in

Co-occurrence networks reveal the central role of temperature in structuring the plankton community of the Thau Lagoon

  • 1.

    Lalli, C. & Parsons, T. R. Biological Oceanography: An Introduction (Elsevier, 1997).

    Google Scholar 

  • 2.

    Mackas, D. L., Denman, K. L. & Abbott, M. R. Plankton patchiness: Biology in the physical vernacular. Bull. Mar. Sci. 37, 652–674 (1985).

    Google Scholar 

  • 3.

    Kjerfve, B. & Magill, K. E. Geographic and hydrodynamic characteristics of shallow coastal lagoons. Mar. Geol. 88, 187–199 (1989).

    ADS 
    Article 

    Google Scholar 

  • 4.

    Kjerfve, B. Chapter 1, Coastal lagoons. In Elsevier Oceanography Series Vol. 60 (ed. Kjerfve, B.) 1–8 (Elsevier, 1994).

    Google Scholar 

  • 5.

    McManus, M. A. & Woodson, C. B. Plankton distribution and ocean dispersal. J. Exp. Biol. 215, 1008–1016 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Carr, M.-E. Estimation of potential productivity in Eastern Boundary Currents using remote sensing. Deep Sea Res. Part II 49, 59–80 (2001).

    ADS 
    Article 

    Google Scholar 

  • 7.

    Chavez, F. P. & Messié, M. A comparison of Eastern Boundary Upwelling Ecosystems. Prog. Oceanogr. 83, 80–96 (2009).

    ADS 
    Article 

    Google Scholar 

  • 8.

    Schubert, H. & Telesh, I. Estuaries and coastal lagoons. In Biological Oceanography of the Baltic Sea (eds Snoeijs-Leijonmalm, P. et al.) 483–509 (Springer Netherlands, 2017). https://doi.org/10.1007/978-94-007-0668-2_13.

    Chapter 

    Google Scholar 

  • 9.

    Pecqueur, D. et al. Dynamics of microbial planktonic food web components during a river flash flood in a Mediterranean coastal lagoon. Hydrobiologia 673, 13–27 (2011).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Deininger, A. et al. Simulated terrestrial runoff triggered a phytoplankton succession and changed seston stoichiometry in coastal lagoon mesocosms. Mar. Environ. Res. 119, 40–50 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 11.

    Newton, A. & Mudge, S. M. Temperature and salinity regimes in a shallow, mesotidal lagoon, the Ria Formosa, Portugal. Estuar. Coast. Shelf Sci. 57, 73–85 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 12.

    Huang, J., Gao, J. & Hörmann, G. Hydrodynamic-phytoplankton model for short-term forecasts of phytoplankton in Lake Taihu, China. Limnologica 42, 7–18 (2012).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Pérez-Ruzafa, A. et al. Connectivity between coastal lagoons and sea: Asymmetrical effects on assemblages’ and populations’ structure. Estuar. Coast. Shelf Sci. 216, 171–186 (2019).

    ADS 
    Article 

    Google Scholar 

  • 14.

    Dube, A., Jayaraman, G. & Rani, R. Modelling the effects of variable salinity on the temporal distribution of plankton in shallow coastal lagoons. J. Hydro-environ. Res. 4, 199–209 (2010).

    Article 

    Google Scholar 

  • 15.

    Pulina, S., Satta, C. T., Padedda, B. M., Sechi, N. & Lugliè, A. Seasonal variations of phytoplankton size structure in relation to environmental variables in three Mediterranean shallow coastal lagoons. Estuar. Coast. Shelf Sci. 212, 95–104 (2018).

    ADS 
    Article 

    Google Scholar 

  • 16.

    Millet, B. & Cecchi, P. Wind-induced hydrodynamic control of the phytoplankton biomass in a lagoon ecosystem. Limnol. Oceanogr. 37, 140–146 (1992).

    ADS 
    Article 

    Google Scholar 

  • 17.

    Souchu, P. et al. Influence of shellfish farming activities on the biogeochemical composition of the water column in Thau lagoon. Mar. Ecol. Prog. Ser. 218, 141–152 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 18.

    Paphitis, D. & Collins, M. B. Sediment resuspension events within the (microtidal) coastal waters of Thermaikos Gulf, northern Greece. Cont. Shelf Res. 25, 2350–2365 (2005).

    ADS 
    Article 

    Google Scholar 

  • 19.

    Trombetta, T. et al. Water temperature drives phytoplankton blooms in coastal waters. PLoS One 14, e0214933 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Faust, K. & Raes, J. Microbial interactions: From networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 21.

    Fuhrman, J. A., Cram, J. A. & Needham, D. M. Marine microbial community dynamics and their ecological interpretation. Nat. Rev. Microbiol. 13, 133–146 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Trombetta, T., Vidussi, F., Roques, C., Scotti, M. & Mostajir, B. Marine microbial food web networks during phytoplankton bloom and non-bloom periods: Warming favors smaller organism interactions and intensifies trophic cascade. Front. Microbiol. 11, 502336 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    Needham, D. M. & Fuhrman, J. A. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat. Microbiol. 1, 16005 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 24.

    Hemraj, D. A., Hossain, A., Ye, Q., Qin, J. G. & Leterme, S. C. Anthropogenic shift of planktonic food web structure in a coastal lagoon by freshwater flow regulation. Sci. Rep. 7, 44441 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Bec, B., Husseini Ratrema, J., Collos, Y., Souchu, P. & Vaquer, A. Phytoplankton seasonal dynamics in a Mediterranean coastal lagoon: Emphasis on the picoeukaryote community. J. Plankton Res. 27, 881–894 (2005).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Collos, Y. et al. Oligotrophication and emergence of picocyanobacteria and a toxic dinoflagellate in Thau lagoon, southern France. J. Sea Res. 61, 68–75 (2009).

    ADS 
    Article 

    Google Scholar 

  • 27.

    Collos, Y. et al. Pheopigment dynamics, zooplankton grazing rates and the autumnal ammonium peak in a Mediterranean lagoon. Hydrobiologia 550(1), 83–93 (2005).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Gangnery, A. et al. Growth model of the Pacific oyster, Crassostrea gigas, cultured in Thau Lagoon (Méditerranée, France). Aquaculture 215, 267–290 (2003).

    Article 

    Google Scholar 

  • 29.

    Pernet, F. et al. Marine diatoms sustain growth of bivalves in a Mediterranean lagoon. J. Sea Res. 68, 20–32 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 30.

    Rose, J. M. & Caron, D. A. Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnol. Oceanogr. 52, 886–895 (2007).

    ADS 
    Article 

    Google Scholar 

  • 31.

    Kordas, R. L., Harley, C. D. G. & O’Connor, M. I. Community ecology in a warming world: The influence of temperature on interspecific interactions in marine systems. J. Exp. Mar. Biol. Ecol. 400, 218–226 (2011).

    Article 

    Google Scholar 

  • 32.

    Jones, K. J. & Gowen, R. J. Influence of stratification and irradiance regime on summer phytoplankton composition in coastal and shelf seas of the British Isles. Estuar. Coast. Shelf Sci. 30, 557–567 (1990).

    ADS 
    Article 

    Google Scholar 

  • 33.

    Bosak, S., Godrijan, J. & Šilović, T. Dynamics of the marine planktonic diatom family Chaetocerotaceae in a Mediterranean coastal zone. Estuar. Coast. Shelf Sci. 180, 69–81 (2016).

    ADS 
    Article 

    Google Scholar 

  • 34.

    Wagner, C. & Adrian, R. Consequences of changes in thermal regime for plankton diversity and trait composition in a polymictic lake: A matter of temporal scale. Freshw. Biol. 56, 1949–1961 (2011).

    Article 

    Google Scholar 

  • 35.

    Rynearson, T. A., Flickinger, S. A. & Fontaine, D. N. Metabarcoding reveals temporal patterns of community composition and realized thermal niches of Thalassiosira spp. (Bacillariophyceae) from the Narragansett Bay long-term plankton time series. Biology 9, 19 (2020).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Delaney, M. P. Effects of temperature and turbulence on the predator–prey interactions between a heterotrophic flagellate and a marine bacterium. Microb. Ecol. 45, 218–225 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 37.

    Peter, K. H. & Sommer, U. Phytoplankton cell size: Intra- and interspecific effects of warming and grazing. PLoS One 7, e49632 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    van Donk, E. & Kilham, S. S. Temperature effects on silicon- and phosphorus-limited growth and competitive interactions among three diatoms. J. Phycol. 26, 40–50 (1990).

    Article 

    Google Scholar 

  • 39.

    Stelzer, C.-P. Population growth in planktonic rotifers. Does temperature shift the competitive advantage for different species? In Rotifera VIII: A Comparative Approach (eds Wurdak, E. et al.) 349–353 (Springer Netherlands, 1998).

    Chapter 

    Google Scholar 

  • 40.

    Arandia-Gorostidi, N., Weber, P. K., Alonso-Sáez, L., Morán, X. A. G. & Mayali, X. Elevated temperature increases carbon and nitrogen fluxes between phytoplankton and heterotrophic bacteria through physical attachment. ISME 11, 641–650 (2017).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Peacock, E. E., Olson, R. J. & Sosik, H. M. Parasitic infection of the diatom Guinardia delicatula, a recurrent and ecologically important phenomenon on the New England Shelf. Mar. Ecol. Prog. Sci. 503, 1–10 (2014).

    ADS 
    Article 

    Google Scholar 

  • 42.

    Käse, L. et al. Host-parasitoid associations in marine planktonic time series: Can metabarcoding help reveal them?. PLoS One 16, e0244817 (2021).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 43.

    Caron, D. A., Dennett, M. R., Lonsdale, D. J., Moran, D. M. & Shalapyonok, L. Microzooplankton herbivory in the Ross Sea, Antarctica. Deep Sea Res. Part II 47, 3249–3272 (2000).

    ADS 
    Article 

    Google Scholar 

  • 44.

    Vidussi, F. et al. Effects of experimental warming and increased ultraviolet B radiation on the Mediterranean plankton food web. Limnol. Oceanogr. 56, 206–218 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 45.

    Balas, L. & Özhan, E. Three-dimensional modelling of stratified coastal waters. Estuar. Coast. Shelf Sci. 54, 75–87 (2002).

    ADS 
    Article 

    Google Scholar 

  • 46.

    Dalu, T., Richoux, N. B. & Froneman, P. W. Distribution of benthic diatom communities in a permanently open temperate estuary in relation to physico-chemical variables. S. Afr. J. Bot. 107, 31–38 (2016).

    Article 

    Google Scholar 

  • 47.

    Sommer, U., Peter, K. H., Genitsaris, S. & Moustaka-Gouni, M. Do marine phytoplankton follow Bergmann’s rule sensu lato?. Biol. Rev. 92, 1011–1026 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Kirk, J. T. O. Light and Photosynthesis in Aquatic Ecosystems (Cambridge University Press, 1994).

    Book 

    Google Scholar 

  • 49.

    Litchman, E., de TezanosPinto, P., Klausmeier, C. A., Thomas, M. K. & Yoshiyama, K. Linking traits to species diversity and community structure in phytoplankton. In Fifty years after the “Homage to Santa Rosalia”: Old and new paradigms on biodiversity in aquatic ecosystems (eds Naselli-Flores, L. & Rossetti, G.) 15–28 (Springer Netherlands, 2010).

    Chapter 

    Google Scholar 

  • 50.

    Unrein, F., Gasol, J. M., Not, F., Forn, I. & Massana, R. Mixotrophic haptophytes are key bacterial grazers in oligotrophic coastal waters. ISME 8, 164–176 (2014).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Polimene, L. et al. Modelling a light-driven phytoplankton succession. J. Plankton Res. 36, 214–229 (2014).

    CAS 
    Article 

    Google Scholar 

  • 52.

    Hatzaki, M. et al. Seasonal aspects of an objective climatology of anticyclones affecting the Mediterranean. J. Clim. 27, 9272–9289 (2014).

    ADS 
    Article 

    Google Scholar 

  • 53.

    Mostajir, B. et al. Experimental test of the effect of ultraviolet-B radiation in a planktonic community. Limnol. Oceanogr. 44, 586–596 (1999).

    ADS 
    Article 

    Google Scholar 

  • 54.

    Lacuna, D. G. & Uye, S.-I. Influence of mid-ultraviolet (UVB) radiation on the physiology of the marine planktonic copepod Acartia omorii and the potential role of photoreactivation. J. Plankton Res. 23, 143–156 (2001).

    Article 

    Google Scholar 

  • 55.

    Halac, S. et al. An in situ enclosure experiment to test the solar UVB impact on plankton in a high-altitude mountain lake. I. Lack of effect on phytoplankton species composition and growth. J. Plankton Res. 19, 1671–1686 (1997).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Souchu, P. et al. Patterns in nutrient limitation and chlorophyll a along an anthropogenic eutrophication gradient in French Mediterranean coastal lagoons. Can. J. Fish. Aquat. Sci. 67, 743–753 (2010).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Litchman, E. & Klausmeier, C. A. Trait-based community ecology of phytoplankton. Annu. Rev. Ecol. Evol. Syst. 39, 615–639 (2008).

    Article 

    Google Scholar 

  • 58.

    Reid, P. C., Lancelot, C., Gieskes, W. W. C., Hagmeier, E. & Weichart, G. Phytoplankton of the North Sea and its dynamics: A review. Neth. J. Sea Res. 26, 295–331 (1990).

    Article 

    Google Scholar 

  • 59.

    Derolez, V. et al. Two decades of oligotrophication: Evidence for a phytoplankton community shift in the coastal lagoon of Thau (Mediterranean Sea, France). Estuar. Coast. Shelf Sci. 241, 106810 (2020).

    Article 

    Google Scholar 

  • 60.

    Yool, A., Martin, A. P., Fernández, C. & Clark, D. R. The significance of nitrification for oceanic new production. Nature 447, 999–1002 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 61.

    Constantin, S., Constantinescu, Ș & Doxaran, D. Long-term analysis of turbidity patterns in Danube Delta coastal area based on MODIS satellite data. J. Mar. Syst. 170, 10–21 (2017).

    Article 

    Google Scholar 

  • 62.

    de Jorge, V. N. & van Beusekom, J. E. E. Wind- and tide-induced resuspension of sediment and microphytobenthos from tidal flats in the Ems estuary. Limnol. Oceanogr. 40, 776–778 (1995).

    ADS 
    Article 

    Google Scholar 

  • 63.

    Ubertini, M. et al. Spatial variability of benthic-pelagic coupling in an estuary ecosystem: Consequences for microphytobenthos resuspension phenomenon. PLoS One 7, e44155 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    Madoni, P. Benthic ciliates in Adriatic Sea lagoons. Eur. J. Protistol. 42, 165–173 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 65.

    Cruz, J. et al. Plankton community and copepod production in a temperate coastal lagoon: What is changing in a short temporal scale?. J. Sea Res. 157, 101858 (2020).

    Article 

    Google Scholar 

  • 66.

    Audouin, J. Hydrologie de l’étang de Thau. Rev. Trav. Inst. Pêches Marit. 26, 5–104 (1962).

    Google Scholar 

  • 67.

    Byun, D. S., Wang, X. H. & Holloway, P. E. Tidal characteristic adjustment due to dyke and seawall construction in the Mokpo Coastal Zone, Korea. Estuar. Coast. Shelf Sci. 59, 185–196 (2004).

    ADS 
    Article 

    Google Scholar 

  • 68.

    Stefanidou, N., Genitsaris, S., Lopez-Bautista, J., Sommer, U. & Moustaka-Gouni, M. Unicellular eukaryotic community response to temperature and salinity variation in mesocosm experiments. Front. Microbiol. 9, 2444 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 69.

    Xu, N. et al. Effects of temperature, salinity and irradiance on the growth of the harmful dinoflagellate Prorocentrum donghaiense Lu. Harmful Algae 9, 13–17 (2010).

    Article 

    Google Scholar 

  • 70.

    Greenwald, G. M. & Hurlbert, S. H. Microcosm analysis of salinity effects on coastal lagoon plankton assemblages. In Saline Lakes V (ed. Hurlbert, S. H.) 307–335 (Springer Netherlands, 1993).

    Chapter 

    Google Scholar 

  • 71.

    Fiandrino, A., Giraud, A., Robin, S. & Pinatel, C. Validation d’une méthode d’estimation des volumes d’eau échangés entre la mer et les lagunes et définition d’indicateurs hydrodynamiques associés (2012).

  • 72.

    Mostajir, B., Mas, S., Parin, D. & Vidussi, F. High-Frequency physical, biogeochemical and meteorological data of Coastal Mediterranean Thau Lagoon Observatory. SEANOE (2018).

  • 73.

    Données Publiques de Météo-France—Accueil. https://donneespubliques.meteofrance.fr/.

  • 74.

    Kraberg, A., Baumann, M. & Dürselen, C.-D. Coastal phytoplankton: Photo guide for Northern European seas (Univerza v Ljubljani, 2010).

    Google Scholar 

  • 75.

    Bérard-Therriault, L., Poulin, M. & Bossé, L. Guide d’identification du phytoplancton marin de l’estuaire et du golfe du Saint-Laurent incluant également certains protozoaires Canadian Special Publication of Fisheries and Aquatic Sciences No. 128 (NRC Research Press, 1999).

    Google Scholar 


  • Source: Ecology - nature.com

    Mitigating hazards with vulnerability in mind

    Proteomic traits vary across taxa in a coastal Antarctic phytoplankton bloom