in

Closely related gull species show contrasting foraging strategies in an urban environment

  • 1.

    Ditchkoff, S. S., Saalfeld, S. T. & Gibson, C. J. Animal behavior in urban ecosystems: Modifications due to human-induced stress. Urban Ecosyst. 9, 5–12 (2006).

    Google Scholar 

  • 2.

    Shochat, E., Warren, P. S., Faeth, S. H., McIntyre, N. E. & Hope, D. From patterns to emerging processes in mechanistic urban ecology. Trends Ecol. Evol. 21, 186–191 (2006).

    PubMed 

    Google Scholar 

  • 3.

    Witherington, B. E. Behavioral responses of nesting sea turtles to artificial lighting. Herpetologica 48, 31–39 (1992).

    Google Scholar 

  • 4.

    Markovchick-Nicholls, L. et al. Relationships between human disturbance and wildlife land use in urban habitat fragments. Conserv. Biol. 22, 99–109 (2008).

    PubMed 

    Google Scholar 

  • 5.

    Dunagan, S. P., Karels, T. J., Moriarty, J. G., Brown, J. L. & Riley, S. P. D. Bobcat and rabbit habitat use in an urban landscape. J. Mammal. 100, 401–409 (2019).

    Google Scholar 

  • 6.

    Prange, S., Gehrt, S. D. & Wiggers, E. P. Influences of anthropogenic resources on raccoon (Procyon lotor) movements and spatial distribution. J. Mammal. 85, 483–490 (2004).

    Google Scholar 

  • 7.

    Cooper, D. S., Yeh, P. J. & Blumstein, D. T. Tolerance and avoidance of urban cover in a southern California suburban raptor community over five decades. Urban Ecosyst. https://doi.org/10.1007/s11252-020-01035-w (2020).

    Article 

    Google Scholar 

  • 8.

    Auman, H. J., Bond, A. L., Meathrel, C. E. & Richardson, A. Urbanization of the silver gull: Evidence of anthropogenic feeding regimes from stable isotope analyses. Waterbirds 34, 70–76 (2011).

    Google Scholar 

  • 9.

    McKinney, M. L. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst. 11, 161–176 (2008).

    Google Scholar 

  • 10.

    Faeth, S. H., Warren, P. S., Shochat, E. & Marussich, W. A. Trophic dynamics in urban communities. Bioscience 55, 399–407 (2005).

    Google Scholar 

  • 11.

    Rodewald, A. D., Kearns, L. J. & Shustack, D. P. Anthropogenic resource subsidies decouple predator–prey relationships. Ecol. Appl. 21, 936–943 (2011).

    PubMed 

    Google Scholar 

  • 12.

    Shochat, E., Lerman, S. B., Katti, M. & Lewis, D. B. Linking optimal foraging behavior to bird community structure in an urban-desert landscape: Field experiments with artificial food patches. Am. Nat. 164, 232–243 (2004).

    PubMed 

    Google Scholar 

  • 13.

    Baruch-Mordo, S., Breck, S. W., Wilson, K. R. & Theobald, D. M. Spatiotemporal distribution of black bear–human conflicts in Colorado, USA. J. Wildl. Manag. 72, 1853–1862 (2005).

    Google Scholar 

  • 14.

    Bateman, P. W. & Fleming, P. A. Big city life: Carnivores in urban environments. J. Zool. 287, 1–23 (2012).

    Google Scholar 

  • 15.

    Nisbet, I., Veit, R. R., Auer, S. & White, T. Marine Birds of the Eastern United States and the Bay of Fundy: Distribution, Numbers, Trends, Threats, and Management (Nuttall Ornithological Club, 2013).

    Google Scholar 

  • 16.

    Washburn, B. E., Bernhardt, G. E., Kutschbach-Brohl, L., Chipman, R. B. & Francoeur, L. C. Foraging ecology of four gull species at a coastal–urban interface. Condor 115, 67–76 (2013).

    Google Scholar 

  • 17.

    Fuirst, M., Veit, R. R., Hahn, M., Dheilly, N. & Thorne, L. H. Effects of urbanization on the foraging ecology and microbiota of the generalist seabird Larus argentatus. PLoS One 13, 1–22 (2018).

    Google Scholar 

  • 18.

    Shaffer, S. A. et al. Population-level plasticity in foraging behavior of western gulls (Larus occidentalis). Mov. Ecol. 5, 1–13 (2017).

    Google Scholar 

  • 19.

    Rock, P. et al. Results from the first GPS tracking of roof-nesting Herring Gulls Larus argentatus in the UK. Ring. Migr. 31(1), 47–62 (2016).

    Google Scholar 

  • 20.

    Spelt, A. et al. Urban gulls adapt foraging schedule to human-activity patterns. Ibis (Lond. 1859) 163, 274–282 (2021).

    Google Scholar 

  • 21.

    Belant, J. L. Gulls in urban environments: Landscape-level reduce conflict. Landsc. Urban Plan. 38, 245–258 (1997).

    Google Scholar 

  • 22.

    Steenweg, R. J., Ronconi, R. A. & Leonard, M. L. Seasonal and age-dependent dietary partitioning between the great black-backed and herring gulls. Condor 113, 795–805 (2011).

    Google Scholar 

  • 23.

    Maynard, L. D. & Ronconi, R. A. Foraging behaviour of great black-backed gulls Larus marinus near an urban centre in atlantic Canada: Evidence of individual specialization from GPS tracking. Mar. Ornithol. 46, 27–32 (2018).

    Google Scholar 

  • 24.

    Borrmann, R. M., Phillips, R. A., Clay, T. A. & Garthe, S. High foraging site fidelity and spatial segregation among individual great black-backed gulls. J. Avian Biol. 50, 1–10 (2019).

    Google Scholar 

  • 25.

    Smith, J. A., Mazumder, D., Suthers, I. M. & Taylor, M. D. To fit or not to fit: Evaluating stable isotope mixing models using simulated mixing polygons. Methods Ecol. Evol. 4, 612–618 (2013).

    Google Scholar 

  • 26.

    Stock, B. C. et al. Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ 6, 1–27 (2018).

    Google Scholar 

  • 27.

    Shochat, E. Credit or debit? Resource input changes population dynamics of city-slicker birds. Oikos 106, 622–626 (2004).

    Google Scholar 

  • 28.

    Seress, G. & Liker, A. Habitat urbanization and its effects on birds. Acta Zool. Acad. Sci. Hungar. 61, 373–408 (2015).

    Google Scholar 

  • 29.

    Annett, C. A. & Pierotti, R. Long-term reproductive output in western gulls: Consequences of alternate tactics in diet choice. Ecology 80, 288–297 (1999).

    Google Scholar 

  • 30.

    Anderson, J. G. T., Shlepr, K. R., Bond, A. L. & Ronconi, R. A. Introduction: A historical perspective on trends in some gulls in eastern North America, with reference to other regions. Waterbirds 39, 1–9 (2016).

    Google Scholar 

  • 31.

    Washburn, B. E., Elbin, S. B. & Davis, C. Historical and current population trends of herring gulls (Larus argentatus) and Great Black-Backed Gulls (Larus marinus) in the New York Bight, USA. Waterbirds 39, 74–86 (2016).

    Google Scholar 

  • 32.

    Duhem, C., Roche, P., Vidal, E. & Tatoni, T. Effects of anthropogenic food resources on yellow-legged gull colony size on Mediterranean islands. Popul. Ecol. 50, 91–100 (2008).

    Google Scholar 

  • 33.

    Zorrozua, N. et al. Breeding yellow-legged Gulls increase consumption of terrestrial prey after landfill closure. Ibis (Lond. 1859) 162, 50–62 (2020).

    Google Scholar 

  • 34.

    Pons, J. Effects of changes in the availability of human refuse on breeding parameters in a herring gull. Ardea 1983, 143–150 (1992).

    Google Scholar 

  • 35.

    Ordeñana, M. A. et al. Effects of urbanization on carnivore species distribution and richness. J. Mammal. 91, 1322–1331 (2010).

    Google Scholar 

  • 36.

    Duchamp, J. E., Sparks, D. W. & Whitaker, J. O. Foraging-habitat selection by bats at an urban-rural interface: Comparison between a successful and a less successful species. Can. J. Zool. 82, 1157–1164 (2004).

    Google Scholar 

  • 37.

    USDA. Feedgrains sector at a glance (2021). https://www.ers.usda.gov/topics/crops/corn-and-other-feedgrains/feedgrains-sector-at-a-glance/ (Accessed 10th July 2021).

  • 38.

    Jahren, A. H. & Schubert, B. A. Corn content of French fry oil from national chain vs. small business restaurants. Proc. Natl. Acad. Sci. U.S.A. 107, 2099–2101 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Hebert, C. E., Shutt, J. L., Hobson, K. A. & Weseloh, D. V. C. Spatial and temporal differences in the diet of Great Lakes herring gulls (Larus argentatus): Evidence from stable isotope analysis. Can. J. Fish. Aquat. Sci. 56, 323–338 (1999).

    Google Scholar 

  • 40.

    Moreno, R., Jover, L., Munilla, I., Velando, A. & Sanpera, C. A three-isotope approach to disentangling the diet of a generalist consumer: The yellow-legged gull in northwest Spain. Mar. Biol. 157, 545–553 (2010).

    Google Scholar 

  • 41.

    Coulson, J. C. Re-evaluation of the role of landfills and culling in the historic changes in the herring gull (Larus argentatus) population in Great Britain. Waterbirds 38, 339–354 (2015).

    Google Scholar 

  • 42.

    Shlepr, K. R., Ronconi, R. A., Hayden, B., Allard, K. A. & Diamond, A. W. Estimating the relative use of anthropogenic resources by herring gull (Larus argentatus) in the Bay of Fundy, Canada. Avian Conserv. Ecol. 16, 1–18 (2021).

    Google Scholar 

  • 43.

    Orians, G. & Pearson, N. On the theory of central place foraging. In Analysis of Ecological Communities (eds Horn, D. et al.) 154–177 (Ohio State University Press, 1979).

    Google Scholar 

  • 44.

    Walter, G. H. What is resource partitioning?. J. Theor. Biol. 150, 137–143 (1991).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 45.

    Schoener, T. Resource Partitioning. In Community Ecology: Pattern and Process (eds Kikkawa, J. & Anderson, D.) 91–126 (Blackwell Science Inc, 1986).

    Google Scholar 

  • 46.

    Rome, M. S. & Ellis, J. C. Foraging Ecology and Interactions between Herring Gulls and Great Black-Backed Gulls in New England rocky intertidal. Waterbirds 27, 200–210 (2017). http://www.jstor.org/stable/1522435

  • 47.

    Weimerskirch, H., Bartle, J. A., Jouventin, P. & Claude, J. Foraging ranges and partitioning of feeding zones in three species of southern Albatrosses. Condor 90, 214–219 (1998). http://www.jstor.org/stable/1368450

  • 48.

    Barger, C. P., Young, R. C., Will, A., Ito, M. & Kitaysky, A. S. Resource partitioning between sympatric seabird species increases during chick-rearing. Ecosphere 7, 1–15 (2016).

    Google Scholar 

  • 49.

    Ronconi, R. A., Steenweg, R. J., Taylor, P. D. & Mallory, M. L. Gull diets reveal dietary partitioning, influences of isotopic signatures on body condition, and ecosystem changes at a remote colony. Mar. Ecol. Prog. Ser. 514, 247–261 (2014).

    ADS 

    Google Scholar 

  • 50.

    Knoff, A., Macko, S. A., Erwin, R. M. & Brown, K. M. Stable isotope analysis of temporal variation in the diets of pre-fledged laughing gulls. Waterbirds 25, 142–148 (2017).

    Google Scholar 

  • 51.

    Clewley, G. D. et al. Foraging habitat selection by breeding Herring Gulls (Larus argentatus) from a declining coastal colony in the United Kingdom. Estuar. Coast. Shelf Sci. 261, 107564 (2021).

    Google Scholar 

  • 52.

    Evans, B. A. & Gawlik, D. E. Urban food subsidies reduce natural food limitations and reproductive costs for a wetland bird. Sci. Rep. 10, 1–12 (2020).

    Google Scholar 

  • 53.

    Auman, H. J., Meathrel, C. E. & Richardson, A. Supersize me: Does anthropogenic food change the body condition of silver gulls? A comparison between urbanized and remote, non-urbanized areas. Waterbirds 31, 122–126 (2008).

    Google Scholar 

  • 54.

    Pierotti, R. & Annett, C. The ecology of Western Gulls in habitats varying in degree of urban influence. in Avian Ecology and Conservation in an Urbanizing World 307–329 (2001).

  • 55.

    Belant, J. L., Ickes, S. K. & Seamans, T. W. Importance of landfills to urban-nesting herring and ring-billed gulls. Landsc. Urban Plan. 43, 11–19 (1998).

    Google Scholar 

  • 56.

    Murray, M. H., Hill, J., Whyte, P. & St. Clair, C. C. Urban compost attracts coyotes, contains toxins, and may promote disease in urban-adapted wildlife. EcoHealth 13, 285–292 (2016).

    PubMed 

    Google Scholar 

  • 57.

    Sapolsky, R. & Else, J. Bovine tuberculosis in a wild baboon population: Epidemiological aspects. J. Med. Primatol. 16, 229–235 (1987).

    CAS 
    PubMed 

    Google Scholar 

  • 58.

    Thorne, L. H., Fuirst, M., Veit, R. & Baumann, Z. Mercury concentrations provide an indicator of marine foraging in coastal birds. Ecol. Indic. 121, 106922 (2021).

    CAS 

    Google Scholar 

  • 59.

    Fauchald, P. & Tveraa, T. Using first-passage time in the analysis of area-restricted reports. Ecology 84, 282–288 (2003).

    Google Scholar 

  • 60.

    Suryan, R. M. et al. Foraging destinations and marine habitat use of short-tailed albatrosses: A multi-scale approach using first-passage time analysis. Deep. Res. Part II Top. Stud. Oceanogr. 53, 370–386 (2006).

    ADS 

    Google Scholar 

  • 61.

    McCune, B. & Grace, J. B. Nonmetric multidimensional scaling. in Analysis of Ecological Communities 125–142 (2002).

  • 62.

    Hobson, K. A. & Clark, R. G. Assessing avian diets using stable isotopes I: Turnover of 13C in tissues. Condor 94, 181–188 (1992). http://www.jstor.com/stable/1368807

  • 63.

    Post, D. M. et al. Getting to the fat of the matter: Models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152, 179–189 (2007).

    ADS 
    PubMed 

    Google Scholar 

  • 64.

    Sweeting, C. J., Polunin, N. V. C. & Jennings, S. Effects of chemical lipid extraction and arithmetic lipid correction on stable isotope ratios of fish tissues. Rapid Commun. Mass Spectrom. 20, 595–601 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 65.

    Caut, S., Angulo, E. & Courchamp, F. Variation in discrimination factors (Δ15N and Δ13C): The effect of diet isotopic values and applications for diet reconstruction. J. Appl. Ecol. 46, 443–453 (2009).

    CAS 

    Google Scholar 

  • 66.

    Hobson, K. A. & Clark, R. G. Assessing avian diets using stable isotopes II: Factors influencing diet-tissue fractionation. Condor 94, 189–197 (1992).

    Google Scholar 

  • 67.

    EvansOgden, L. J., Hobson, K. A. & Lank, D. B. Blood isotopic (δ13C and δ15N) turnover and diet-tissue fractionation factors in captive dunlin (Calidris alpina pacifica). Auk 121, 170–177 (2004).

    Google Scholar 


  • Source: Ecology - nature.com

    Q&A: More-sustainable concrete with machine learning

    Krill and salp faecal pellets contribute equally to the carbon flux at the Antarctic Peninsula