Fargione, J. E. et al. Natural climate solutions for the United States. Sci. Adv. 4, eaat1869 (2018).
Google Scholar
Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).
Google Scholar
Conti, G. & Díaz, S. Plant functional diversity and carbon storage – an empirical test in semi-arid forest ecosystems. J. Ecol. 101, 18–28 (2013).
Google Scholar
Mensah, S., Veldtman, R., Assogbadjo, A. E., Glèlè Kakaï, R. & Seifert, T. Tree species diversity promotes aboveground carbon storage through functional diversity and functional dominance. Ecol. Evol. 6, 7546–7557 (2016).
Google Scholar
Islam, M., Dey, A. & Rahman, M. Effect of Tree Diversity on Soil Organic Carbon Content in the Homegarden Agroforestry System of North-Eastern Bangladesh. Small-scale 14, 91–101 (2015).
Google Scholar
Poorter, L. et al. Diversity enhances carbon storage in tropical forests. Glob. Ecol. Biogeogr. 24, 1314–1328 (2015).
Google Scholar
Rahman, M. M., Kabir, M. E., Jahir Uddin Akon, A. S. M. & Ando, K. High carbon stocks in roadside plantations under participatory management in Bangladesh. Glob. Ecol. Conserv. 3, 412–423 (2015).
Google Scholar
McKee, K. L. Interspecific Variation in Growth, Biomass Partitioning, and Defensive Characteristics of Neotropical Mangrove Seedlings: response To Light and Nutrient Availability. Am. J. Bot. 82, 299–307 (1995).
Google Scholar
Kauffman, J. B. et al. Total ecosystem carbon stocks of mangroves across broad global environmental and physical gradients. Ecol. Monogr. 90, 1–18 (2020).
Google Scholar
Tinh, P. H. et al. A comparison of soil carbon stocks of intact and restored mangrove forests in Northern Vietnam. Forests 11, 1–10 (2020).
Saintilan, N. Above- and below-ground biomasses of two species of mangrove on the Hawkesbury River stuary, New South Wales. Mar. Freshw. Res. 48, 147–152 (1997).
Google Scholar
Tamooh, F. et al. Below-ground root yield and distribution in natural and replanted mangrove forests at Gazi bay, Kenya. Ecol. Manag. 256, 1290–1297 (2008).
Google Scholar
MacKenzie, R. A. et al. Sedimentation and belowground carbon accumulation rates in mangrove forests that differ in diversity and land use: a tale of two mangroves. Wetl. Ecol. Manag. 24, 245–261 (2016).
Google Scholar
Atwood, T. B. et al. Global patterns in mangrove soil carbon stocks and losses. Nat. Clim. Chang. 7, 523–528 (2017).
Google Scholar
Lovelock, C. E. & Duarte, C. M. Dimensions of blue carbon and emerging perspectives. Biol. Lett. 15, 1–5 (2019).
Google Scholar
Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4, 293–297 (2011).
Google Scholar
Adame, M. F. et al. Root biomass and production of mangroves surrounding a karstic oligotrophic coastal lagoon. Ecol. Manag. 256, 1290–1297 (2014).
Sharma, S. et al. The impacts of degradation, deforestation and restoration on mangrove ecosystem carbon stocks across Cambodia. Sci. Total Environ. 706, 135416 (2020).
Ruiz-benito, P. et al. Diversity increases carbon storage and tree productivity in Spanish forests. 1–12 (2013) https://doi.org/10.1111/geb.12126.
Mace, G. Biodiversity Policy Challenges. (2009) https://doi.org/10.1126/science.1180935.
Tilman, D. et al. The influence of functional diversity and composition on ecosystem processes. Sci. (80-.) 277, 1300–1302 (1997).
Google Scholar
Cavanaugh, K. C. et al. Carbon storage in tropical forests correlates with taxonomic diversity and functional dominance on a global scale: Biodiversity and aboveground carbon storage. Glob. Ecol. Biogeogr. 23, 563–573 (2014).
Google Scholar
Ruiz-Jaen, M. C. & Potvin, C. Can we predict carbon stocks in tropical ecosystems from tree diversity? Comparing species and functional diversity in a plantation and a natural forest. N. Phytol. 189, 978–987 (2011).
Google Scholar
Ali, A., Chen, H. Y. H., You, W.-H. & Yan, E.-R. Multiple abiotic and biotic drivers of aboveground biomass shift with forest stratum. Ecol. Manag. 436, 1–10 (2019).
Google Scholar
Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).
Google Scholar
Franck, J. & Jérôme, C. Inferring the parameters of the neutral theory of biodiversity using phylogenetic information and implications for tropical forests. Ecol. Lett. 12, 239–248 (2009).
Google Scholar
Poorter, L., Bongers, L. & Bongers, F. Architecture of 54 moist-forest tree species: traits, trade-offs, and functional groups. Ecology 87, 1289–1301 (2006).
Google Scholar
Fatoyinbo, T. E., Simard, M., Washington-Allen, R. A. & Shugart, H. H. Landscape-scale extent, height, biomass, and carbon estimation of Mozambique’s mangrove forests with Landsat ETM+ and Shuttle Radar Topography Mission elevation data. J. Geophys. Res. Biogeosci. 113, G02S06 (2008).
Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).
Google Scholar
Simard, M. et al. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nat. Geosci. 12, 40–45 (2019).
Google Scholar
Díaz, S. et al. The plant traits that drive ecosystems: evidence from three continents. J. Veg. Sci. 15, 295–304 (2004).
Google Scholar
Lasky, J. R., Uriarte, M., Boukili, V. K. & Chazdon, R. L. Trait-mediated assembly processes predict successional changes in community diversity of tropical forests. Proc. Natl Acad. Sci. U. S. A. 111, 5616–5621 (2014).
Google Scholar
Grime, J. P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998). vol.
Google Scholar
Pradisty, N. A., Amir, A. A. & Zimmer, M. Plant species- and stage-specific differences in microbial decay of mangrove leaf litter: the older the better? Oecologia (2021) https://doi.org/10.1007/s00442-021-04865-3.
Hossain, M. et al. Nutrient Dynamics Associated with Leaching and Microbial Decomposition of Four Abundant Mangrove Species Leaf Litter of the Sundarbans, Bangladesh. Wetlands 34, 439–448 (2014).
Google Scholar
Chanda, A. et al. Mangrove associates versus true mangroves: a comparative analysis of leaf litter decomposition in Sundarban. Wetl. Ecol. Manag. 24, 293–315 (2016).
Google Scholar
Alongi, D. M. Global Significance of Mangrove Blue Carbon in Climate Change Mitigation. Sci 2, 67 (2020).
Google Scholar
Lovelock, C. E. & Reef, R. Variable Impacts of Climate Change on Blue. Carbon One Earth 3, 195–211 (2020).
Google Scholar
Alongi, D. Impact of Global Change on Nutrient Dynamics in Mangrove Forests. Forests 9, 596 (2018).
Google Scholar
Rahman, M. M. & Rahaman, M. M. Impacts of Farakka barrage on hydrological flow of Ganges river and environment in Bangladesh. Sustain. Water Resour. Manag. 1–14 (2017) https://doi.org/10.1007/s40899-017-0163-y.
Gilman, E. L., Ellison, J., Duke, N. C. & Field, C. Threats to mangroves from climate change and adaptation options: a review. Aquat. Bot. 89, 237–250 (2008).
Google Scholar
Kirui, B., Kairo, J., Skov, M., Mencuccini, M. & Huxham, M. Effects of species richness, identity and environmental variables on growth in planted mangroves in Kenya. Mar. Ecol. Prog. Ser. 465, 1–10 (2012).
Google Scholar
Ball, M. C. Ecophysiology of mangroves. Trees 2, 129–142 (1988). vol.
Google Scholar
Grace, J. B. et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529, 390–393 (2016).
Google Scholar
Rahman, M. M., Khan, M. N. I., Hoque, A. K. F. & Ahmed, I. Carbon stock in the Sundarbans mangrove forest: spatial variations in vegetation types and salinity zones. Wetl. Ecol. Manag. 23, 269–283 (2015).
Google Scholar
Chave, J. et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145, 87–99 (2005).
Google Scholar
Komiyama, A., Poungparn, S. & Kato, S. Common allometric equations for estimating the tree weight of mangroves. J. Trop. Ecol. 21, 471–477 (2005).
Google Scholar
Hossain, M., Siddique, M. R. H., Saha, S. & Abdullah, S. M. R. Allometric models for biomass, nutrients and carbon stock in Excoecaria agallocha of the Sundarbans, Bangladesh. Wetl. Ecol. Manag. 23, 765–774 (2015).
Google Scholar
Loreau, M., Hector, A., The, C. J. & Funct, D. Partitioning Selection and Complementarity in Biodiversity Experiments Partitioning selection and complementarity in biodiversity experiments. (2001) https://doi.org/10.1038/35083573.
Phelps, J., Webb, E. L. & Adams, W. M. Biodiversity co-benefits of policies to reduce forest-carbon emissions. Nat. Clim. Chang. 2, 497–503 (2012).
Google Scholar
Zimmer, M. Ecosystem design: when mangrove ecology meets human needs. Coast. Res. Libr. 25, 367–376 (2018).
Google Scholar
Rahman, M. S., Sass-Klaassen, U., Zuidema, P. A., Chowdhury, M. Q. & Beeckman, H. Salinity drives growth dynamics of the mangrove tree Sonneratia apetala Buch. -Ham. in the Sundarbans, Bangladesh. Dendrochronologia 62, 125711 (2020).
Google Scholar
Suwa, R., Deshar, R. & Hagihara, A. Forest structure of a subtropical mangrove along a river inferred from potential tree height and biomass. Aquat. Bot. 91, 99–104 (2009).
Google Scholar
Sparks, D. L. et al. Total Carbon, Organic Carbon, and Organic Matter. in SSSA Book Series (Soil Science Society of America, American Society of Agronomy, 1996).
Yakub, M., Omar Ali, M. & Bhattacharjee, D. K. Strength properties of some Bangladesh timber species. (Govt. of the People’s Republic of Bangladesh, Forest Research Institute, 1972).
Nandy (Datta), P. & Ghose, M. Photosynthesis and water-use efficiency of some mangroves from Sundarbans, India. J. Plant Biol. 44, 213–219 (2001).
Google Scholar
Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).
Google Scholar
Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).
Google Scholar
Oliveira, A. D. et al. Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. 191–201 (2015) https://doi.org/10.1111/1365-2745.12346.
Demján, P. & Dreslerová, D. Modelling distribution of archaeological settlement evidence based on heterogeneous spatial and temporal data. J. Archaeol. Sci. 69, 100–109 (2016).
Google Scholar
Hossain, G. M. & Bhuiyan, M. A. H. Spatial and temporal variations of organic matter contents and potential sediment nutrient index in the Sundarbans mangrove forest, Bangladesh. KSCE J. Civ. Eng. 20, 163–174 (2016).
Google Scholar
Ggraham, M. H. Confronting Multicollinearity in Ecological Multiple Regression. Ecology 84, 2809–2815 (2003).
Rosseel, Y. Lavaan:anRpackageforstructuralequationmodeling and more. Version 0.5-12 (BETA). J. Stat. Softw. 48, 1–36 (2012).
Google Scholar
Grace, J. B. & Bollen, K. A. Interpreting the Results from Multiple Regression and Structural Equation Models. Bull. Ecol. Soc. Am. 86, 283–295 (2005).
Google Scholar
Source: Ecology - nature.com