Ditchkoff, S. S., Saalfeld, S. T. & Gibson, C. J. Animal behavior in urban ecosystems: Modifications due to human-induced stress. Urban Ecosyst. 9, 5–12 (2006).
Shochat, E., Warren, P. S., Faeth, S. H., McIntyre, N. E. & Hope, D. From patterns to emerging processes in mechanistic urban ecology. Trends Ecol. Evol. 21, 186–191 (2006).
Google Scholar
Witherington, B. E. Behavioral responses of nesting sea turtles to artificial lighting. Herpetologica 48, 31–39 (1992).
Markovchick-Nicholls, L. et al. Relationships between human disturbance and wildlife land use in urban habitat fragments. Conserv. Biol. 22, 99–109 (2008).
Google Scholar
Dunagan, S. P., Karels, T. J., Moriarty, J. G., Brown, J. L. & Riley, S. P. D. Bobcat and rabbit habitat use in an urban landscape. J. Mammal. 100, 401–409 (2019).
Prange, S., Gehrt, S. D. & Wiggers, E. P. Influences of anthropogenic resources on raccoon (Procyon lotor) movements and spatial distribution. J. Mammal. 85, 483–490 (2004).
Cooper, D. S., Yeh, P. J. & Blumstein, D. T. Tolerance and avoidance of urban cover in a southern California suburban raptor community over five decades. Urban Ecosyst. https://doi.org/10.1007/s11252-020-01035-w (2020).
Google Scholar
Auman, H. J., Bond, A. L., Meathrel, C. E. & Richardson, A. Urbanization of the silver gull: Evidence of anthropogenic feeding regimes from stable isotope analyses. Waterbirds 34, 70–76 (2011).
McKinney, M. L. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst. 11, 161–176 (2008).
Faeth, S. H., Warren, P. S., Shochat, E. & Marussich, W. A. Trophic dynamics in urban communities. Bioscience 55, 399–407 (2005).
Rodewald, A. D., Kearns, L. J. & Shustack, D. P. Anthropogenic resource subsidies decouple predator–prey relationships. Ecol. Appl. 21, 936–943 (2011).
Google Scholar
Shochat, E., Lerman, S. B., Katti, M. & Lewis, D. B. Linking optimal foraging behavior to bird community structure in an urban-desert landscape: Field experiments with artificial food patches. Am. Nat. 164, 232–243 (2004).
Google Scholar
Baruch-Mordo, S., Breck, S. W., Wilson, K. R. & Theobald, D. M. Spatiotemporal distribution of black bear–human conflicts in Colorado, USA. J. Wildl. Manag. 72, 1853–1862 (2005).
Bateman, P. W. & Fleming, P. A. Big city life: Carnivores in urban environments. J. Zool. 287, 1–23 (2012).
Nisbet, I., Veit, R. R., Auer, S. & White, T. Marine Birds of the Eastern United States and the Bay of Fundy: Distribution, Numbers, Trends, Threats, and Management (Nuttall Ornithological Club, 2013).
Washburn, B. E., Bernhardt, G. E., Kutschbach-Brohl, L., Chipman, R. B. & Francoeur, L. C. Foraging ecology of four gull species at a coastal–urban interface. Condor 115, 67–76 (2013).
Fuirst, M., Veit, R. R., Hahn, M., Dheilly, N. & Thorne, L. H. Effects of urbanization on the foraging ecology and microbiota of the generalist seabird Larus argentatus. PLoS One 13, 1–22 (2018).
Shaffer, S. A. et al. Population-level plasticity in foraging behavior of western gulls (Larus occidentalis). Mov. Ecol. 5, 1–13 (2017).
Rock, P. et al. Results from the first GPS tracking of roof-nesting Herring Gulls Larus argentatus in the UK. Ring. Migr. 31(1), 47–62 (2016).
Spelt, A. et al. Urban gulls adapt foraging schedule to human-activity patterns. Ibis (Lond. 1859) 163, 274–282 (2021).
Belant, J. L. Gulls in urban environments: Landscape-level reduce conflict. Landsc. Urban Plan. 38, 245–258 (1997).
Steenweg, R. J., Ronconi, R. A. & Leonard, M. L. Seasonal and age-dependent dietary partitioning between the great black-backed and herring gulls. Condor 113, 795–805 (2011).
Maynard, L. D. & Ronconi, R. A. Foraging behaviour of great black-backed gulls Larus marinus near an urban centre in atlantic Canada: Evidence of individual specialization from GPS tracking. Mar. Ornithol. 46, 27–32 (2018).
Borrmann, R. M., Phillips, R. A., Clay, T. A. & Garthe, S. High foraging site fidelity and spatial segregation among individual great black-backed gulls. J. Avian Biol. 50, 1–10 (2019).
Smith, J. A., Mazumder, D., Suthers, I. M. & Taylor, M. D. To fit or not to fit: Evaluating stable isotope mixing models using simulated mixing polygons. Methods Ecol. Evol. 4, 612–618 (2013).
Stock, B. C. et al. Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ 6, 1–27 (2018).
Shochat, E. Credit or debit? Resource input changes population dynamics of city-slicker birds. Oikos 106, 622–626 (2004).
Seress, G. & Liker, A. Habitat urbanization and its effects on birds. Acta Zool. Acad. Sci. Hungar. 61, 373–408 (2015).
Annett, C. A. & Pierotti, R. Long-term reproductive output in western gulls: Consequences of alternate tactics in diet choice. Ecology 80, 288–297 (1999).
Anderson, J. G. T., Shlepr, K. R., Bond, A. L. & Ronconi, R. A. Introduction: A historical perspective on trends in some gulls in eastern North America, with reference to other regions. Waterbirds 39, 1–9 (2016).
Washburn, B. E., Elbin, S. B. & Davis, C. Historical and current population trends of herring gulls (Larus argentatus) and Great Black-Backed Gulls (Larus marinus) in the New York Bight, USA. Waterbirds 39, 74–86 (2016).
Duhem, C., Roche, P., Vidal, E. & Tatoni, T. Effects of anthropogenic food resources on yellow-legged gull colony size on Mediterranean islands. Popul. Ecol. 50, 91–100 (2008).
Zorrozua, N. et al. Breeding yellow-legged Gulls increase consumption of terrestrial prey after landfill closure. Ibis (Lond. 1859) 162, 50–62 (2020).
Pons, J. Effects of changes in the availability of human refuse on breeding parameters in a herring gull. Ardea 1983, 143–150 (1992).
Ordeñana, M. A. et al. Effects of urbanization on carnivore species distribution and richness. J. Mammal. 91, 1322–1331 (2010).
Duchamp, J. E., Sparks, D. W. & Whitaker, J. O. Foraging-habitat selection by bats at an urban-rural interface: Comparison between a successful and a less successful species. Can. J. Zool. 82, 1157–1164 (2004).
USDA. Feedgrains sector at a glance (2021). https://www.ers.usda.gov/topics/crops/corn-and-other-feedgrains/feedgrains-sector-at-a-glance/ (Accessed 10th July 2021).
Jahren, A. H. & Schubert, B. A. Corn content of French fry oil from national chain vs. small business restaurants. Proc. Natl. Acad. Sci. U.S.A. 107, 2099–2101 (2010).
Google Scholar
Hebert, C. E., Shutt, J. L., Hobson, K. A. & Weseloh, D. V. C. Spatial and temporal differences in the diet of Great Lakes herring gulls (Larus argentatus): Evidence from stable isotope analysis. Can. J. Fish. Aquat. Sci. 56, 323–338 (1999).
Moreno, R., Jover, L., Munilla, I., Velando, A. & Sanpera, C. A three-isotope approach to disentangling the diet of a generalist consumer: The yellow-legged gull in northwest Spain. Mar. Biol. 157, 545–553 (2010).
Coulson, J. C. Re-evaluation of the role of landfills and culling in the historic changes in the herring gull (Larus argentatus) population in Great Britain. Waterbirds 38, 339–354 (2015).
Shlepr, K. R., Ronconi, R. A., Hayden, B., Allard, K. A. & Diamond, A. W. Estimating the relative use of anthropogenic resources by herring gull (Larus argentatus) in the Bay of Fundy, Canada. Avian Conserv. Ecol. 16, 1–18 (2021).
Orians, G. & Pearson, N. On the theory of central place foraging. In Analysis of Ecological Communities (eds Horn, D. et al.) 154–177 (Ohio State University Press, 1979).
Walter, G. H. What is resource partitioning?. J. Theor. Biol. 150, 137–143 (1991).
Google Scholar
Schoener, T. Resource Partitioning. In Community Ecology: Pattern and Process (eds Kikkawa, J. & Anderson, D.) 91–126 (Blackwell Science Inc, 1986).
Rome, M. S. & Ellis, J. C. Foraging Ecology and Interactions between Herring Gulls and Great Black-Backed Gulls in New England rocky intertidal. Waterbirds 27, 200–210 (2017). http://www.jstor.org/stable/1522435
Weimerskirch, H., Bartle, J. A., Jouventin, P. & Claude, J. Foraging ranges and partitioning of feeding zones in three species of southern Albatrosses. Condor 90, 214–219 (1998). http://www.jstor.org/stable/1368450
Barger, C. P., Young, R. C., Will, A., Ito, M. & Kitaysky, A. S. Resource partitioning between sympatric seabird species increases during chick-rearing. Ecosphere 7, 1–15 (2016).
Ronconi, R. A., Steenweg, R. J., Taylor, P. D. & Mallory, M. L. Gull diets reveal dietary partitioning, influences of isotopic signatures on body condition, and ecosystem changes at a remote colony. Mar. Ecol. Prog. Ser. 514, 247–261 (2014).
Google Scholar
Knoff, A., Macko, S. A., Erwin, R. M. & Brown, K. M. Stable isotope analysis of temporal variation in the diets of pre-fledged laughing gulls. Waterbirds 25, 142–148 (2017).
Clewley, G. D. et al. Foraging habitat selection by breeding Herring Gulls (Larus argentatus) from a declining coastal colony in the United Kingdom. Estuar. Coast. Shelf Sci. 261, 107564 (2021).
Evans, B. A. & Gawlik, D. E. Urban food subsidies reduce natural food limitations and reproductive costs for a wetland bird. Sci. Rep. 10, 1–12 (2020).
Auman, H. J., Meathrel, C. E. & Richardson, A. Supersize me: Does anthropogenic food change the body condition of silver gulls? A comparison between urbanized and remote, non-urbanized areas. Waterbirds 31, 122–126 (2008).
Pierotti, R. & Annett, C. The ecology of Western Gulls in habitats varying in degree of urban influence. in Avian Ecology and Conservation in an Urbanizing World 307–329 (2001).
Belant, J. L., Ickes, S. K. & Seamans, T. W. Importance of landfills to urban-nesting herring and ring-billed gulls. Landsc. Urban Plan. 43, 11–19 (1998).
Murray, M. H., Hill, J., Whyte, P. & St. Clair, C. C. Urban compost attracts coyotes, contains toxins, and may promote disease in urban-adapted wildlife. EcoHealth 13, 285–292 (2016).
Google Scholar
Sapolsky, R. & Else, J. Bovine tuberculosis in a wild baboon population: Epidemiological aspects. J. Med. Primatol. 16, 229–235 (1987).
Google Scholar
Thorne, L. H., Fuirst, M., Veit, R. & Baumann, Z. Mercury concentrations provide an indicator of marine foraging in coastal birds. Ecol. Indic. 121, 106922 (2021).
Google Scholar
Fauchald, P. & Tveraa, T. Using first-passage time in the analysis of area-restricted reports. Ecology 84, 282–288 (2003).
Suryan, R. M. et al. Foraging destinations and marine habitat use of short-tailed albatrosses: A multi-scale approach using first-passage time analysis. Deep. Res. Part II Top. Stud. Oceanogr. 53, 370–386 (2006).
Google Scholar
McCune, B. & Grace, J. B. Nonmetric multidimensional scaling. in Analysis of Ecological Communities 125–142 (2002).
Hobson, K. A. & Clark, R. G. Assessing avian diets using stable isotopes I: Turnover of 13C in tissues. Condor 94, 181–188 (1992). http://www.jstor.com/stable/1368807
Post, D. M. et al. Getting to the fat of the matter: Models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152, 179–189 (2007).
Google Scholar
Sweeting, C. J., Polunin, N. V. C. & Jennings, S. Effects of chemical lipid extraction and arithmetic lipid correction on stable isotope ratios of fish tissues. Rapid Commun. Mass Spectrom. 20, 595–601 (2006).
Google Scholar
Caut, S., Angulo, E. & Courchamp, F. Variation in discrimination factors (Δ15N and Δ13C): The effect of diet isotopic values and applications for diet reconstruction. J. Appl. Ecol. 46, 443–453 (2009).
Google Scholar
Hobson, K. A. & Clark, R. G. Assessing avian diets using stable isotopes II: Factors influencing diet-tissue fractionation. Condor 94, 189–197 (1992).
EvansOgden, L. J., Hobson, K. A. & Lank, D. B. Blood isotopic (δ13C and δ15N) turnover and diet-tissue fractionation factors in captive dunlin (Calidris alpina pacifica). Auk 121, 170–177 (2004).
Source: Ecology - nature.com