in

Collective behaviour can stabilize ecosystems

  • 1.

    Chesson, P. General theory of competitive coexistence in spatially-varying environments. Theor. Popul. Biol. 58, 211–237 (2000).

  • 2.

    Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton Univ. Press, 2001).

  • 3.

    Ellner, S. P., Snyder, R. E., Adler, P. B. & Hooker, G. An expanded modern coexistence theory for empirical applications. Ecol. Lett. 22, 3–18 (2019).

  • 4.

    Rosenzweig, M. L. Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171, 385–387 (1971).

  • 5.

    Costantino, R. F., Cushing, J. M., Dennis, B. & Desharnais, R. A. Experimentally induced transitions in the dynamic behaviour of insect populations. Nature 375, 227–230 (1995).

  • 6.

    Fussmann, G. F., Ellner, S. P., Shertzer, K. W. & Hairston, N. G. Jr. Crossing the Hopf bifurcation in a live predator-prey system. Science 290, 1358–1360 (2000).

  • 7.

    Dalziel, B. D. et al. Persistent chaos of measles epidemics in the prevaccination United States caused by a small change in seasonal transmission patterns. PLoS Comput. Biol. 12, e1004655 (2016).

  • 8.

    Darwin, C. On the Origin of Species by Means of Natural Selection, or The Preservation of Favoured Races in the Struggle for Life (John Murray, 1859).

  • 9.

    Gause, G. F. Experimental analysis of Vito Volterra’s mathematical theory of the struggle for existence. Science 79, 16–17 (1934).

  • 10.

    Hutchinson, G. E. The paradox of the plankton. Am. Nat. 95, 137–145 (1961).

    Article 

    Google Scholar 

  • 11.

    Chesson, P. Multispecies competition in variable environments. Theor. Popul. Biol. 45, 227–276 (1994).

    Article 

    Google Scholar 

  • 12.

    McCann, K., Hastings, A. & Huxel, G. R. Weak trophic interactions and the balance of nature. Nature 395, 794–798 (1998).

  • 13.

    Rooney, N., McCann, K., Gellner, G. & Moore, J. C. Structural asymmetry and the stability of diverse food webs. Nature 442, 265–269 (2006).

  • 14.

    Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: networks, competition, and stability. Science 350, 663–666 (2015).

  • 15.

    May, R. M. Host-parasitoid systems in patchy environments: a phenomenological model. J. Anim. Ecol. 47, 833–844 (1978).

    Article 

    Google Scholar 

  • 16.

    Briggs, C. J. & Hoopes, M. F. Stabilizing effects in spatial parasitoid–host and predator–prey models: a review. Theor. Popul. Biol. 65, 299–315 (2004).

  • 17.

    Vicsek, T. & Zafeiris, A. Collective motion. Phys. Rep. 517, 71–140 (2012).

    Article 

    Google Scholar 

  • 18.

    Berdahl, A., Torney, C. J., Ioannou, C. C., Faria, J. J. & Couzin, I. D. Emergent sensing of complex environments by mobile animal groups. Science 339, 574–576 (2013).

  • 19.

    Nagy, M., Akos, Z., Biro, D. & Vicsek, T. Hierarchical group dynamics in pigeon flocks. Nature 464, 890–893 (2010).

  • 20.

    Dalziel, B. D., Corre, M. L., Côté, S. D. & Ellner, S. P. Detecting collective behaviour in animal relocation data, with application to migrating caribou. Methods Ecol. Evol. 7, 30–41 (2015).

    Article 

    Google Scholar 

  • 21.

    Torney, C. J. et al. Inferring the rules of social interaction in migrating caribou. Phil. Trans. R. Soc. B 373, 20170385 (2018).

  • 22.

    Fryxell, J. M., Mosser, A., Sinclair, A. R. E. & Packer, C. Group formation stabilizes predator–prey dynamics. Nature 449, 1041–1043 (2007).

  • 23.

    Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I. & Shochet, O. Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226 (1995).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Buhl, J. et al. From disorder to order in marching locusts. Science 312, 1402–1406 (2006).

  • 25.

    King, A. J., Fehlmann, G., Biro, D., Ward, A. J. & Fürtbauer, I. Re-wilding collective behaviour: an ecological perspective. Trends Ecol. Evol. 33, 347–357 (2018).

  • 26.

    Sumpter, D. J. T. Collective Animal Behavior (Princeton Univ. Press, 2010).

  • 27.

    Guttal, V. & Couzin, I. D. Social interactions, information use, and the evolution of collective migration. Proc. Natl Acad. Sci. USA 107, 16172–16177 (2010).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Barbier, M. & Watson, J. R. The spatial dynamics of predators and the benefits and costs of sharing information. PLoS Comput. Biol. 12, e1005147 (2016).

  • 29.

    Lotka, A. J. Analytical note on certain rhythmic relations in organic systems. Proc. Natl Acad. Sci. USA 6, 410–415 (1920).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Rosenzweig, M. L. & MacArthur, R. H. Graphical representation and stability conditions of predator-prey interactions. Am. Nat. 97, 209–223 (1963).

    Article 

    Google Scholar 

  • 31.

    Couzin, I. D., Krause, J., James, R., Ruxton, G. D. & Franks, N. R. Collective memory and spatial sorting in animal groups. J. Theor. Biol. 218, 1–11 (2002).

  • 32.

    Couzin, I. D., Krause, J., Franks, N. R. & Levin, S. A. Effective leadership and decision-making in animal groups on the move. Nature 433, 513–516 (2005).

  • 33.

    MacArthur, R. H. Population ecology of some warblers of northeastern coniferous forests. Ecology 39, 599–619 (1958).

    Article 

    Google Scholar 

  • 34.

    Dalziel, B. D., Thomann, E., Medlock, J. & De Leenheer, P. Global analysis of a predator-prey model with variable predator search rate. J. Math. Biol. 81, 159–183 (2020).

  • 35.

    Lukas, D. & Clutton-Brock, T. Social complexity and kinship in animal societies. Ecol. Lett. 21, 1129–1134 (2018).

  • 36.

    Purves, D. W., Lichstein, J. W., Strigul, N. & Pacala, S. W. Predicting and understanding forest dynamics using a simple tractable model. Proc. Natl Acad. Sci. USA 105, 17018–17022 (2008).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Dalziel, B. D. et al. Urbanization and humidity shape the intensity of influenza epidemics in U.S. cities. Science 362, 75–79 (2018).

  • 38.

    Monk, C. T. et al. How ecology shapes exploitation: a framework to predict the behavioural response of human and animal foragers along exploration-exploitation trade-offs. Ecol. Lett. 21, 779–793 (2018).

  • 39.

    Hutchins, D. A. & Fu, F. Microorganisms and ocean global change. Nat. Microbiol. 2, 17058 (2017).

  • 40.

    Zakem, E. J. et al. Ecological control of nitrite in the upper ocean. Nat. Commun. 9, 1206 (2018).

  • 41.

    Axtell, R. L. Zipf distribution of U.S. firm sizes. Science 293, 1818–1820 (2001).

  • 42.

    Turchin, P. et al. Quantitative historical analysis uncovers a single dimension of complexity that structures global variation in human social organization. Proc. Natl Acad. Sci. USA 115, E144–E151 (2018).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Press, W. H. Numerical Recipes in C (Cambridge Univ. Press, 1986).


  • Source: Ecology - nature.com

    Elsa Olivetti wins 2021 MIT Bose Award for Excellence in Teaching

    Using aluminum and water to make clean hydrogen fuel — when and where it’s needed