in

Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation

  • 1.

    Westoby, M. A leaf–height–seed (LHS) plant ecology strategy scheme. Plant Soil 199, 213–227 (1998).

    CAS 

    Google Scholar 

  • 2.

    Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).

    Google Scholar 

  • 3.

    McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).

    Google Scholar 

  • 4.

    Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).

    Google Scholar 

  • 5.

    Musavi, T. et al. Potential and limitations of inferring ecosystem photosynthetic capacity from leaf functional traits. Ecol. Evol. 6, 7352–7366 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Scheiter, S., Langan, L. & Higgins, S. I. Next-generation dynamic global vegetation models: learning from community ecology. New Phytol. 198, 957–969 (2013).

    Google Scholar 

  • 7.

    Van Bodegom, P. M., Douma, J. C. & Verheijen, L. M. A fully traits-based approach to modeling global vegetation distribution. Proc. Natl Acad. Sci. USA 111, 13733–13738 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Schrodt, F. et al. BHPMF—a hierarchical Bayesian approach to gap-filling and trait prediction for macroecology and functional biogeography. Glob. Ecol. Biogeogr. 24, 1510–1521 (2015).

    Google Scholar 

  • 9.

    Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).

    Google Scholar 

  • 10.

    Díaz, S. et al. The global spectrum of plant form and function. Nature 529,167–171 (2015).

    Google Scholar 

  • 11.

    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Bruelheide, H. et al. Global trait–environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Thomas, H. J. et al. Global plant trait relationships extend to the climatic extremes of the tundra biome. Nat. Commun. 11, 1351 (2020).

  • 14.

    Kong, D. et al. Nonlinearity of root trait relationships and the root economics spectrum. Nat. Commun. 10, 2203 (2019).

  • 15.

    Schimper, A. Plant-Geography Upon A Physiological Basis (Clarendon Press, 1903).

  • 16.

    Warming, E. Oecology Of Plants (Oxford, 1909).

  • 17.

    Raunkiær, C. in Life Forms of Plants and Statistical Plant Geography, 4-16 (Clarendon Press, 1934).

  • 18.

    Maire, V. et al. Global effects of soil and climate on leaf photosynthetic traits and rates. Glob. Ecol. Biogeogr. 24, 706–717 (2015).

    Google Scholar 

  • 19.

    Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Olson, M. E. et al. Plant height and hydraulic vulnerability to drought and cold. Proc. Natl Acad. Sci. USA 115, 7551–7556 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Moles, A. T. et al. Global patterns in plant height. J. Ecol. 97, 923–932 (2009).

    Google Scholar 

  • 22.

    Ordoñez, J. C. et al. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob. Ecol. Biogeogr. 18, 137–149 (2009).

    Google Scholar 

  • 23.

    Simpson, A. H., Richardson, S. J. & Laughlin, D. C. Soil–climate interactions explain variation in foliar, stem, root and reproductive traits across temperate forests. Glob. Ecol. Biogeogr. 25, 964–978 (2016).

    Google Scholar 

  • 24.

    Wright, I. J. et al. Global climatic drivers of leaf size. Science 357, 917–921 (2017).

    CAS 

    Google Scholar 

  • 25.

    Atkin, O. K. et al. Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytol. 206, 614–636 (2015).

    CAS 

    Google Scholar 

  • 26.

    Asner, G. P., Knapp, D. E., Anderson, C. B., Martin, R. E. & Vaughn, N. Large-scale climatic and geophysical controls on the leaf economics spectrum. Proc. Natl Acad. Sci. USA 113, E4043–E4051 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Moles, A. T. et al. Global patterns in seed size. Glob. Ecol. Biogeogr. 16, 109–116 (2007).

    Google Scholar 

  • 28.

    Blume, H.-P. et al. Soil Science 1st edn.(Springer, Berlin-Heidelberg, 2016).

  • 29.

    Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth-Sci. Rev. 99, 125–161 (2010).

    CAS 

    Google Scholar 

  • 30.

    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933–938 (2001).

    Google Scholar 

  • 31.

    Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning (Springer, 2008).

  • 32.

    Chevan, A. & Sutherland, M. Hierarchical partitioning. Am. Stat. 45, 90–96 (1991).

    Google Scholar 

  • 33.

    Reich, P. B. & Oleksyn, J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl Acad. Sci. USA 101, 11001–11006 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Corner, E. J. H. The Durian theory or the origin of the modern tree. Ann. Bot. XIII, 367–414 (1949).

    Google Scholar 

  • 35.

    Pietsch, K. A. et al. Global relationship of wood and leaf litter decomposability: the role of functional traits within and across plant organs. Glob. Ecol. Biogeogr. 23, 1046–1057 (2014).

    Google Scholar 

  • 36.

    FloresâMoreno, H. et al. Robustness of trait connections across environmental gradients and growth forms. Glob. Ecol. Biogeogr. 28, 1806–1826 (2019).

    Google Scholar 

  • 37.

    Chapin, F. S. The mineral nutrition of wild plants. Annu. Rev. Ecol. Syst. 11, 233–260 (1980).

    CAS 

    Google Scholar 

  • 38.

    Vitousek, P. Nutrient Cycling and Limitation: Hawai’i as a Model System (Princeton Univ. Press, 2004).

  • 39.

    Shipley, B., Vile, D., Garnier, E., Wright, I. J. & Poorter, H. Functional linkages between leaf traits and net photosynthetic rate: reconciling empirical and mechanistic models. Funct. Ecol. 19, 602–615 (2005).

    Google Scholar 

  • 40.

    He, T., Belcher, C. M., Lamont, B. B. & Lim, S. L. A 350-million-year legacy of fire adaptation among conifers. J. Ecol. 104, 352–363 (2016).

    Google Scholar 

  • 41.

    Bergmann, J., Ryo, M., Prati, D., Hempel, S. & Rillig, M. C. Root traits are more than analogues of leaf traits: the case for diaspore mass. New Phytol. 216, 1130–1139 (2017).

    Google Scholar 

  • 42.

    Aerts, R. The advantages of being evergreen. Trends Ecol. Evol. 10, 402–407 (1995).

    CAS 

    Google Scholar 

  • 43.

    Zanne, A. E. et al. Functional biogeography of angiosperms: life at the extremes. New Phytol. 218, 1697–1709 (2018).

    Google Scholar 

  • 44.

    Franklin, O. et al. Organizing principles for vegetation dynamics. Nat. Plants 6, 444–453 (2020).

    Google Scholar 

  • 45.

    Legay, N. et al. Contribution of above- and below-ground plant traits to the structure and function of grassland soil microbial communities. Ann. Bot 114, 1011–1021 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Grime, J. P. Vegetation classification by reference to strategies. Nature 250, 26–31 (1974).

    Google Scholar 

  • 47.

    Slessarev, E. W. et al. Water balance creates a threshold in soil pH at the global scale. Nature 540, 567–569 (2016).

    CAS 

    Google Scholar 

  • 48.

    Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl Acad. Sci. USA 103, 626–631 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Sinsabaugh, R. L. & Follstad Shah, J. J. Ecoenzymatic stoichiometry and ecological theory. Annu. Rev. Ecol. Evol. Syst. 43, 313–343 (2012).

    Google Scholar 

  • 50.

    de Vries, F. T. et al. Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecol. Lett. 15, 1230–1239 (2012).

    Google Scholar 

  • 51.

    Zech, W., Schad, P. & Hintermaier-Erhard, G. Böden der Welt—Ein Bildatlas (Springer Spectrum, 2014).

  • 52.

    Rosenberg, E. et al. (eds) The Prokaryotes: Prokaryotic Communities and Ecophysiology 4th edn. (Springer-Verlag, 2013).

  • 53.

    Niinemets, Ã. Leaf age dependent changes in within-canopy variation in leaf functional traits: a meta-analysis. J. Plant Res. 129, 313–338 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Butler, E. E. et al. Mapping local and global variability in plant trait distributions. Proc. Natl Acad. Sci. USA 114, E10937–E10946 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Freschet, G. T. et al. Global to community scale differences in the prevalence of convergent over divergent leaf trait distributions in plant assemblages. Global Ecol. Biogeogr. 20, 755–765 (2011).

    Google Scholar 

  • 56.

    Yemefack, M., Rossiter, D. G. & Njomgang, R. Multi-scale characterization of soil variability within an agricultural landscape mosaic system in southern Cameroon. Geoderma 125, 117–143 (2005).

    Google Scholar 

  • 57.

    Oldeman, L., Hakkeling, R. & Sombroek, W. Global Assessment of Soil Degradation (GLASOD): World Map of the Status of Human-induced Soil Degradation (United Nations Environment Programme, 1991).

  • 58.

    Ackerly, D. D. & Cornwell, W. K. A trait-based approach to community assembly: partitioning of species trait values into within- and among-community components. Ecol. Lett. 10, 135–145 (2007).

    CAS 

    Google Scholar 

  • 59.

    Adler, P. B. A Comparison of Livestock Grazing Effects on Sagebrush Steppe, USA, and Patagonian Steppe, Argentina. PhD thesis (Colorado State University, 2003).

  • 60.

    Adler, P. B., Milchunas, D. G., Lauenroth, W. K., Sala, O. E. & Burke, I. C. Functional traits of graminoids in semi-arid steppes: a test of grazing histories. J. Appl. Ecol. 41, 653–663 (2004).

    Google Scholar 

  • 61.

    Adriaenssens, S. Dry deposition and canopy exchange for temperate tree species under high nitrogen deposition. PhD thesis, Ghent Univ. (2012).

  • 62.

    Atkin, O. K., Schortemeyer, M., McFarlane, N. & Evans, J. R. The response of fast- and slow-growing Acacia species to elevated atmospheric CO2: an analysis of the underlying components of relative growth rate. Oecologia 120, 544–554 (1999).

    Google Scholar 

  • 63.

    Atkin, O. K., Westbeek, M., Cambridge, M. L., Lambers, H. & Pons, T. L. Leaf respiration in light and darkness (a comparison of slow- and fast-growing Poa species). Plant Physiol. 113, 961–965 (1997).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Auger, S. L’Importance de la Variabilité Interspécifique des Traits Fonctionnels par Rapport à la Variabilité Intraspécifique Chez les Jeunes Arbres en Forêt Mature. MSc thesis (Université de Sherbrooke, 2012).

  • 65.

    Bahn, M. et al. in Land-Use Changes in European Mountain Ecosystems. ECOMONT—Concept and Results (eds Cernusca, A. et al.) 247–255 (Blackwell Wissenschaft, 1999).

  • 66.

    Baker, T. R. et al. Do species traits determine patterns of wood production in Amazonian forests? Biogeosciences 6, 297–307 (2009).

    CAS 

    Google Scholar 

  • 67.

    Bakker, C., Van Bodegom, P. M., Nelissen, H. J. M., Ernst, W. H. O. & Aerts, R. Plant responses to rising water table and nutrient management in calcareous dune slacks. Plant Ecol. 185, 19–28 (2006).

    Google Scholar 

  • 68.

    Bakker, C., Rodenburg, J. & van Bodegom, P. M. Effects of Ca- and Fe-rich seepage on P availability and plant performance in calcareous dune soils. Plant Soil 275, 111–122 (2005).

    CAS 

    Google Scholar 

  • 69.

    Baraloto, C. et al. Decoupled leaf and stem economics in rainforest trees. Ecol. Lett. 13, 1338–1347 (2010).

    Google Scholar 

  • 70.

    Baraloto, C. et al. Functional trait variation and sampling strategies in species-rich plant communities. Funct. Ecol. 24, 208–216 (2010).

    Google Scholar 

  • 71.

    Beckmann, M., Hock, M., Bruelheide, H. & Erfmeier, A. The role of UV-B radiation in the invasion of Hieracium pilosella—a comparison of German and New Zealand plants. Environ. Exp. Bot. 75, 173–180 (2012).

    Google Scholar 

  • 72.

    Blanco, C. C., Sosinski, E. E., dos Santos, B. R. C., da Silva, M. A. & Pillar, V. D. On the overlap between effect and response plant functional types linked to grazing. Community Ecol. 8, 57–65 (2007).

    Google Scholar 

  • 73.

    Blonder, B. et al. The shrinkage effect biases estimates of paleoclimate. Am. J. Bot. 99, 1756–1763 (2012).

    Google Scholar 

  • 74.

    Blonder, B., Violle, C. & Enquist, B. J. Assessing the causes and scales of the leaf economics spectrum using venation networks in Populus tremuloides. J. Ecol. 101, 981–989 (2013).

    Google Scholar 

  • 75.

    Blonder, B. et al. Testing models for the leaf economics spectrum with leaf and whole-plant traits in Arabidopsis thaliana. AoB Plants 7, plv049 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 76.

    Blonder, B., Violle, C., Bentley, L. P. & Enquist, B. J. Venation networks and the origin of the leaf economics spectrum. Ecol. Lett. 14, 91–100 (2011).

    Google Scholar 

  • 77.

    Bocanegra-González K.T., Fernández-Méndez, F. & David Galvis-Jiménez, J. Funtional groups of tres in secondary forests of the bajo calima region (Buenaventura, Colombia) Boletín CientífiCo Centro de Museos Museo de Historia natura 19, (2015).

  • 78.

    Bodegom, P. M. V., Kanter, M. D. & Aerts, C. B. R. Radial oxygen loss, a plastic property of dune slack plant species. Plant Soil 271, 351–364 (2005).

    Google Scholar 

  • 79.

    Bond-Lamberty, C. W. B. & Gower, S. T. Above- and belowground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba. Can. J. For. Res. 32, 1441–1450 (2002).

    Google Scholar 

  • 80.

    Bond-Lamberty, C. W. B. & Gower, S. T. Leaf area dynamics of a boreal black spruce fire chronosequence. Tree Physiol. 22, 993–1001 (2002).

    Google Scholar 

  • 81.

    Bond-Lamberty, C. W. B. & Gower, S. T. The use of multiple measurement techniques to refine estimates of conifer needle geometry. Can. J. For. Res. 33, 101–105 (2003).

    Google Scholar 

  • 82.

    Bond-Lamberty, C. W. B. & Gower, S. Net primary production and net ecosystem production of a boreal black spruce fire chronosequence. Glob. Change Biol. 10, 473–487 (2004).

    Google Scholar 

  • 83.

    Bragazza, L. Conservation priority of Italian alpine habitats: a floristic approach based on potential distribution of vascular plant species. Biodivers. Conserv. 18, 2823–2835 (2009).

    Google Scholar 

  • 84.

    Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).

    CAS 

    Google Scholar 

  • 85.

    Briemle, G., Nitsche, S. & Nitsche, L. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 203–225 (Bundesamt für Naturschutz, 2002).

  • 86.

    Brown, K. et al. Assessing natural resource use by forest-reliant communities in Madagascar using functional diversity and functional redundancy metrics. PLoS ONE https://doi.org/10.1371/journal.pone.0024107 (2011).

  • 87.

    Burrascano, S. et al. Wild boar rooting intensity determines shifts in understorey composition and functional traits. Community Ecol. 16, 244–253 (2015).

    Google Scholar 

  • 88.

    Butterfield, B. J. & Briggs, J. M. Regeneration niche differentiates functional strategies of desert woody plant species. Oecologia 165, 477–487 (2011).

    Google Scholar 

  • 89.

    Byun, C., de Blois, S. & Brisson, J. Plant functional group identity and diversity determine biotic resistance to invasion by an exotic grass. J. Ecol. 101, 128–139 (2013).

    Google Scholar 

  • 90.

    Campbell, C. et al. Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group. New Phytol. 176, 375–389 (2007).

    CAS 

    Google Scholar 

  • 91.

    Campetella, G. et al. Patterns of plant trait–environment relationships along a forest succession chronosequence. Agric. Ecosyst. Environ. 145, 38–48 (2011).

    Google Scholar 

  • 92.

    Carswell, F. E. et al. Photosynthetic capacity in a central Amazonian rain forest. Tree Physiol. 20, 179–186 (2000).

    Google Scholar 

  • 93.

    Castro-Diez, P., Puyravaud, J. P., Cornelissen, J. H. C. & Villar-Salvador., P. Stem anatomy and relative growth rate in seedlings of a wide range of woody plant species and types. Oecologia 116, 57–66 (1998).

    CAS 

    Google Scholar 

  • 94.

    Castro-Diez, P., Puyravaud, J. P. & Cornelissen, J. H. C. Leaf structure and anatomy as related to leaf mass per area variation in seedlings of a wide range of woody plant species and types. Oecologia 124, 476–486 (2000).

    CAS 

    Google Scholar 

  • 95.

    Cavender-Bares, A. K. J. & Miles, B. Phylogenetic structure of Floridian plant communities depends on taxonomic and spatial scale. Ecology 87, 109–122 (2006).

    Google Scholar 

  • 96.

    Cavender-Bares, L. S. J. & Savage, J. Atmospheric and soil drought reduce nocturnal conductance in live oaks. Tree Physiol. 27, 522–620 (2007).

    Google Scholar 

  • 97.

    Cerabolini, B. E. L. et al. Can CSR classification be generally applied outside Britain? Plant Ecol. 210, 253–261 (2010).

    Google Scholar 

  • 98.

    Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).

    Google Scholar 

  • 99.

    Chen, Y., Han, W., Tang, L., Tang, Z. & Fang, J. Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form. Ecography 36, 178–184 (2011).

    Google Scholar 

  • 100.

    Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).

    CAS 

    Google Scholar 

  • 101.

    Choat, B., Sack, L. & Holbrook, N. M. Diversity of hydraulic traits in nine Cordia species growing in tropical forests with contrasting precipitation. New Phytol. 175, 686–698 (2007).

    Google Scholar 

  • 102.

    Coomes, D. A., Heathcote, S., Godfrey, E. R. & Shepherd, J. J. Scaling of xylem vessels and veins within the leaves of oak species. Biol. Lett. 4, 302–306 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 103.

    Cornelissen, J., Aerts, R., Cerabolini, B., Werger, M. & van der Heijden, M. Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia 129, 611–619 (2001).

    CAS 

    Google Scholar 

  • 104.

    Cornelissen, J. H. C. An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. J. Ecol. 84, 573–582 (1996).

    Google Scholar 

  • 105.

    Cornelissen, J. H. C., Diez, P. C. & Hunt., R. Seedling growth, allocation and leaf attributes in a wide range of woody plant species and types. J. Ecol. 84, 755–765 (1996).

    Google Scholar 

  • 106.

    Cornelissen, J. H. C., Werger, M. J. A., Castro-Diez, P., van Rheenen, J. W. A., & Rowland, A. P. Foliar nutrients in relation to growth, allocation and leaf traits in seedlings of a wide range of woody plant species and types. Oecologia 111, 460–469 (1997).

    CAS 

    Google Scholar 

  • 107.

    Cornelissen, J. H. C. et al. Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytol. 143, 191–200 (1999).

    Google Scholar 

  • 108.

    Cornelissen, J. H. C. A triangular relationship between leaf size and seed size among woody species: allometry, ontogeny, ecology and taxonomy. Oecologia 118, 248–255 (1999).

    CAS 

    Google Scholar 

  • 109.

    Cornelissen, J. H. C., Aerts, R., Cerabolini, B., Werger, M. J. A. & van der Heijden., M. G. A. Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia 129, 611–619 (2001).

    CAS 

    Google Scholar 

  • 110.

    Cornelissen, J. H. C. et al. Leaf digestibility and litter decomposability are related in a wide range of subarctic plant species and types. Funct. Ecol. 18, 779–786 (2004).

    Google Scholar 

  • 111.

    Cornelissen, J. H. C. et al. Functional traits of woody plants: correspondence of species rankings between field adults and laboratory-grown seedlings? J. Veg. Sci. 14, 311–322 (2003).

    Google Scholar 

  • 112.

    Cornelissen, J. H. C., Diez, P. C. & Hunt, R. Seedling growth, allocation and leaf attributes in a wide range of woody plant species and types. J. Ecol. 84, 755 (1996).

    Google Scholar 

  • 113.

    Cornelissen, J. H. C. et al. Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytol. 143, 191–200 (1999).

    Google Scholar 

  • 114.

    Schwilk, D. W., Cornwell, W. K. & Ackerly., D. D. A trait-based test for habitat filtering: convex hull volume. Ecology 87, 1465–1471 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 115.

    Cornwell, W. K. & Ackerly, D. D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol. Monogr. 79, 109–126 (2009).

    Google Scholar 

  • 116.

    Cornwell, W. K., Bhaskar, R., Sack, L., Cordell, S. & Lunch, C. K. Adjustment of structure and function of Hawaiian Metrosideros polymorpha at high vs. low precipitation. Funct. Ecol. 21, 1063–1071 (2007).

    Google Scholar 

  • 117.

    Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 118.

    Craine, J. M. et al. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol. 183, 980–992 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 119.

    Craine, J. M., Lee, W. G., Bond, W. J., Williams, R. J. & Johnson, L. C. Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology 86, 12–19 (2005).

    Google Scholar 

  • 120.

    Craine, J. M. et al. Functional consequences of climate change-induced plant species loss in a tallgrass prairie. Oecologia 165, 1109–1117 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 121.

    Craine, J. M. et al. Global diversity of drought tolerance and grassland climate-change resilience. Nat. Clim. Change 3, 63–67 (2012).

    Google Scholar 

  • 122.

    Craven, D. et al. Between and within-site comparisons of structural and physiological characteristics and foliar nutrient content of 14 tree species at a wet, fertile site and a dry, infertile site in Panama. For. Ecol. Manag. 238, 335–346 (2007).

    Google Scholar 

  • 123.

    Craven, D. et al. Seasonal variability of photosynthetic characteristics influences growth of eight tropical tree species at two sites with contrasting precipitation in Panama. For. Ecol. Manag. 261, 1643–1653 (2011).

    Google Scholar 

  • 124.

    Dainese, M. & Bragazza, L. Plant traits across different habitats of the Italian alps: a comparative analysis between native and alien species. Alpine Bot. 122, 11–21 (2012).

    Google Scholar 

  • 125.

    de Araujo, A. et al. LBA-ECO CD-02 C and N Isotopes in Leaves and Atmospheric CO2, Amazonas, Brazil (ORNL DAAC, 2012); http://daac.ornl.gov

  • 126.

    de Vries, F. T. & Bardgett, R. D. Plant community controls on short-term ecosystem nitrogen retention. New Phytol. 210, 861–874 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 127.

    Demey, A. et al. Nutrient input from hemiparasitic litter favors plant species with a fast-growth strategy. Plant Soil 371, 53–66 (2013).

    CAS 

    Google Scholar 

  • 128.

    Diaz, S. et al. The plant traits that drive ecosystems: evidence from three continents. J. Veg. Sci. 15, 295–304 (2004).

    Google Scholar 

  • 129.

    Domingues, T. F., Berry, J. A., Martinelli, L. A., Ometto, J. P. H. B. & Ehleringer, J. R. Parameterization of canopy structure and leaf-level gas exchange for an eastern Amazonian tropical rain forest (Tapajós National Forest, Pará, Brazil). Earth Interact. https://doi.org/10.1175/EI149.1 (2005).

  • 130.

    Domingues, T. F., Martinelli, L. A. & Ehleringer, J. R. Ecophysiological traits of plant functional groups in forest and pasture ecosystems from eastern Amazônia, Brazil. Plant Ecol. 193, 101–112 (2007).

    Google Scholar 

  • 131.

    Domingues, T. F. et al. Co-limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands. Plant Cell Environ. 33, 959–980 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 132.

    Duarte, Ld. S., Carlucci, M. B., Hartz, S. M. & Pillar, V. D. Plant dispersal strategies and the colonization of Araucaria forest patches in a grassland–forest mosaic. J. Veg. Sci. 18, 847–858 (2007).

    Google Scholar 

  • 133.

    DunbarâCo, S., Sporck, M. J. & Sack, L. Leaf trait diversification and design in seven rare taxa of the Hawaiian Plantago radiation. Int. J. Plant Sci. 170, 61–75 (2009).

    Google Scholar 

  • 134.

    Durka, W. In BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 75–91 (Bundesamt für Naturschutz, 2002).

  • 135.

    Durka, W. In BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 57–74 (Bundesamt für Naturschutz, 2002).

  • 136.

    Durka, W. In BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 133–175 (Bundesamt für Naturschutz, 2002).

  • 137.

    Medlyn, B. E. & Jarvis, P. G. Design and use of a database of model parameters from elevated [CO2] experiments. Ecol. Model. 124, 69–83 (1999).

    CAS 

    Google Scholar 

  • 138.

    Everwand, G., Fry, E. L., Eggers, T. & Manning, P. Seasonal variation in the capacity for plant trait measures to predict grassland carbon and water fluxes. Ecosystems 17, 1095–1108 (2014).

    CAS 

    Google Scholar 

  • 139.

    Fazayeli, F., Banerjee, A., Kattge, J., Schrodt, F. & Reich, P. B. Uncertainty quantified matrix completion using Bayesian Hierarchical Matrix factorization. In Proc. 13th International Conference on Machine Learning and Applications (eds Ferri, C. et al.) 312–317 (International Conference on Machine Learning and Applications (ICMLA), 2014).

  • 140.

    Fagúndez, J. & Izco, J. Seed morphology of the European species of Erica L. sect. Arsace Salisb. ex Benth. (Ericaceae). Acta Bot. Gall. 157, 45–54 (2010).

    Google Scholar 

  • 141.

    Fonseca, C. R., Overton, J. M., Collins, B. & Westoby, M. Shifts in trait-combinations along rainfall and phosphorus gradients. J. Ecol. 88, 964–977 (2000).

    Google Scholar 

  • 142.

    Fortunel, C. et al. Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe. Ecology 90, 598–611 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 143.

    Frainer, A. & McKie, B. G. Shifts in the diversity and composition of consumer traits constrain the effects of land use on stream ecosystem functioning. Adv. Ecol. Res. 52, 169–200 (2015).

    Google Scholar 

  • 144.

    Frenette-Dussault, C., Shipley, B., Léger, J.-F., Meziane, D. & Hingrat, Y. Functional structure of an arid steppe plant community reveals similarities with Grime’s C-S-R theory. J. Veg. Sci. 23, 208–222 (2011).

    Google Scholar 

  • 145.

    Freschet, G. T., Cornelissen, J. H. C., van Logtestijn, R. S. P. & Aerts, R. Evidence of the plant economics spectrum in a subarctic flora. J. Ecol. 98, 362–373 (2010).

    Google Scholar 

  • 146.

    Freschet, G. T., Cornelissen, J. H. C., van Logtestijn, R. S. P. & Aerts, R. Substantial nutrient resorption from leaves, stems and roots in a subarctic flora: what is the link with other resource economics traits? New Phytol. 186, 879–889 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 147.

    Fry, E. L., Power, S. A. & Manning, P. Trait-based classification and manipulation of plant functional groups for biodiversity–ecosystem function experiments. J. Veg. Sci. 25, 248–261 (2013).

    Google Scholar 

  • 148.

    Fyllas, N. M. et al. Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences 6, 2677–2708 (2009).

    Google Scholar 

  • 149.

    Gachet, S., Véla, E. & Tatoni, T. BASECO: a floristic and ecological database of Mediterranean French flora. Biodivers. Conserv. 14, 1023–1034 (2005).

    Google Scholar 

  • 150.

    Gallagher, R. V. & Leishman, M. R. A global analysis of trait variation and evolution in climbing plants. J. Biogeogr. 39, 1757–1771 (2012).

    Google Scholar 

  • 151.

    Garnier, E. et al. Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. Ann. Bot. 99, 967–985 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 152.

    Givnish, T. J., Montgomery, R. A. & Goldstein, G. Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads: light regimes, static light responses, and whole-plant compensation points. Am. J. Bot. 91, 228–246 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 153.

    Guerin, G. R., Wen, H. & Lowe, A. J. Leaf morphology shift linked to climate change. Biol. Lett. 8, 882–886 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 154.

    Gutiérrez, A. G. & Huth, A. Successional stages of primary temperate rainforests of Chiloé Island, Chile. Perspect. Plant Ecol. Evol. Syst. 14, 243–256 (2012).

    Google Scholar 

  • 155.

    Guy, A. L., Mischkolz, J. M. & Lamb, E. G. Limited effects of simulated acidic deposition on seedling survivorship and root morphology of endemic plant taxa of the Athabasca sand dunes in well-watered greenhouse trials. Botany 91, 176–181 (2013).

    Google Scholar 

  • 156.

    Han, W. et al. Floral, climatic and soil pH controls on leaf ash content in China’s terrestrial plants. Glob. Ecol. Biogeogr. 21, 376–382 (2011).

    Google Scholar 

  • 157.

    Han, W., Fang, J., Guo, D. & Zhang, Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol. 168, 377–385 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 158.

    Hao, G.-Y., Sack, L., Wang, A.-Y., Cao, K.-F. & Goldstein, G. Differentiation of leaf water flux and drought tolerance traits in hemiepiphytic and non-hemiepiphytic Ficus tree species. Funct. Ecol. 24, 731–740 (2010).

    Google Scholar 

  • 159.

    He, J.-S. et al. A test of the generality of leaf trait relationships on the Tibetan plateau. New Phytol. 170, 835–848 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 160.

    Hickler, T. Plant Functional Types and Community Characteristics along Environmental Gradients on Öland’s Great Alvar (Sweden). Masters thesis (University of Lund, 1999).

  • 161.

    Hoof, J., Sack, L., Webb, D. T. & Nilsen, E. T. Contrasting structure and function of pubescent and glabrous varieties of Hawaiian Metrosideros polymorpha (Myrtaceae) at high elevation. Biotropica 40, 113–118 (2008).

  • 162.

    Husson, A. F., Josse, J., Le, S., Mazet, J. & Husson, M. F. Package ‘FactoMineR’ (CRAN, 2017).

  • 163.

    Jacobs, B. et al. Unraveling the Phylogeny of Heptacodium and Zabelia (Caprifoliaceae): An Interdisciplinary Approach. Syst. Bot. 36, 231–252 (2011).

    Google Scholar 

  • 164.

    Jansen, S., Decraene, L. P. R. & Smets, E. On the wood and stem anatomy of Monococcus echinophorus (Phytolaccaceae s.l.). Syst. Geogr. Plants 70, 171 (2000).

    Google Scholar 

  • 165.

    Jansen, S. et al. Contributions to the wood anatomy of the Rubioideae (Rubiaceae). J. Plant Res. 114, 269–289 (2001).

    Google Scholar 

  • 166.

    Jansen, S., Piesschaert, F. & Smets, E. Wood anatomy of Elaeagnaceae, with comments on vestured pits, helical thickenings, and systematic relationships. Am. J. Bot. 87, 20 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 167.

    Jansen, S., Robbrecht, E., Beeckman, H. & Smets, E. Gaertnera and Pagamea: genera within the Psychotrieae or constituting the tribe Gaertnereae? A wood anatomical and palynological approach. Bot. Acta 109, 466–476 (1996).

    Google Scholar 

  • 168.

    S., J., E., R., H., B. & Smets, E. Comparative wood anatomy of African Coffeae (Rubiaceae-Rubioideae). Belg. J. Bot. 130, 47–58 (1997).

    Google Scholar 

  • 169.

    Kattge, J., Knorr, W., Raddatz, T. & Wirth, C. Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Glob. Change Biol. 15, 976–991 (2009).

    Google Scholar 

  • 170.

    Kazakou, E., Vile, D., Shipley, B., Gallet, C. & Garnier, E. Co-variations in litter decomposition, leaf traits and plant growth in species from a Mediterranean old-field succession. Funct. Ecol. 20, 21–30 (2006).

    Google Scholar 

  • 171.

    Kerkhoff, A. J., Fagan, W. F., Elser, J. J. & Enquist, B. J. Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. Am. Nat. 168, E103–E122 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 172.

    Kew, R. B. G. Seed Information Database—SID (Kew, 2008); http://data.kew.org/sid/

  • 173.

    Kichenin, E., Wardle, D. A., Peltzer, D. A., Morse, C. W. & Freschet, G. T. Contrasting effects of plant inter- and intraspecific variation on community-level trait measures along an environmental gradient. Funct. Ecol. 27, 1254–1261 (2013).

    Google Scholar 

  • 174.

    Kier, G. et al. Global patterns of plant diversity and floristic knowledge. J. Biogeogr. 32, 1107–1116 (2005).

    Google Scholar 

  • 175.

    Kirkup, D., Malcolm, P., Christian, G. & Paton, A. Towards a digital African flora. Taxon 54, 457 (2005).

    Google Scholar 

  • 176.

    Kleyer, M. et al. The LEDA traitbase: a database of life-history traits of the northwest European flora. J. Ecol. 96, 1266–1274 (2008).

    Google Scholar 

  • 177.

    Klotz, S. & Kühn, I. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 119-126 (Bundesamt für Naturschutz, 2002).

  • 178.

    Klotz, S. & Kühn, I. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 241–246 (Bundesamt für Naturschutz,2002).

  • 179.

    Klotz, S. & Kühn, I. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 273–281 (Bundesamt für Naturschutz, 2002).

  • 180.

    Klotz, S. & Kühn, I. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 197–201 (Bundesamt für Naturschutz, 2002).

  • 181.

    Koike, F. Plant traits as predictors of woody species dominance in climax forest communities. J. Veg. Sci. 12, 327–336 (2001).

    Google Scholar 

  • 182.

    Kraft, N. J. B. & Ackerly, D. D. Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecol. Monogr. 80, 401–422 (2010).

    Google Scholar 

  • 183.

    Kraft, N. J. B., Valencia, R. & Ackerly, D. D. Functional traits and niche-based tree community assembly in an Amazonian forest. Science 322, 580–582 (2008).

    CAS 

    Google Scholar 

  • 184.

    Krumbiegel, A. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 93–118 (Bundesamt für Naturschutz, 2002).

  • 185.

    Kühn, I. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 47–56 (Bundesamt für Naturschutz, 2002).

  • 186.

    Kuhn, I., Durka, W. & Klotz, S. Biolflor—a new plant-trait database as a tool for plant invasion ecology. Divers. Distrib. 10, 363–365 (2004).

    Google Scholar 

  • 187.

    Kühn, I. & Klotz, S. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 227–239 (Bundesamt für Naturschutz, 2002).

  • 188.

    Kurokawa, H. & Nakashizuka, T. Leaf herbivory and decomposability in a Malaysian tropical rain forest. Ecology 89, 2645–2656 (2008).

    Google Scholar 

  • 189.

    Laughlin, D. C., Fulé, P. Z., Huffman, D. W., Crouse, J. & Laliberté, E. Climatic constraints on trait-based forest assembly. J. Ecol. 99, 1489–1499 (2011).

    Google Scholar 

  • 190.

    Laughlin, D. C., Leppert, J. J., Moore, M. M. & Sieg, C. H. A multi-trait test of the leaf-height-seed plant strategy scheme with 133 species from a pine forest flora. Funct. Ecol. 24, 493–501 (2009).

    Google Scholar 

  • 191.

    Lens, F. Comparative wood anatomy of Epacrids (Styphelioideae, Ericaceae s.l.). Ann. Bot. 91, 835–856 (2003).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 192.

    Lens, F., Baas, P., Jansen, S. & Smets, E. A search for phylogenetically informative wood characters within Lecythidaceae s.l. Am. J. Bot. 94, 483–502 (2007).

    Google Scholar 

  • 193.

    Lens, F., Dressler, S., Jansen, S., van Evelghem, L. & Smets, E. Relationships within balsaminoid Ericales: a wood anatomical approach. Am. J. Bot. 92, 941–953 (2005).

    Google Scholar 

  • 194.

    Lens, F., Eeckhout, S., Zwartjes, R., Smets, E. & Janssens, S. B. The multiple fuzzy origins of woodiness within Balsaminaceae using an integrated approach: where do we draw the line? Ann. Bot. 109, 783–799 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 195.

    Lens, F., Endress, M. E., Baas, P., Jansen, S. & Smets, E. Vessel grouping patterns in subfamilies Apocynoideae and Periplocoideae confirm phylogenetic value of wood structure within Apocynaceae. Am. J. Bot. 96, 2168–2183 (2009).

    Google Scholar 

  • 196.

    Lens, F., Groeninckx, I., Smets, E. & Dessein, S. Woodiness within the Spermacoceae–Knoxieae alliance (Rubiaceae): retention of the basal woody condition in Rubiaceae or recent innovation? Ann. Bot. 103, 1049–1064 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 197.

    Lens, F., Jansen, S., Caris, P., Serlet, L. & Smets, E. Comparative wood anatomy of the primuloid clade (Ericales s.l.). Syst. Bot. 30, 163–183 (2005).

    Google Scholar 

  • 198.

    Lens, F., Jansen, S., Robbrecht, E. & Smets, E. Wood anatomy of the Vangueriaea (Ixoroideae-Rubuaceae), with special emphasis on some geofrutices. IAWA J. 21, 443–455 (2000).

    Google Scholar 

  • 199.

    Lens, F. et al. The wood anatomy of the polyphyletic Icacinaceae s.l., and their relationships within asterids. Taxon 57, 525–552 (2008).

    Google Scholar 

  • 200.

    Lens, F., Kron, K. A., Luteyn, J. L., Smets, E. & Jansen, S. Comparative wood anatomy of the blueberry tribe (Vaccinieae, Ericaceae s.l). Ann. Missouri Bot. Gard. 91, 566–592 (2004).

    Google Scholar 

  • 201.

    Lens, F., Smets, E. & Jansen, S. Comparative wood anatomy of Andromedeae s.s., Gaultherieae, Lyonieae and Oxydendreae (Vaccinioideae, Ericaceae s.l.). Bot. J. Linn. Soc. 144, 161–179 (2004).

    Google Scholar 

  • 202.

    Lens, F., Smets, E. & Melzer, S. Stem anatomy supports Arabidopsis thaliana as a model for insular woodiness. New Phytol. 193, 12–17 (2011).

    Google Scholar 

  • 203.

    Lens, F. et al. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytol. 190, 709–723 (2010).

    Google Scholar 

  • 204.

    Li, H., Liang, Y., Xu, Q. & Cao, D. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal. Chim. Acta 648, 77–84 (2009).

    CAS 

    Google Scholar 

  • 205.

    Louault, F., Pillar, V. D., Aufrèère, J., Garnier, E. & Soussana, J. F. Plant traits and functional types in response to reduced disturbance in a semi-natural grassland. J. Veg. Sci. 16, 151–160 (2005).

    Google Scholar 

  • 206.

    Loveys, B. R. et al. Thermal acclimation of leaf and root respiration: an investigation comparing inherently fast- and slow-growing plant species. Glob. Change Biol. 9, 895–910 (2003).

    Google Scholar 

  • 207.

    Malhado, A. C. M. et al. Drip-tips are associated with intensity of precipitation in the Amazon rain forest. Biotropica 44, 728–737 (2012).

    Google Scholar 

  • 208.

    Malhado, A. C. M. et al. Spatial trends in leaf size of Amazonian rainforest trees. Biogeosciences 6, 1563–1576 (2009).

    Google Scholar 

  • 209.

    Malhado, A. C. M. et al. Spatial distribution and functional significance of leaf lamina shape in Amazonian forest trees. Biogeosciences 6, 1577–1590 (2009).

    Google Scholar 

  • 210.

    Malhado, A. C. M. et al. Are compound leaves an adaptation to seasonal drought or to rapid growth? Evidence from the Amazon rain forest. Glob. Ecol. Biogeogr. 19, 852–862 (2010).

    Google Scholar 

  • 211.

    Manning, P., Houston, K. & Evans, T. Shifts in seed size across experimental nitrogen enrichment and plant density gradients. Basic Appl. Ecol. 10, 300–308 (2009).

    CAS 

    Google Scholar 

  • 212.

    Markesteijn, L., Poorter, L., Paz, H., Sack, L. & Bongers, F. Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Plant Cell Environ. 34, 137–148 (2011).

    Google Scholar 

  • 213.

    Martin, R. E., Asner, G. P. & Sack, L. Genetic variation in leaf pigment, optical and photosynthetic function among diverse phenotypes of Metrosideros polymorpha grown in a common garden. Oecologia 151, 387–400 (2007).

    Google Scholar 

  • 214.

    McDonald, P. G., Fonseca, C. R., Overton, J. M. & Westoby, M. Leaf-size divergence along rainfall and soil-nutrient gradients: is the method of size reduction common among clades? Funct. Ecol. 17, 50–57 (2003).

    Google Scholar 

  • 215.

    McKenna, M. F. & Shipley, B. Interacting determinants of interspecific relative growth: empirical patterns and a theoretical explanation. Écoscience 6, 286–296 (1999).

    Google Scholar 

  • 216.

    Medlyn, B. E. et al. Effects of elevated [CO2] on photosynthesis in European forest species: a meta-analysis of model parameters. Plant Cell Environ. 22, 1475–1495 (1999).

    CAS 

    Google Scholar 

  • 217.

    Medlyn, B. E. et al. Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytol. 149, 247–264 (2001).

    CAS 

    Google Scholar 

  • 218.

    Meir, P. et al. Acclimation of photosynthetic capacity to irradiance in tree canopies in relation to leaf nitrogen concentration and leaf mass per unit area. Plant Cell Environ. 25, 343–357 (2002).

    Google Scholar 

  • 219.

    Meir, P., Levy, P. E., Grace, J. & Jarvis, P. G. Photosynthetic parameters from two contrasting woody vegetation types in West Africa. Plant Ecol. 192, 277–287 (2007).

    Google Scholar 

  • 220.

    Mencuccini, M. The ecological significance of long-distance water transport: short-term regulation, long-term acclimation and the hydraulic costs of stature across plant life forms. Plant Cell Environ. 26, 163–182 (2003).

    Google Scholar 

  • 221.

    Meng, T.-T. et al. Responses of leaf traits to climatic gradients: Adaptive variation versus compositional shifts. Biogeosciences 12, 5339–5352 (2015).

    Google Scholar 

  • 222.

    Messier, J., McGill, B. J., Enquist, B. J. & Lechowicz, M. J. Trait variation and integration across scales: is the leaf economic spectrum present at local scales? Ecography 40, 685–697 (2016).

    Google Scholar 

  • 223.

    Messier, J., McGill, B. J. & Lechowicz, M. J. How do traits vary across ecological scales? A case for trait-based ecology. Ecol. Lett. 13, 838–848 (2010).

    Google Scholar 

  • 224.

    Meziane, D. & Shipley, B. Interacting components of interspecific relative growth rate: constancy and change under differing conditions of light and nutrient supply. Funct. Ecol. 13, 611–622 (1999).

    Google Scholar 

  • 225.

    Milla, R. & Reich, P. B. Multi-trait interactions, not phylogeny, fine-tune leaf size reduction with increasing altitude. Ann. Bot. 107, 455–465 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 226.

    Minden, V., Andratschke, S., Spalke, J., Timmermann, H. & Kleyer, M. Plant trait–environment relationships in salt marshes: deviations from predictions by ecological concepts. Perspect. Plant Ecol. Evol. Syst. 14, 183–192 (2012).

    Google Scholar 

  • 227.

    Minden, V. & Kleyer, M. Testing the effect–response framework: key response and effect traits determining above-ground biomass of salt marshes. J. Veg. Sci. 22, 387–401 (2011).

    Google Scholar 

  • 228.

    Mischkolz, J. M. Selecting and Evaluating Native Forage Mixtures for the Mixed Grass Prairie. Msc thesis (University of Saskatchewan, 2013).

  • 229.

    Moretti, M. & Legg, C. Combining plant and animal traits to assess community functional responses to disturbance. Ecography 32, 299–309 (2009).

    Google Scholar 

  • 230.

    Müller, S. C., Overbeck, G. E., Pfadenhauer, J. & Pillar, V. D. Plant functional types of woody species related to fire disturbance in forest–grassland ecotones. Plant Ecol. 189, 1–14 (2006).

    Google Scholar 

  • 231.

    Nakahashi, C. D., Frole, K. & Sack, L. Bacterial leaf nodule symbiosis in Ardisia (Myrsinaceae): does it contribute to seedling growth capacity? Plant Biol. 7, 495–500 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 232.

    Niinemets, U. Components of leaf dry mass per area—thickness and density—alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytol. 144, 35–47 (1999).

    Google Scholar 

  • 233.

    Niinemets, U. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology 82, 453–469 (2001).

    Google Scholar 

  • 234.

    Ogaya, R. & Peñuelas, J. Comparative field study of Quercus ilex and Phillyrea latifolia: photosynthetic response to experimental drought conditions. Environ. Exp. Bot. 50, 137–148 (2003).

    Google Scholar 

  • 235.

    Ogaya, R. & Penuelas, J. Contrasting foliar responses to drought in Quercus ilex and Phillyrea latifolia. Biol. Plant. 50, 373–382 (2006).

    Google Scholar 

  • 236.

    Ogaya, R. & Peñuelas, J. Tree growth, mortality, and above-ground biomass accumulation in a holm oak forest under a five-year experimental field drought. Plant Ecol. 189, 291–299 (2006).

    Google Scholar 

  • 237.

    Ogaya, R. & Peñuelas, J. Changes in leaf δ13C and δ15N for three Mediterranean tree species in relation to soil water availability. Acta Oecol. 34, 331–338 (2008).

    Google Scholar 

  • 238.

    Onoda, Y. et al. Global patterns of leaf mechanical properties. Ecol. Lett. 14, 301–312 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 239.

    Ordoñez, J. C. et al. Leaf habit and woodiness regulate different leaf economy traits at a given nutrient supply. Ecology 91, 3218–3228 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 240.

    Otto, B. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 177–196 (Bundesamt für Naturschutz, 2002).

  • 241.

    Overbeck, G. E., Müller, S. C., Pillar, V. D. & Pfadenhauer, J. Fine-scale post-fire dynamics in southern Brazilian subtropical grassland. J. Veg. Sci. 16, 655–664 (2005).

    Google Scholar 

  • 242.

    Overbeck, G. E. & Pfadenhauer, J. Adaptive strategies in burned subtropical grassland in southern Brazil. Flora 202, 27–49 (2007).

    Google Scholar 

  • 243.

    Baas, P., Smets, E. & Jansen, S. Vegetative anatomy and effinities of Dirachma socotrana (Dirachmaceae). Syst. Bot. 26, 231–241 (2001).

    Google Scholar 

  • 244.

    Pakeman, R. J. et al. Impact of abundance weighting on the response of seed traits to climate and land use. J. Ecol. 96, 355–366 (2008).

    Google Scholar 

  • 245.

    Pakeman, R. J., Lep, J., Kleyer, M., Lavorel, S. & Garnie, E. Relative climatic, edaphic and management controls of plant functional trait signatures. J. Veg. Sci. 20, 148–159 (2009).

    Google Scholar 

  • 246.

    Papanastasis, M. et al. Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe. Ecology 90, 598–611 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 247.

    Patiño, S. et al. Branch xylem density variations across the Amazon basin. Biogeosciences 6, 545–568 (2009).

    Google Scholar 

  • 248.

    Paula, S. et al. Fire-related traits for plant species of the Mediterranean basin. Ecology 90, 1420–1420 (2009).

    Google Scholar 

  • 249.

    Paula, S. & Pausas, J. G. Burning seeds: germinative response to heat treatments in relation to resprouting ability. J. Ecol. 96, 543–552 (2008).

    Google Scholar 

  • 250.

    Peco, B., de Pablos, I., Traba, J. & Levassor, C. The effect of grazing abandonment on species composition and functional traits: the case of Dehesa grasslands. Basic Appl. Ecol. 6, 175–183 (2005).

    Google Scholar 

  • 251.

    Peñuelas, J. et al. Faster returns on ‘leaf economics’ and different biogeochemical niche in invasive compared with native plant species. Glob. Change Biol. 16, 2171–2185 (2009).

    Google Scholar 

  • 252.

    Peñuelas, J. et al. Higher allocation to low cost chemical defenses in invasive species of Hawaii. J. Chem. Ecol. 36, 1255–1270 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 253.

    Petter, G. et al. Functional leaf traits of vascular epiphytes: vertical trends within the forest, intra- and interspecific trait variability, and taxonomic signals. Funct. Ecol. 30, 188–198 (2015).

    Google Scholar 

  • 254.

    Pierce, S., Brusa, G., Sartori, M. & Cerabolini, B. E. L. Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies. Ann. Bot. 109, 1047–1053 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 255.

    Pierce, S., Brusa, G., Vagge, I. & Cerabolini, B. E. L. Allocating CSR plant functional types: the use of leaf economics and size traits to classify woody and herbaceous vascular plants. Funct. Ecol. 27, 1002–1010 (2013).

    Google Scholar 

  • 256.

    Pierce, S., Ceriani, R. M., De Andreis, R., Luzzaro, A. & Cerabolini, B. The leaf economics spectrum of Poaceae reflects variation in survival strategies. Plant Biosyst. 141, 337–343 (2007).

    Google Scholar 

  • 257.

    Pierce, S., Luzzaro, A., Caccianiga, M., Ceriani, R. M. & Cerabolini, B. Disturbance is the principal α-scale filter determining niche differentiation, coexistence and biodiversity in an alpine community. J. Ecol. 95, 698–706 (2007).

    Google Scholar 

  • 258.

    Pillar, V. D. & Sosinski, E. E. An improved method for searching plant functional types by numerical analysis. J. Veg. Sci. 14, 323–332 (2003).

    Google Scholar 

  • 259.

    Powers, J. S. & Tiffin, P. Plant functional type classifications in tropical dry forests in Costa Rica: leaf habit versus taxonomic approaches. Funct. Ecol. 24, 927–936 (2010).

    Google Scholar 

  • 260.

    Prentice, I. C. et al. Evidence of a universal scaling relationship for leaf CO2 drawdown along an aridity gradient. New Phytol. 190, 169–180 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 261.

    Preston, K. A., Cornwell, W. K. & DeNoyer, J. L. Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms. New Phytol. 170, 807–818 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 262.

    Price, C. A. & Enquist, B. J. Scaling mass and morphology in leaves: an extention of the WBE model. Ecology 88, 1132–1141 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 263.

    Price, C. A., Enquist, B. J. & Savage, V. M. A general model for allometric covariation in botanical form and function. Proc. Natl Acad. Sci. USA 104, 13204–13209 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 264.

    Pyankov, V. I., Kondratchuk, A. V. & Shipley, B. Leaf structure and specific leaf mass: the alpine desert plants of the Eastern Pamirs, Tadjikistan. New Phytol. 143, 131–142 (1999).

    Google Scholar 

  • 265.

    Quero, J. L. et al. Relating leaf photosynthetic rate to whole-plant growth: drought and shade effects on seedlings of four Quercus species. Funct. Plant Biol. 35, 725 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 266.

    Quested, H. M. et al. Decomposition of sub-arctic plants with differing nitrogen economies: a functional role for hemiparasites. Ecology 84, 3209–3221 (2003).

    Google Scholar 

  • 267.

    Reich, P. B., Oleksyn, J. & Wright, I. J. Leaf phosphorus influences the photosynthesis–nitrogen relation: a cross-biome analysis of 314 species. Oecologia 160, 207–212 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 268.

    Reich, P. B. et al. Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecol. Lett. 11, 793–801 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 269.

    Auger, S. & Shipley, B. Inter-specific and intra-specific trait variation along short environmental gradients in an old-growth temperate forest. J. Veg. Sci. 24, 419–428 (2012).

    Google Scholar 

  • 270.

    Sack, L., Cowan, P. D., Jaikumar, N. & Holbrook, N. M. The ’hydrology’ of leaves: co-ordination of structure and function in temperate woody species. Plant Cell Environ. 26, 1343–1356 (2003).

    Google Scholar 

  • 271.

    Sack, L. & Frole, K. Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. Ecology 87, 483–491 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 272.

    Sack, L., Melcher, P. J., Liu, W. H., Middleton, E. & Pardee, T. How strong is intracanopy leaf plasticity in temperate deciduous trees? Am. J. Bot. 93, 829–839 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 273.

    Sack, L., Tyree, M. T. & Holbrook, N. M. Leaf hydraulic architecture correlates with regeneration irradiance in tropical rainforest trees. New Phytol. 167, 403–413 (2005).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 274.

    Sanda V., Bita-Nicolae, C. D. & Barabas, N. The Flora of Spontaneous and Cultivated Cormophytes from Romania (in Romanian) (Editura Ion Bacău, 2003).

  • 275.

    Sandel, B., Corbin, J. D. & Krupa, M. Using plant functional traits to guide restoration: a case study in California coastal grassland. Ecosphere 2, art23 (2011).

    Google Scholar 

  • 276.

    Sardans, J., Penuelas, J. & Ogaya, R. Drought-induced changes in C and N stoichiometry in a Quercus ilex Mediterranean forest. For. Sci. 54, 513–522 (2008).

    Google Scholar 

  • 277.

    Sardans, J., Peñuelas, J., Prieto, P. & Estiarte, M. Changes in Ca, Fe, Mg, Mo, Na, and S content in a Mediterranean shrubland under warming and drought. J. Geophys. Res. https://doi.org/10.1029/2008jg000795 (2008).

  • 278.

    Scherer-Lorenzen, M., Schulze, E., Don, A., Schumacher, J. & Weller, E. Exploring the functional significance of forest diversity: a new long-term experiment with temperate tree species (biotree). Perspect. Plant Ecol. Evol. Syst. 9, 53–70 (2007).

    Google Scholar 

  • 279.

    Schurr, F. M. et al. Colonization and persistence ability explain the extent to which plant species fill their potential range. Global Ecol. Biogeogr. 16, 449–459 (2007).

    Google Scholar 

  • 280.

    Schwallier, R. et al. Evolution of wood anatomical characters in Nepenthes and close relatives of Caryophyllales. Ann. Bot. 119, 1179–1193 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 281.

    Schweingruber, F. H., & Poschlod, P. Growth rings in herbs and shrubs: life span, age determination and stem anatomy. Forest Snow Landsc. Res. 79, 195–415 (2005).

    Google Scholar 

  • 282.

    Scoffoni, C., Pou, A., Aasamaa, K. & Sack, L. The rapid light response of leaf hydraulic conductance: new evidence from two experimental methods. Plant Cell Environ. 31, 1803–1812 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 283.

    Shiodera, S., Rahajoe, J. S. & Kohyama, T. Variation in longevity and traits of leaves among co-occurring understorey plants in a tropical montane forest. J. Trop. Ecol. 24, 121–133 (2008).

    Google Scholar 

  • 284.

    Shipley, B. The use of above-ground maximum relative growth rate as an accurate predictor of whole-plant maximum relative growth rate. Funct. Ecol. 3, 771 (1989).

    Google Scholar 

  • 285.

    Shipley, B. Trade-offs between net assimilation rate and specific leaf area in determining relative growth rate: relationship with daily irradiance. Funct. Ecol. 16, 682–689 (2002).

    Google Scholar 

  • 286.

    Shipley, B. & Lechowicz, M. J. The functional co-ordination of leaf morphology, nitrogen concentration, and gas exchange in 40 wetland species. Écoscience 7, 183–194 (2000).

    Google Scholar 

  • 287.

    Shipley, B. & Parent, M. Germination responses of 64 wetland species in relation to seed size, minimum time to reproduction and seedling relative growth rate. Funct. Ecol. 5, 111 (1991).

    Google Scholar 

  • 288.

    Shipley, B. & Vu, T.-T. Dry matter content as a measure of dry matter concentration in plants and their parts. New Phytol. 153, 359–364 (2002).

    Google Scholar 

  • 289.

    Spasojevic, M. J. & Suding, K. N. Inferring community assembly mechanisms from functional diversity patterns: the importance of multiple assembly processes. J. Ecol. 100, 652–661 (2012).

    Google Scholar 

  • 290.

    Swaine, E. K. Ecological and Evolutionary Drivers of Plant Community Assembly in a Bornean Rain Forest. PhD Thesis (University of Aberdeen, 2007).

  • 291.

    Trefflich, A., Klotz, S. & Kuhn, I. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 127–131 (Bundesamt für Naturschutz, 2002).

  • 292.

    Tucker, S. S., Craine, J. M. & Nippert, J. B. Physiological drought tolerance and the structuring of tallgrass prairie assemblages. Ecosphere 2, art48 (2011).

    Google Scholar 

  • 293.

    Ciocarlan, V. The Illustrated Flora of Romania. Pteridophyta et Spermatopyta (in Romanian) (Editura Ceres, 2009).

  • 294.

    van Bodegom, P. M., Sorrell, B. K., Oosthoek, A., Bakker, C. & Aerts, R. Separating the effects of partial submergence and soil oxygen demand on plant physiology. Ecology 89, 193–204 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 295.

    Vergutz, L. et al. A Global Database of Carbon and Nutrient Concentrations of Green and Senesced Leaves (ORNL DAAC, 2012); https://doi.org/10.3334/ORNLDAAC/1106

  • 296.

    Vergutz, L., Manzoni, S., Porporato, A., Novais, R. F. & Jackson, R. B. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol. Monogr. 82, 205–220 (2012).

    Google Scholar 

  • 297.

    Vile, D. Significations Fonctionnelle et Ecologique des Traits des Especes Vegetales: Exemple dans une Succession Post-cultural Méditerranéenne et Generalisations. PhD thesis (University of Montpellier II, 2005).

  • 298.

    Von Holle, B. & Simberloff, D. Testing Fox’s assembly rule: does plant invasion depend on recipient community structure? Oikos 105, 551–563 (2004).

    Google Scholar 

  • 299.

    Williams, M., Shimabukuro, Y. E. & Rastetter, E.B. LBA-ECO CD-09 Soil and Vegetation Characteristics, Tapajos National Forest, Brazil (ORNL DAAC, 2012); https://doi.org/10.3334/ORNLDAAC/1104

  • 300.

    Willis, C. G. et al. Phylogenetic community structure in Minnesota oak savanna is influenced by spatial extent and environmental variation. Ecography 33, 565–577 (2010).

    Google Scholar 

  • 301.

    Wilson, K. B., Baldocchi, D. D. & Hanson, P. J. Spatial and seasonal variability of photosynthetic parameters and their relationship to leaf nitrogen in a deciduous forest. Tree Physiol. 20, 565–578 (2000).

    Google Scholar 

  • 302.

    Wirth, C. & Lichstein, J. W. in Old-Growth Forests: Function, Fate and Value (eds Wirth, C. et al.) 81–113 (Springer, 2009).

  • 303.

    Wohlfahrt, G. et al. Inter-specific variation of the biochemical limitation to photosynthesis and related leaf traits of 30 species from mountain grassland ecosystems under different land use. Plant Cell Environ. 22, 1281–1296 (1999).

    Google Scholar 

  • 304.

    Wright, I. J. et al. Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests. Ann. Bot. 99, 1003–1015 (2007).

    Google Scholar 

  • 305.

    Wright, J. P. & Sutton-Grier, A. Does the leaf economic spectrum hold within local species pools across varying environmental conditions? Funct. Ecol. 26, 1390–1398 (2012).

    Google Scholar 

  • 306.

    Wright, S. J. et al. Functional traits and the growth–mortality trade-off in tropical trees. Ecology 91, 3664–3674 (2010).

    Google Scholar 

  • 307.

    Xu, L. & Baldocchi, D. D. Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Tree Physiol. 23, 865–877 (2003).

    Google Scholar 

  • 308.

    Yguel, B. et al. Phytophagy on phylogenetically isolated trees: why hosts should escape their relatives. Ecol. Lett. 14, 1117–1124 (2011).

    Google Scholar 

  • 309.

    Zanne, A. E. et al. Global Wood Density Database (EOL, 2009); https://opendata.eol.org/dataset/dde86ffb-7741-44a1-acf2-808b3dd6bc97/resource/d1e2b018-a7ce-444b-ac8a-ac43b2355cc9/download/archive

  • 310.

    Zanne, A. E. et al. Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity. Am. J. Bot. 97, 207–215 (2010).

    Google Scholar 

  • 311.

    Kattge, V. et al. TRY – a global database of plant traits. Global Change Biol 9, 2905–2935 (2011).

    Google Scholar 

  • 312.

    Shan, H. et al. Gap Filling in the Plant Kingdom—Trait Prediction Using Hierarchical Probabilistic Matrix Factorization (ICML, 2012); http://arxiv.org/abs/1206.6439

  • 313.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).

  • 314.

    Salakhutdinov, R. & Mnih, A. Probabilistic matrix factorization. In Proc. 20th International Conference on Neural Information Processing Systems (eds Platt, J. C. et al.) 1257–1264 (Curran Associates Inc., 2007).

  • 315.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).

  • 316.

    Lê, S., Josse, J. & Husson, F. FactoMineR: a package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).

    Google Scholar 

  • 317.

    Dray, S. & Dufour, A.-B. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).

    Google Scholar 

  • 318.

    Bougeard, S. & Dray, S. Supervised multiblock analysis in R with the ade4 package. J. Stat. Softw. 86, 1–17 (2018).

    Google Scholar 

  • 319.

    Chessel, D., Dufour, A.-B. & Thioulouse, J. The ade4 package—I: one-table methods. R News 4, 5–10 (2004).

    Google Scholar 

  • 320.

    Dray, S., Dufour, A.-B. & Chessel, D. The ade4 package—II: two-table and K-table methods. R News 7, 47–52 (2007).

    Google Scholar 

  • 321.

    Thioulouse, J. et al. Multivariate Analysis of Ecological Data with ade4 (Springer, 2018).

  • 322.

    Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 323.

    Simon, N., Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for Cox’s proportional hazards model via coordinate descent. J. Stat. Softw. 39, 1–13 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 324.

    Batjes, N. H., Ribeiro, E. & van Oostrum, A. Standardised soil profile data to support global mapping and modelling (WoSIS snapshot 2019). Earth Syst. Sci. Data 12, 299–320 (2020).

    Google Scholar 

  • 325.

    Hengl, T. et al. SoilGrids1km—global soil information based on automated mapping. PLoS ONE 9, e105992 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 326.

    Arrouays, D. et al. Soil legacy data rescue via GlobalSoilMap and other international and national initiatives. GeoResJ 14, 1–19 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 327.

    Richard, P. & Pielou, E. C. Biogeography (John Wiley & Sons, 1979).

  • 328.

    Udvardy, M. D. F. A Classification of the Biogeographical Provinces of the World (International Union for Conservation of Nature and Natural Resources, 1975).

  • 329.

    Dinerstein, E. et al. A Conservation Assessment of the Terrestrial Ecoregions of Latin America and the Caribbean (The World Bank, 1995).

  • 330.

    Ricketts, T. H. et al. Terrestrial Ecoregions of North America: A Conservation Assessment (Island Press, 1999).

  • 331.

    Dasmann, R. F. A System for Defining and Classifying Natural Regions for Purposes of Conservation: A Progress Report (IUCN, 1973).


  • Source: Ecology - nature.com

    MIT in the media: 2021 in review

    Allergenicity to worldwide invasive grass Cortaderia selloana as environmental risk to public health