on different phenophases of Kinnow Mandarin (Citrus nobilis Lour* Citrus deliciosa Tenore). Int. J. Pure App. Biosci 5(2), 497–505 (2017).

    Article 

    Google Scholar 

  • 94.

    Koshita, Y. Effect of temperature on fruit color development. In Abiotic Stress Biology in Horticultural Plants 47–58 (Springer, 2015).

    Google Scholar 

  • 95.

    Sastry, P. S. N. & Chakravarty, N. V. K. Energy summation indices for wheat crop in India. Agric. Meteorol. 27, 45–48 (1982).

    Article 

    Google Scholar 

  • 96.

    Moriondo, M., Giannakopoulos, C. & Bindi, M. Climate change impact assessment: The role of climate extremes in crop yield simulation. Clim. Change 104(3), 679–701 (2011).

    ADS 
    Article 

    Google Scholar 

  • 97.

    Hilgeman, R. H., Dunlap, J. A. & Sharp, P. O. Effect of time of harvest of ‘Valencia’ oranges in Arizona on fruit grade and size and yield, the following year. Proc. Amer. Soc. Hort. Sci. 90, 103–109. Fruit Load Limits Root Growth, Summer Vegetative Shoot Development, and Flowering in Alternatebearing ‘Nadorcott’ Mandarin Trees (1967).

  • 98.

    Dalal, R. P. S., Beniwal, B. S. & Sehrawat, S. K. Seasonal variation in growth, leaf physiology and fruit development in Kinnow, a Mandarin Hybrid. J. Plant Stud. 2(1), 72–77 (2013).

    Google Scholar 

  • 99.

    Bower, J. P. The Pre-and post -Harvest Application Potential for Crop- Set TM and ISR2000TM on Citrus. http://en.engormix.com/MAagriculture/articles/th-pre (2007).

  • 100.

    Sharma, N., Sharma, S. & Niwas, R. Thermal time and phenology of citrus in semi-arid conditions. J. Pharmacogn. Phytochem. 6(5), 27–30 (2017).

    Google Scholar 

  • 101.

    Goldschmidt, E. E. & Koch, K. E. Citrus. In Photoassimilate Distribution in Plants and Crops: Source-Sink Relations (eds Zaminski, E. & Schaffer, A. A.) 797–823 (Marcel Dekker, 1996).

    Google Scholar 

  • 102.

    Munoz-Fambuena, N. et al. Fruit regulates seasonal expression of flowering genes in alternate-bearing ‘Moncada’ mandarin. Ann. Bot. 108, 511–519 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 103.

    Shalom, L. et al. Fruit load induces changes in global gene expression and in abscisic acid (ABA) and indole acetic acid (IAA) homeostasis in citrus buds. J. Exp. Bot. 65(12), 3029–3044 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 104.

    Smith, P. F. Collapse of ‘Murcott’ tangerine trees [Root starvation]. J. Am. Soc. Hortic. Sci. 101, 23–25 (1976).

    CAS 

    Google Scholar 

  • 105.

    Koshita, Y., Takahara, T., Ogata, T. & Goto, A. Involvement of endogenous plant hormones (IAA, ABA, GAs) in leaves and flower bud formation of satsuma mandarin (Citrus unshiu Marc). Sci. Hortic. 79(3–4), 185–194 (1999).

    CAS 
    Article 

    Google Scholar 

  • 106.

    Whiley, A. W., Rasmussen, T. S. & Wolstenholme, B. N. Delayed harvest effects on yield, fruit size and starch cycling in avocado (Persea americana Mill.) in subtropical environments. I. the early-maturing cv. Fuerte. Sci. Hortic. 66(1–2), 23–34 (1996).

    CAS 
    Article 

    Google Scholar 

  • 107.

    Syvertsen, J. P. & Lloyd, J. J. Citrus. Handb. Environ. Physiol. Fruit Crops 2, 65–99 (1994).

    Google Scholar 

  • 108.

    Scholefield, P. B., Sedgley, M. & Alexander, D. M. Carbohydrate cycling in relation to shoot growth, floral initiation and development and yield in the avocado. Sci. Hortic. 25(2), 99–110 (1985).

    Article 

    Google Scholar 

  • 109.

    Shalom, L. et al. Alternate bearing in citrus: Changes in the expression of flowering control genes and in global gene expression in on-versus off-crop trees. PLoS ONE 7(10), e46930 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 110.

    der Merwe, V. & Schalk, I. Studies on the Phenology and Carbohydrate Status of Alternate Bearing ‘Nadorcott’mandarin trees (Doctoral dissertation, Stellenbosch: Stellenbosch University, 2012).

  • 111.

    Ward, D. L. Factors affecting Pre-harvest Fruit Drop of Apple. Ph.D thesis. Virginia Polytechnic Institute and State University 143 (2004).

  • 112.

    Blanusa, T., Else, M. A., Davies, W. J. & Atkinson, C. J. Regulation of sweet cherry fruit abscission: The role of photo-assimilation, sugars and abscisic acid. J. Hortic. Sci. Biotechnol. 81(4), 613–620 (2006).

    CAS 
    Article 

    Google Scholar 

  • 113.

    Nartvaranant, P., Sornsanid, K. & Nuanpraluk, S. Preharvest Fruit Drop and Seasonal Variation of Plant Nutrient in ‘Thongdee’and ‘Khao Nam Pleung’pummelo on Nakhon Chaisri-Mae Klong river basin regions. Research Project Report (Thailand Research Fund, 2010).

    Google Scholar 

  • 114.

    Ruiz, R., Garcıa-Luis, A., Monerri, C. & Guardiola, J. L. Carbohydrate availability in relation to fruitlet abscission in Citrus. Ann. Bot. 87(6), 805–812 (2001).

    CAS 
    Article 

    Google Scholar 

  • 115.

    Atkinson, C. J. The effects of phloem girdling on the abscission of Prunus avium L. fruits. J. Hortic. Sci. Biotechnol. 77(1), 22–27 (2002).

    Article 

    Google Scholar 

  • 116.

    Spiegel-Roy, P. & Goldschmidt, E. E. The Biology of Citrus (Cambridge University Press, 1996).

    Book 

    Google Scholar 

  • 117.

    Thind, S. K. & Kumar, K. Integrated management of fruit drop in Kinnow mandarin. Indian J Hort 65(4), 497–499 (2008).

    Google Scholar 

  • 118.

    Kumar, A., Avasthe, R. K., Pandey, B., Lepcha, B. & Rahman, H. Effect of fruit size and orchard location on fruit quality and seed traits of mandarin (Citrus reticulata) in Sikkim Himalayas. Indian J. Agric. Sci. 81(9), 821 (2011).

    CAS 

    Google Scholar 

  • 119.

    Ashraf, M. Y., Gul, A., Ashraf, M., Hussain, F. & Ebert, G. Improvement in yield and quality of Kinnow (Citrus deliciosa × Citrus nobilis) by potassium fertilization. J. Plant Nutr. 33, 1625–1637 (2010).

    CAS 
    Article 

    Google Scholar 

  • 120.

    Ibrahim, M., Ahmad, N., Anwar, S. A. & Majeed, T. Effect of micronutrients on citrus fruit yield growing on calcareous soils. In Advances in Plant and Animal Boron Nutrition 179–182 (2007).

  • 121.

    Razi, M. F. D., Khan, I. A. & Jaskani, M. J. Citrus plant nutritional profile in relation to Huanglongbing prevalence in Pakistan. Pak. J. Agri. Sci. 48, 299–304 (2011).

    Google Scholar 

  • 122.

    Valiente, J. I. & Albrigo, L. G. Flower bud induction of sweet orange trees [Citrus sinensis (L.) Osbeck]: Effect of low temperatures, crop load, and bud age. J. Am. Soc. Hortic. Sci. 129(2), 158–164 (2004).

    Article 

    Google Scholar 

  • 123.

    Yakushiji, H. et al. Sugar accumulation enhanced by osmoregulation in satsuma mandarin fruit. J. Am. Soc. Hortic. Sci. 121, 466–472 (1996).

    CAS 
    Article 

    Google Scholar 

  • 124.

    Holland, N., Menezes, H. C. & Lafuente, M. T. Carbohydrates as related to the heat induced chilling tolerance and respiratory rate of ‘Fortune’ mandarin fruit harvested at different maturity stages. Postharvest Biol. Technol. 25, 181–191 (2002).

    CAS 
    Article 

    Google Scholar 

  • 125.

    Chelong, I. A. & Sdoodee, S. Effect of climate variability and degree-day on development, yield and quality of shogun (Citrus reticulata Blanco) in Southern Thailand. J. Nat. Sci. 47, 333–341 (2013).

    Google Scholar 

  • 126.

    Khalid, M. S. et al. Geographical location and agro-ecological conditions influence kinnow mandarin (Citrus nobilis × Citrus deliciosa) fruit quality. Int. J. Agric. Biol. 20, 647–654 (2018).

    Article 

    Google Scholar 

  • 127.

    Guardiola, J. L. & García-Luis, A. Increasing fruit size in Citrus. Thinning and stimulation of fruit growth. Plant Growth Regul. 31(1–2), 121–132 (2000).

    CAS 
    Article 

    Google Scholar 

  • 128.

    Hield, H. Z. & Hilgeman, R. H. Alternate bearing and chemical fruit thinning of certain citrus varieties. Proc. Intl. Citrus Symp. 3, 1145–1153 (1969).

    Google Scholar 

  • 129.

    Verreynne, J. S. The Mechanism and Underlying Physiology Perpetuating Alternate Bearing in ‘Pixie’mandarin (Citrus reticulata Blanco) (University of California, 2005).

    Google Scholar 

  • 130.

    Sanginés de Cárcer, P. et al. Vapor–pressure deficit and extreme climatic variables limit tree growth. Glob. Change Biol. 24(3), 1108–1122 (2018).

    ADS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Non-diphtheriae Corynebacterium species are associated with decreased risk of pneumococcal colonization during infancy

    Researchers design sensors to rapidly detect plant hormones