in

Cochlear shape distinguishes southern African early hominin taxa with unique auditory ecologies

  • 1.

    Spoor, F., Wood, B. A. & Zonneveld, F. Implications of early hominid labyrinthine morphology for evolution of human bipedal locomotion. Nature 369, 645–648 (1994).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Braga, J. et al. Disproportionate cochlear length in genus Homo shows a high phylogenetic signal during apes’ hearing evolution. PLoS ONE 10, e0127780 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Urciuoli, A. et al. The evolution of the vestibular apparatus in apes and humans. Elife 9, e51261 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Ward, D. L. et al. Early life malnutrition and fluctuating asymmetry in the rat bony labyrinth. Anat. Rec. https://doi.org/10.1002/ar.24601 (2021).

    Article 

    Google Scholar 

  • 5.

    Gunz, P., Ramsier, M., Kuhrig, M., Hublin, J.-J. & Spoor, F. The mammalian bony labyrinth reconsidered, introducing a comprehensive geometric morphometric approach. J. Anat. 220, 529–543 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Grohé, C., Tseng, Z. J., Lebrun, R., Boistel, R. & Flynn, J. J. Bony labyrinth shape variation in extant Carnivora: A case study of Musteloidea. J. Anat. 228, 366–383 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Mennecart, B. et al. Bony labyrinth morphology clarifies the origin and evolution of deer. Sci. Rep. 7, 13176 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 8.

    Vater, M. & Kössl, M. Comparative aspects of cochlear functional organization in mammals. Hear. Res. 273, 89–99 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Manoussaki, D. et al. The influence of cochlear shape on low-frequency hearing. Proc. Natl. Acad. Sci. U.S.A. 105, 6162–6166 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Wannaprasert, T. & Jeffery, N. Variations of mammalian cochlear shape in relation to hearing frequency and skull size. Trop. Nat. Hist. 15, 41–54 (2015).

    Google Scholar 

  • 11.

    Beaudet, A. The inner ear of the Paranthropus specimen DNH 22 from Drimolen, South Africa. Am. J. Phys. Anthropol. 170, 439–446 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 12.

    Kendall, D. G. Shape manifolds, procrustean metrics and complex projective spaces. Bull. Lond. Math. Soc. 16, 81–121 (1984).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 13.

    Srivastava, A. & Klassen, E. Functional and Shape Data Analysis (Springer, 2016).

    MATH 
    Book 

    Google Scholar 

  • 14.

    Braga, J. et al. Efficacy of diffeomorphic surface matching and 3D geometric morphometrics for taxonomic discrimination of Early Pleistocene hominin mandibular molars. J. Hum. Evol. 130, 21–35 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 15.

    Braga, J. et al. Cochlear shape reveals that the human organ of hearing is sex-typed from birth. Sci. Rep. 9, 10889 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Srivastava, A., Klassen, E., Joshi, S. H. & Jermyn, I. H. Shape analysis of elastic curves in Euclidean spaces. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1415–1428 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Grine, F. E. The alpha taxonomy of Australopithecus africanus. In The Paleobiology of Australopithecus (eds Reed, K. E. et al.) 73–104 (Springer, 2013).

    Chapter 

    Google Scholar 

  • 18.

    Grine, F. E., Delanty, M. M. & Wood, B. A. Variation in mandibular postcanine dental morphology and hominin species representation in Member 4, Sterkfontein, South Africa. In The Paleobiology of Australopithecus (eds Reed, K. E. et al.) 125–146 (Springer, 2013).

    Chapter 

    Google Scholar 

  • 19.

    Clarke, R. J. Australopithecus from Sterkfontein caves, South Africa. In The Paleobiology of Australopithecus (eds Reed, K. E. et al.) 105–123 (Springer, 2013).

    Chapter 

    Google Scholar 

  • 20.

    Wood, B. A. & Boyle, E. K. Hominin taxic diversity: Fact or fantasy?. Yearb. Phys. Anthropol. 159, S37–S78 (2016).

    Article 

    Google Scholar 

  • 21.

    Martin, J. M. et al. Drimolen cranium DNH 155 documents microevolution in an early hominin species. Nat. Ecol. Evol. 5, 38–45 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 22.

    Rak, Y., Kimbel, W. H., Moggi-Cecchi, J., Lockwood, C. A. & Menter, C. The DNH 7 skull of Australopithecus robustus from Drimolen (Main Quarry). South Africa. J. Hum. Evol. 151, 102913 (2021).

    PubMed 

    Google Scholar 

  • 23.

    Moggi-Cecchi, J., Tobias, P. V. & Beynon, A. D. The mixed dentition and associated skull fragments of a juvenile fossil hominid from Sterkfontein South Africa. Am. J. Phys. Anthropol. 106, 425–465 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 24.

    Curnoe, D. & Tobias, P. V. Description, new reconstruction, comparative anatomy, and classification of the Sterkfontein Stw 53 cranium, with discussions about the taxonomy of other southern African early Homo remains. J. Hum. Evol. 50, 36–77 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 25.

    Clarke, R. J. Latest information on Sterkfontein’s Australopithecus skeleton and a new look at Australopithecus. S. Afr. J. Sci. 104, 443–449 (2008).

    ADS 
    Article 

    Google Scholar 

  • 26.

    Braga, J. et al. A new partial temporal bone of a juvenile hominin from the site of Kromdraai B (South Africa). J. Hum. Evol. 65, 447–456 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 27.

    Lande, R. Natural selection and random genetic drift in phenotypic evolution. Evol. 30, 314–334 (1976).

    Article 

    Google Scholar 

  • 28.

    Bookstein, F. & Mitteroecker, P. Comparing covariance matrices by relative eigenanalysis, with applications to organismal biology. Evol. Biol. 41, 336–350 (2014).

    Article 

    Google Scholar 

  • 29.

    Le Maitre, A. & Mitteroecker, P. Multivariate comparison of variance in R. Methods Ecol. Evol. 10, 1380–1392 (2019).

    Article 

    Google Scholar 

  • 30.

    Beaulieu, J. M., Jhwueng, D. C., Boettiger, C. & O’Meara, B. C. Modeling stabilizing selection: expanding the Ornstein-Uhlenbeck model of adaptive evolution. Evol. 66, 2369–2383 (2012).

    Article 

    Google Scholar 

  • 31.

    Quam, R. et al. Early hominin auditory ossicles from South Africa. Proc. Natl. Acad. Sci. U.S.A. 110, 8847–8851 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Mongle, C. S., Strait, D. S. & Grine, F. E. Expanded character sampling underscores phylogenetic stability of Ardipithecus ramidus as a basal hominin. J. Hum. Evol. 131, 28–39 (2020).

    Article 

    Google Scholar 

  • 33.

    Sponheimer, M. & Lee-Thorp, J. A. Biogeochemical evidence for the environments of early Homo in South Africa. In The First Humans: Origin and Early Evolution of the Genus Homo (eds Grine, F. E. et al.) 185–194 (Springer, 2009).

    Chapter 

    Google Scholar 

  • 34.

    Ni, G., Elliott, S. J., Ayat, M. & Teal, P. D. Modelling cochlear mechanics. Biomed. Res. Int. 2, 150637 (2014).

    Google Scholar 

  • 35.

    Cai, H., Manoussaki, D. & Chadwick, R. Effects of coiling on the micromechanics of the mammalian cochlea. J. R. Soc. Interface 2, 341–348 (2005).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Tang, Z. et al. Research on the characteristics of dynamic behavior of basilar membrane in spiral cochlea. J. Vibroengineering 19, 3809–3821 (2017).

    Article 

    Google Scholar 

  • 37.

    Osmanski, M. S., Song, X., Guo, Y. & Wang, X. Frequency discrimination in the common marmoset (Callithrix jacchus). Hear. Res. 341, 1–8 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Quam, R. M. et al. Early hominin auditory capacities. Sci. Adv. 1, e1500355 (2015).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Kojima, S. Comparison of auditory functions in the chimpanzee and human. Folia Primatol. 55, 62–72 (1990).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Machens, C. K. et al. Single auditory neurons rapidly discriminate conspecific communication signals. Nat. Neurosci. 6, 341–342 (2003).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Zoloth, S. R. et al. Species-specific perceptual processing of vocal sounds by monkeys. Science 204, 870–873 (1979).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Gould, S. J. & Lewontin, R. C. The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Proc. R. Soc. Lond. B. 205, 581–598 (1979).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Broom, R. The Pleistocene anthropoid apes of South Africa. Nature 142, 377–379 (1938).

    ADS 
    Article 

    Google Scholar 

  • 44.

    Coqueugniot, H. et al. Early brain growth in Homo erectus and implications for cognitive ability. Nature 431, 299–302 (2004).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Carayon, D., Vaysse, F., Tramini, P., Dumoncel, J. & Esclassan, R. The age-related maturational pattern of the human subarcuate fossa. C. R. Palevol. 14, 139–145 (2015).

    Article 

    Google Scholar 

  • 46.

    Clarke, R.J. The cranium of the Swartkrans hominid SK 847 and its relevance to human origins. Ph.D. Thesis (University of the Witwatersrand,1977).

  • 47.

    Spoor, F. The comparative morphology and phylogeny of the human bony labyrinth. Ph.D. Thesis. (Utrecht University, 1993).

  • 48.

    Boyer, D. M. et al. Algorithms to automatically quantify the geometric similarity of anatomical surface. Proc. Natl. Acad. Sci. U.S.A. 108, 18221–18226 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 49.

    Durrleman, S., Pennec, X., Trouvé, A., Ayache, N. & Braga, J. Comparison of the endocranial ontogenies between chimpanzees and bonobos via temporal regression and spatiotemporal registration. J. Hum. Evol. 62, 74–88 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Kim, K., Kim, P. T., Koo, J. & Pierrynowski, M. R. Frenet-Serret and the estimation of curvature and torsion. IEEE J. Select. Top. Sig. Process. 7, 646–654 (2013).

    ADS 
    Article 

    Google Scholar 

  • 51.

    Pietsch, M. et al. Spiral form of the human cochlea results from spatial constraints. Sci. Rep. 7, 7500 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Huang, W., Absil, P.-A., Gallivan, K. & Hand, P. ROPTLIB: an object-oriented C++ library for optimization on Riemannian manifolds (2016). https://www.math.fsu.edu/~whuang2/Indices/index_ROPTLIB.html

  • 53.

    Dryden, I.L. & Mardia, K.V. Statistical Shape analysis, with Applications in R. Second Edition (John Wiley and Sons, 2016). R package version 1.2.6. https://cran.r-project.org/web/packages/shapes/index.html

  • 54.

    Kuhn, M. & Vaughan, D. Package ‘yardstick’. Tidy Characterizations of Model Performance. R package version 0.0.7. https://CRAN.R-project.org/package=yardstick (2020).

  • 55.

    Rosenberg, A. & Hirschberg, J. V-Measure: A Conditional Entropy-Based External Cluster Evaluation Measure. Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, 410–420 (2007).

  • 56.

    Nowosad, J. & Stepinski., T.F. ,. Spatial association between regionalizations using the information-theoretical V-measure. Int. J. Geogr. Inf. Sci. 32, 1–16 (2018).

    Article 

    Google Scholar 

  • 57.

    Schlager, S. & Morpho, R. Shape analysis in R. In Statistical Shape and Deformation Analysis (eds Zheng, G. et al.) 217–256 (Academic Press, 2017).

    Chapter 

    Google Scholar 

  • 58.

    Adams, D., Collyer, M., Kaliontzopoulou, A. & Baken, E. Geomorph: Software for geometric morphometric analyses. R package version 3.3.2. https://cran.r-project.org/package=geomorph (2021).

  • 59.

    Cardini, A., O’Higgins, P. & Rohlf, F. J. Seeing distinct groups where there are none: Spurious patterns from between group PCA. Evol. Biol. 46, 303–316 (2019).

    Article 

    Google Scholar 

  • 60.

    Holsinger, K. E. & Weir, B. S. Genetics in geographically structured populations: Defining, estimating and interpreting FST. Nat. Rev. Genet. 10, 639–650 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 61.

    Fischer, A., Pollack, J., Thalmann, O., Nickel, B. & Pääbo, S. Demographic history and genetic differentiation in apes. Curr. Biol. 16, 1133–1138 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 62.

    Fischer, A. et al. Bonobos fall within the genomic variation of chimpanzees. PLoS ONE 6, e21605 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 63.

    Dos Reis, M. et al. Using phylogenomic data to explore the effects of relaxed clocks and calibration strategies on divergence time estimation: primates as a test case. Syst. Biol. 67, 594–615 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    Rieux, A. & Balloux, F. Inferences from tip-calibrated phylogenies: A review and a practical guide. Mol. Ecol. 25, 1911–1924 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Countering climate change with cool pavements

    Genetic engineering of marine cyanophages reveals integration but not lysogeny in T7-like cyanophages