in

Climatic limit for agriculture in Brazil

  • 1.

    Brazil. USDA Foreign Agricultural Service https://www.fas.usda.gov/regions/brazil (2019).

  • 2.

    Planilha do PIB do Agronegócio Brasileiro de 1996 a 2018 (Centro de Estudos Avançados em Economia Aplicada, 2018); https://www.cepea.esalq.usp.br/br/pib-do-agronegocio-brasileiro.aspx

  • 3.

    Boletim da Safra de Grãos. Companhia Nacional de Abastecimento https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos (2020).

  • 4.

    Projeções do Agronegócio: Brasil 2017/18 a 2027/28 Projeções de Longo Prazo (Ministério da Agricultura, Pecuária e Abastecimento, 2018).

  • 5.

    Atlas Irrigação: Uso da Água na Agricultura Irrigada (Agência Nacional de Águas, 2017).

  • 6.

    Costa, M. H. et al. Climate risks to Amazon agriculture suggest a rationale to conserve local ecosystems. Front. Ecol. Environ. 17, 584–590 (2019).

    Google Scholar 

  • 7.

    Fu, R. et al. Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection. Proc. Natl Acad. Sci. USA 110, 18110–18115 (2013).

    CAS 

    Google Scholar 

  • 8.

    Spera, S. A., Galford, G. L., Coe, M. T., Macedo, M. N. & Mustard, J. F. Land-use change affects water recycling in Brazil’s last agricultural frontier. Glob. Change Biol. 22, 3405–3413 (2016).

    Google Scholar 

  • 9.

    Abrahão, G. M. & Costa, M. H. Evolution of rain and photoperiod limitations on the soybean growing season in Brazil: the rise (and possible fall) of double-cropping systems. Agric. Meteorol. 256–257, 32–45 (2018).

    Google Scholar 

  • 10.

    Silvério, D. V. et al. Agricultural expansion dominates climate changes in southeastern Amazonia: the overlooked non-GHG forcing. Environ. Res. Lett. 10, 104015 (2015).

    Google Scholar 

  • 11.

    Barkhordarian, A., Saatchi, S. S., Behrangi, A., Loikith, P. C. & Mechoso, C. R. A recent systematic increase in vapor pressure deficit over tropical South America. Sci. Rep. 9, 15331 (2019).

    Google Scholar 

  • 12.

    Barkhordarian, A., von Storch, H., Zorita, E., Loikith, P. C. & Mechoso, C. R. Observed warming over northern South America has an anthropogenic origin. Clim. Dyn. 51, 1901–1914 (2018).

    Google Scholar 

  • 13.

    Leite‐Filho, A. T., Costa, M. H. & Fu, R. The southern Amazon rainy season: the role of deforestation and its interactions with large‐scale mechanisms. Int. J. Climatol. 40, 2328–2341 (2020).

    Google Scholar 

  • 14.

    FAOSTAT (Food and Agriculture Organization of the United Nations, 2020); http://www.fao.org/faostat/en/#data/QC

  • 15.

    Presidência da República Secretaria-Geral Subchefia para Assuntos Jurídicos (Ministério da Agricultura, 2015).

  • 16.

    Rashid, M. A. et al. Impact of heat-wave at high and low VPD on photosynthetic components of wheat and their recovery. Environ. Exp. Bot. 147, 138–146 (2018).

    CAS 

    Google Scholar 

  • 17.

    Lobell, D. B. et al. Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest. Science 344, 516–519 (2014).

    CAS 

    Google Scholar 

  • 18.

    Fletcher, A. L., Sinclair, T. R. & Allen, L. H. Transpiration responses to vapor pressure deficit in well watered ‘slow-wilting’ and commercial soybean. Environ. Exp. Bot. 61, 145–151 (2007).

    CAS 

    Google Scholar 

  • 19.

    Bunce, J. A. Comparative responses of leaf conductance to humidity in single attached leaves. J. Exp. Bot. 32, 629–634 (1981).

    Google Scholar 

  • 20.

    Kiniry, J. et al. Radiation-use efficiency response to vapor pressure deficit for maize and sorghum. Field Crops Res. 56, 265–270 (1998).

    Google Scholar 

  • 21.

    Spera, S. A. et al. Recent cropping frequency, expansion, and abandonment in Mato Grosso, Brazil had selective land characteristics. Environ. Res. Lett. 9, 064010 (2014).

    Google Scholar 

  • 22.

    Dias, L. C. P., Pimenta, F. M., Santos, A. B., Costa, M. H. & Ladle, R. J. Patterns of land use, extensification, and intensification of Brazilian agriculture. Glob. Change Biol. 22, 2887–2903 (2016).

    Google Scholar 

  • 23.

    Cohn, A. S., Vanwey, L. K., Spera, S. A. & Mustard, J. F. Cropping frequency and area response to climate variability can exceed yield response. Nat. Clim. Change 6, 601–604 (2016).

    Google Scholar 

  • 24.

    Morton, D. C. et al. Reevaluating suitability estimates based on dynamics of cropland expansion in the Brazilian Amazon. Glob. Environ. Change 37, 92–101 (2016).

    Google Scholar 

  • 25.

    Duursma, R. A. et al. The peaked response of transpiration rate to vapour pressure deficit in field conditions can be explained by the temperature optimum of photosynthesis. Agric. Meteorol. 189–190, 2–10 (2014).

    Google Scholar 

  • 26.

    Spera, S. A., Winter, J. M. & Partridge, T. F. Brazilian maize yields negatively affected by climate after land clearing. Nat. Sustain. 3, 845–852 (2020).

    Google Scholar 

  • 27.

    Cirino, P. H., Féres, J. G., Braga, M. J. & Reis, E. Assessing the impacts of ENSO-related weather effects on the Brazilian agriculture. Proc. Econ. Financ. 24, 146–155 (2015).

    Google Scholar 

  • 28.

    Pereira, P. A. A., Martha, G. B., Santana, C. A. & Alves, E. The development of Brazilian agriculture: future technological challenges and opportunities. Agric. Food Secur. 1, 4 (2012).

    Google Scholar 

  • 29.

    Marengo, J. A. & Bernasconi, M. Regional differences in aridity/drought conditions over Northeast Brazil: present state and future projections. Climatic Change 129, 103–115 (2015).

    Google Scholar 

  • 30.

    Naylor, R. L. Energy and resource constraints on intensive agricultural production. Annu. Rev. Energy Environ. 21, 99–123 (1996).

    Google Scholar 

  • 31.

    Getirana, A. Extreme water deficit in Brazil detected from space. J. Hydrometeorol. 17, 591–599 (2016).

    Google Scholar 

  • 32.

    Lathuillière, M. J., Coe, M. T. & Johnson, M. S. A review of green- and blue-water resources and their trade-offs for future agricultural production in the Amazon Basin: what could irrigated agriculture mean for Amazonia? Hydrol. Earth Syst. Sci. 20, 2179–2194 (2016).

    Google Scholar 

  • 33.

    Dobrovolski, R. & Rattis, L. Water collapse in Brazil: the danger of relying on what you neglect. Nat. Conserv. 13, 80–83 (2015).

    Google Scholar 

  • 34.

    da Silva, A. L. et al. Water appropriation on the agricultural frontier in western Bahia and its contribution to streamflow reduction: revisiting the debate in the Brazilian Cerrado. Water 13, 1054 (2021).

    Google Scholar 

  • 35.

    Pousa, R. et al. Climate change and intense irrigation growth in western Bahia, Brazil: the urgent need for hydroclimatic monitoring. Water 11, 933 (2019).

    Google Scholar 

  • 36.

    Ort, D. R. & Long, S. P. Limits on yields in the corn belt. Science 344, 484–485 (2014).

    CAS 

    Google Scholar 

  • 37.

    de Bossoreille de Ribou, S., Douam, F., Hamant, O., Frohlich, M. W. & Negrutiu, I. Plant science and agricultural productivity: why are we hitting the yield ceiling? Plant Sci. 210, 159–176 (2013).

    Google Scholar 

  • 38.

    Long, S. P. & Ort, D. R. More than taking the heat: crops and global change. Curr. Opin. Plant Biol. 13, 240–247 (2010).

    Google Scholar 

  • 39.

    Pommer, C. V. & Barbosa, W. The impact of breeding on fruit production in warm climates of Brazil. Rev. Bras. Frutic. 31, 612–634 (2009).

    Google Scholar 

  • 40.

    Lenka, N. K. et al. Carbon dioxide and temperature elevation effects on crop evapotranspiration and water use efficiency in soybean as affected by different nitrogen levels. Agric. Water Manag. 230, 105936 (2020).

    Google Scholar 

  • 41.

    Soares, W. R., Marengo, J. A. & Nobre, C. A. Assessment of warming projections and probabilities for Brazil in Climate Change Risks in Brazil (eds Nobre, C. et al.) 7–30 (Springer, 2019); https://doi.org/10.1007/978-3-319-92881-4_2

  • 42.

    Schwalm, C. R., Glendon, S. & Duffy, P. B. RCP8.5 tracks cumulative CO2 emissions. Proc. Natl Acad. Sci. USA 117, 19656–19657 (2020).

    CAS 

    Google Scholar 

  • 43.

    Schwalm, C. R., Glendon, S. & Duffy, P. B. Reply to Hausfather and Peters: RCP8.5 is neither problematic nor misleading. Proc. Natl Acad. Sci. USA 117, 27793–27794 (2020).

    CAS 

    Google Scholar 

  • 44.

    Sistematização das Informações sobre Recursos Naturais—Mapa de Biomas do Brasil (Instituto Brasileiro de Geografia e Estatística, 2006); https://www.ibge.gov.br/geociencias/cartas-e-mapas/informacoes-ambientais/15842-biomas.html?=&t=downloads

  • 45.

    Base Cartográfica Continua Do Brasil, Escala 1:250.000—BC250 (Instituto Brasileiro de Geografia e Estatística, 2019); https://geoftp.ibge.gov.br/cartas_e_mapas/bases_cartograficas_continuas/bc250/versao2019/informacoes_tecnicas/Documentacao_bc250_v2019.pdf

  • 46.

    Campos, J., de, O. & Chaves, H. M. L. Tendências e variabilidades nas séries históricas de precipitação mensal e anual no bioma Cerrado no período 1977–2010. Rev. Bras. Meteorol. 35, 157–169 (2020).

    Google Scholar 

  • 47.

    Debortoli, N. S. et al. Rainfall patterns in the southern Amazon: a chronological perspective (1971–2010). Climatic Change 132, 251–264 (2015).

    Google Scholar 

  • 48.

    Oliveira, P. T. S. et al. Trends in water balance components across the Brazilian Cerrado. Water Resour. Res. 50, 7100–7114 (2014).

    Google Scholar 

  • 49.

    Panisset, J. S. et al. Contrasting patterns of the extreme drought episodes of 2005, 2010 and 2015 in the Amazon Basin. Int. J. Climatol. 38, 1096–1104 (2018).

    Google Scholar 

  • 50.

    Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 4, 111–116 (2014).

    Google Scholar 

  • 51.

    Jiménez-Muñoz, J. C. et al. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Sci. Rep. 6, 33130 (2016).

    Google Scholar 

  • 52.

    Marengo, J. A. & Espinoza, J. C. Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts. Int. J. Climatol. 36, 1033–1050 (2016).

    Google Scholar 

  • 53.

    Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 150066 (2015).

    Google Scholar 

  • 54.

    Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).

    Google Scholar 

  • 55.

    Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).

    Google Scholar 

  • 56.

    Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).

    Google Scholar 

  • 57.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

  • 58.

    Challinor, A. J. & Wheeler, T. R. Crop yield reduction in the tropics under climate change: processes and uncertainties. Agric. Meteorol. 148, 343–356 (2008).

    Google Scholar 

  • 59.

    Bates, D. et al. lme4. R package version (2012).

  • 60.

    Barton, K. MuMIn: Multi-model inference. R package version 1.0.0 (2009).

  • 61.

    Arvor, D., Dubreuil, V., Ronchail, J., Simões, M. & Funatsu, B. M. Spatial patterns of rainfall regimes related to levels of double cropping agriculture systems in Mato Grosso (Brazil). Int. J. Climatol. 34, 2622–2633 (2014).

    Google Scholar 

  • 62.

    Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).

    Google Scholar 

  • 63.

    Brill, F., Passuni Pineda, S., Espichán Cuya, B. & Kreibich, H. A data-mining approach towards damage modelling for El Niño events in Peru. Geomat. Nat. Hazards Risk 11, 1966–1990 (2020).

    Google Scholar 

  • 64.

    Rattis, L. ludmilarattis/effect-of-climate-on–agriculture: Rattis_etal_NCC_2021. Zenodo https://zenodo.org/badge/latestdoi/271879616 (2021).

  • 65.

    Malhi, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. USA 106, 20610–20615 (2009).

    CAS 

    Google Scholar 

  • 66.

    Castanho, A. D. A. et al. Potential shifts in the aboveground biomass and physiognomy of a seasonally dry tropical forest in a changing climate. Environ. Res. Lett. 15, 034053 (2020).

    Google Scholar 

  • 67.

    Allen, R. G. et al. The ASCE Standardized Reference Evapotranspiration Equation (American Society of Civil Engineers, 2005).

  • 68.

    IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer, L. A.) (IPCC, 2014).

  • 69.

    Koutroulis, A. G., Grillakis, M. G., Tsanis, I. K. & Papadimitriou, L. Evaluation of precipitation and temperature simulation performance of the CMIP3 and CMIP5 historical experiments. Clim. Dyn. 47, 1881–1898 (2016).

    Google Scholar 

  • 70.

    Análise Territorial para o Desenvolvimento da Agricultura Irrigada no Brasil (Ministério da Integração Nacional, 2014).


  • Source: Ecology - nature.com

    Radio-frequency wave scattering improves fusion simulations

    Horizontal gene transfer and adaptive evolution in bacteria