in

Co-benefits of protecting mangroves for biodiversity conservation and carbon storage

  • 1.

    Fargione, J. E. et al. Natural climate solutions for the United States. Sci. Adv. 4, eaat1869 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 2.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Conti, G. & Díaz, S. Plant functional diversity and carbon storage – an empirical test in semi-arid forest ecosystems. J. Ecol. 101, 18–28 (2013).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Mensah, S., Veldtman, R., Assogbadjo, A. E., Glèlè Kakaï, R. & Seifert, T. Tree species diversity promotes aboveground carbon storage through functional diversity and functional dominance. Ecol. Evol. 6, 7546–7557 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Islam, M., Dey, A. & Rahman, M. Effect of Tree Diversity on Soil Organic Carbon Content in the Homegarden Agroforestry System of North-Eastern Bangladesh. Small-scale 14, 91–101 (2015).

    Article 

    Google Scholar 

  • 6.

    Poorter, L. et al. Diversity enhances carbon storage in tropical forests. Glob. Ecol. Biogeogr. 24, 1314–1328 (2015).

    Article 

    Google Scholar 

  • 7.

    Rahman, M. M., Kabir, M. E., Jahir Uddin Akon, A. S. M. & Ando, K. High carbon stocks in roadside plantations under participatory management in Bangladesh. Glob. Ecol. Conserv. 3, 412–423 (2015).

    Article 

    Google Scholar 

  • 8.

    McKee, K. L. Interspecific Variation in Growth, Biomass Partitioning, and Defensive Characteristics of Neotropical Mangrove Seedlings: response To Light and Nutrient Availability. Am. J. Bot. 82, 299–307 (1995).

    Article 

    Google Scholar 

  • 9.

    Kauffman, J. B. et al. Total ecosystem carbon stocks of mangroves across broad global environmental and physical gradients. Ecol. Monogr. 90, 1–18 (2020).

    Article 

    Google Scholar 

  • 10.

    Tinh, P. H. et al. A comparison of soil carbon stocks of intact and restored mangrove forests in Northern Vietnam. Forests 11, 1–10 (2020).

    Google Scholar 

  • 11.

    Saintilan, N. Above- and below-ground biomasses of two species of mangrove on the Hawkesbury River stuary, New South Wales. Mar. Freshw. Res. 48, 147–152 (1997).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Tamooh, F. et al. Below-ground root yield and distribution in natural and replanted mangrove forests at Gazi bay, Kenya. Ecol. Manag. 256, 1290–1297 (2008).

    Article 

    Google Scholar 

  • 13.

    MacKenzie, R. A. et al. Sedimentation and belowground carbon accumulation rates in mangrove forests that differ in diversity and land use: a tale of two mangroves. Wetl. Ecol. Manag. 24, 245–261 (2016).

    Article 

    Google Scholar 

  • 14.

    Atwood, T. B. et al. Global patterns in mangrove soil carbon stocks and losses. Nat. Clim. Chang. 7, 523–528 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 15.

    Lovelock, C. E. & Duarte, C. M. Dimensions of blue carbon and emerging perspectives. Biol. Lett. 15, 1–5 (2019).

    Article 

    Google Scholar 

  • 16.

    Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4, 293–297 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 17.

    Adame, M. F. et al. Root biomass and production of mangroves surrounding a karstic oligotrophic coastal lagoon. Ecol. Manag. 256, 1290–1297 (2014).

    Google Scholar 

  • 18.

    Sharma, S. et al. The impacts of degradation, deforestation and restoration on mangrove ecosystem carbon stocks across Cambodia. Sci. Total Environ. 706, 135416 (2020).

  • 19.

    Ruiz-benito, P. et al. Diversity increases carbon storage and tree productivity in Spanish forests. 1–12 (2013) https://doi.org/10.1111/geb.12126.

  • 20.

    Mace, G. Biodiversity Policy Challenges. (2009) https://doi.org/10.1126/science.1180935.

  • 21.

    Tilman, D. et al. The influence of functional diversity and composition on ecosystem processes. Sci. (80-.) 277, 1300–1302 (1997).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Cavanaugh, K. C. et al. Carbon storage in tropical forests correlates with taxonomic diversity and functional dominance on a global scale: Biodiversity and aboveground carbon storage. Glob. Ecol. Biogeogr. 23, 563–573 (2014).

    Article 

    Google Scholar 

  • 23.

    Ruiz-Jaen, M. C. & Potvin, C. Can we predict carbon stocks in tropical ecosystems from tree diversity? Comparing species and functional diversity in a plantation and a natural forest. N. Phytol. 189, 978–987 (2011).

    Article 

    Google Scholar 

  • 24.

    Ali, A., Chen, H. Y. H., You, W.-H. & Yan, E.-R. Multiple abiotic and biotic drivers of aboveground biomass shift with forest stratum. Ecol. Manag. 436, 1–10 (2019).

    Article 

    Google Scholar 

  • 25.

    Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 26.

    Franck, J. & Jérôme, C. Inferring the parameters of the neutral theory of biodiversity using phylogenetic information and implications for tropical forests. Ecol. Lett. 12, 239–248 (2009).

    Article 

    Google Scholar 

  • 27.

    Poorter, L., Bongers, L. & Bongers, F. Architecture of 54 moist-forest tree species: traits, trade-offs, and functional groups. Ecology 87, 1289–1301 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 28.

    Fatoyinbo, T. E., Simard, M., Washington-Allen, R. A. & Shugart, H. H. Landscape-scale extent, height, biomass, and carbon estimation of Mozambique’s mangrove forests with Landsat ETM+ and Shuttle Radar Topography Mission elevation data. J. Geophys. Res. Biogeosci. 113, G02S06 (2008).

  • 29.

    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 30.

    Simard, M. et al. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nat. Geosci. 12, 40–45 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 31.

    Díaz, S. et al. The plant traits that drive ecosystems: evidence from three continents. J. Veg. Sci. 15, 295–304 (2004).

    Article 

    Google Scholar 

  • 32.

    Lasky, J. R., Uriarte, M., Boukili, V. K. & Chazdon, R. L. Trait-mediated assembly processes predict successional changes in community diversity of tropical forests. Proc. Natl Acad. Sci. U. S. A. 111, 5616–5621 (2014).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Grime, J. P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998). vol.

    Article 

    Google Scholar 

  • 34.

    Pradisty, N. A., Amir, A. A. & Zimmer, M. Plant species- and stage-specific differences in microbial decay of mangrove leaf litter: the older the better? Oecologia (2021) https://doi.org/10.1007/s00442-021-04865-3.

  • 35.

    Hossain, M. et al. Nutrient Dynamics Associated with Leaching and Microbial Decomposition of Four Abundant Mangrove Species Leaf Litter of the Sundarbans, Bangladesh. Wetlands 34, 439–448 (2014).

    Article 

    Google Scholar 

  • 36.

    Chanda, A. et al. Mangrove associates versus true mangroves: a comparative analysis of leaf litter decomposition in Sundarban. Wetl. Ecol. Manag. 24, 293–315 (2016).

    Article 

    Google Scholar 

  • 37.

    Alongi, D. M. Global Significance of Mangrove Blue Carbon in Climate Change Mitigation. Sci 2, 67 (2020).

    Article 

    Google Scholar 

  • 38.

    Lovelock, C. E. & Reef, R. Variable Impacts of Climate Change on Blue. Carbon One Earth 3, 195–211 (2020).

    Article 

    Google Scholar 

  • 39.

    Alongi, D. Impact of Global Change on Nutrient Dynamics in Mangrove Forests. Forests 9, 596 (2018).

    Article 

    Google Scholar 

  • 40.

    Rahman, M. M. & Rahaman, M. M. Impacts of Farakka barrage on hydrological flow of Ganges river and environment in Bangladesh. Sustain. Water Resour. Manag. 1–14 (2017) https://doi.org/10.1007/s40899-017-0163-y.

  • 41.

    Gilman, E. L., Ellison, J., Duke, N. C. & Field, C. Threats to mangroves from climate change and adaptation options: a review. Aquat. Bot. 89, 237–250 (2008).

    Article 

    Google Scholar 

  • 42.

    Kirui, B., Kairo, J., Skov, M., Mencuccini, M. & Huxham, M. Effects of species richness, identity and environmental variables on growth in planted mangroves in Kenya. Mar. Ecol. Prog. Ser. 465, 1–10 (2012).

    ADS 
    Article 

    Google Scholar 

  • 43.

    Ball, M. C. Ecophysiology of mangroves. Trees 2, 129–142 (1988). vol.

    Article 

    Google Scholar 

  • 44.

    Grace, J. B. et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529, 390–393 (2016).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Rahman, M. M., Khan, M. N. I., Hoque, A. K. F. & Ahmed, I. Carbon stock in the Sundarbans mangrove forest: spatial variations in vegetation types and salinity zones. Wetl. Ecol. Manag. 23, 269–283 (2015).

    Article 

    Google Scholar 

  • 46.

    Chave, J. et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145, 87–99 (2005).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 47.

    Komiyama, A., Poungparn, S. & Kato, S. Common allometric equations for estimating the tree weight of mangroves. J. Trop. Ecol. 21, 471–477 (2005).

    Article 

    Google Scholar 

  • 48.

    Hossain, M., Siddique, M. R. H., Saha, S. & Abdullah, S. M. R. Allometric models for biomass, nutrients and carbon stock in Excoecaria agallocha of the Sundarbans, Bangladesh. Wetl. Ecol. Manag. 23, 765–774 (2015).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Loreau, M., Hector, A., The, C. J. & Funct, D. Partitioning Selection and Complementarity in Biodiversity Experiments Partitioning selection and complementarity in biodiversity experiments. (2001) https://doi.org/10.1038/35083573.

  • 50.

    Phelps, J., Webb, E. L. & Adams, W. M. Biodiversity co-benefits of policies to reduce forest-carbon emissions. Nat. Clim. Chang. 2, 497–503 (2012).

    ADS 
    Article 

    Google Scholar 

  • 51.

    Zimmer, M. Ecosystem design: when mangrove ecology meets human needs. Coast. Res. Libr. 25, 367–376 (2018).

    Article 

    Google Scholar 

  • 52.

    Rahman, M. S., Sass-Klaassen, U., Zuidema, P. A., Chowdhury, M. Q. & Beeckman, H. Salinity drives growth dynamics of the mangrove tree Sonneratia apetala Buch. -Ham. in the Sundarbans, Bangladesh. Dendrochronologia 62, 125711 (2020).

    Article 

    Google Scholar 

  • 53.

    Suwa, R., Deshar, R. & Hagihara, A. Forest structure of a subtropical mangrove along a river inferred from potential tree height and biomass. Aquat. Bot. 91, 99–104 (2009).

    Article 

    Google Scholar 

  • 54.

    Sparks, D. L. et al. Total Carbon, Organic Carbon, and Organic Matter. in SSSA Book Series (Soil Science Society of America, American Society of Agronomy, 1996).

  • 55.

    Yakub, M., Omar Ali, M. & Bhattacharjee, D. K. Strength properties of some Bangladesh timber species. (Govt. of the People’s Republic of Bangladesh, Forest Research Institute, 1972).

  • 56.

    Nandy (Datta), P. & Ghose, M. Photosynthesis and water-use efficiency of some mangroves from Sundarbans, India. J. Plant Biol. 44, 213–219 (2001).

    Article 

    Google Scholar 

  • 57.

    Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 58.

    Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).

    Article 

    Google Scholar 

  • 59.

    Oliveira, A. D. et al. Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. 191–201 (2015) https://doi.org/10.1111/1365-2745.12346.

  • 60.

    Demján, P. & Dreslerová, D. Modelling distribution of archaeological settlement evidence based on heterogeneous spatial and temporal data. J. Archaeol. Sci. 69, 100–109 (2016).

    Article 

    Google Scholar 

  • 61.

    Hossain, G. M. & Bhuiyan, M. A. H. Spatial and temporal variations of organic matter contents and potential sediment nutrient index in the Sundarbans mangrove forest, Bangladesh. KSCE J. Civ. Eng. 20, 163–174 (2016).

    Article 

    Google Scholar 

  • 62.

    Ggraham, M. H. Confronting Multicollinearity in Ecological Multiple Regression. Ecology 84, 2809–2815 (2003).

  • 63.

    Rosseel, Y. Lavaan:anRpackageforstructuralequationmodeling and more. Version 0.5-12 (BETA). J. Stat. Softw. 48, 1–36 (2012).

    Article 

    Google Scholar 

  • 64.

    Grace, J. B. & Bollen, K. A. Interpreting the Results from Multiple Regression and Structural Equation Models. Bull. Ecol. Soc. Am. 86, 283–295 (2005).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Grace Moore ’21 receives Michel David-Weill Scholarship

    Revisiting a quantum past for a fusion future