in

Combatting global grassland degradation

  • 1.

    Suttie, J. M. Reynolds, S. G. & Batello, C. Grasslands of the World (FAO, 2005).

  • 2.

    O’Mara, F. P. The role of grasslands in food security and climate change. Ann. Bot. 110, 1263–1270 (2012).

    Article 

    Google Scholar 

  • 3.

    Wilsey, B. J. The Biology of Grasslands (Oxford Univ. Press, 2018).

  • 4.

    White, R. P. Murray, S., Rohweder, M., Prince, S. D. & Thompson, K. M. Grassland Ecosystems (World Resources Institute, 2000).

  • 5.

    Gibbs, H. K. & Salmon, J. M. Mapping the world’s degraded lands. Appl. Geogr. 57, 12–21 (2015).

    Article 

    Google Scholar 

  • 6.

    Lark, T. J., Spawn, S. A., Bougie, M. & Gibbs, H. K. Cropland expansion in the United States produces marginal yields at high costs to wildlife. Nat. Commun. 11, 4295 (2020).

    Article 

    Google Scholar 

  • 7.

    Abberton, M., Conant, R. & Batello, C. (eds) Grassland Carbon Sequestration: Management, Policy and Economics (FAO, 2010).

  • 8.

    Gang, C. et al. Quantitative assessment of the contributions of climate change and human activities on global grassland degradation. Environ. Earth Sci. 72, 4273–4282 (2014).

    Article 

    Google Scholar 

  • 9.

    Dong, S., Kassam, K.-A. S., Tourrand, J. F. & Boone, R. B. (eds) Building Resilience of Human-Natural Systems of Pastoralism in the Developing World (Springer, 2016).

  • 10.

    Bengtsson, J. et al. Grasslands — more important for ecosystem services than you might think. Ecosphere 10, e02582 (2019).

    Article 

    Google Scholar 

  • 11.

    Kwon, H. Y. et al. in Economics of Land Degradation and Improvement – A Global Assessment for Sustainable Development (eds Nkonya, E., Mirzabaev, A. & von Braun, J.) 197–214 (Springer, 2015).

  • 12.

    Murphy, B. P., Andersen, A. N. & Parr, C. L. The underestimated biodiversity of tropical grassy biomes. Philos. Trans. R. Soc. B 371, 20150319 (2016).

    Article 

    Google Scholar 

  • 13.

    Smith, P. et al. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. B 363, 789–813 (2008).

    Article 

    Google Scholar 

  • 14.

    Mermoz, S., Bouvet, A., Toan, T. L. & Herold, M. Impacts of the forest definitions adopted by African countries on carbon conservation. Environ. Res. Lett. 13, 104014 (2018).

    Article 

    Google Scholar 

  • 15.

    Erdős, L. et al. The edge of two worlds: A new review and synthesis on Eurasian forest-steppes. Appl. Veg. Sci. 21, 345–362 (2018).

    Article 

    Google Scholar 

  • 16.

    Dengler, J., Janišová, M., Török, P. & Wellstein, C. Biodiversity of Palaearctic grasslands: a synthesis. Agric. Ecosyst. Environ. 182, 1–14 (2014).

    Article 

    Google Scholar 

  • 17.

    Bullock, J. M. et al. in The UK National Ecosystem Assessment Technical Report (UNEP-WCMC, 2011).

  • 18.

    Parr, C. L., Lehmann, C. E. R., Bond, W. J., Hoffmann, W. A. & Andersen, A. N. Tropical grassy biomes: misunderstood, neglected, and under threat. Trends Ecol. Evol. 29, 205–213 (2014).

    Article 

    Google Scholar 

  • 19.

    Venter, Z. S., Cramer, M. D. & Hawkins, H. J. Drivers of woody plant encroachment over Africa. Nat. Commun. 9, 2272 (2018).

    Article 

    Google Scholar 

  • 20.

    Palchan, D. & Torfstein, A. A drop in Sahara dust fluxes records the northern limits of the African Humid Period. Nat. Commun. 10, 3803 (2019).

    Article 

    Google Scholar 

  • 21.

    Wilson, J. B., Peet, R. K., Dengler, J. & Pärtel, M. Plant species richness: the world records. J. Veg. Sci. 23, 796–802 (2012).

    Article 

    Google Scholar 

  • 22.

    Eriksson, O. & Cousins, S. A. Historical landscape perspectives on grasslands in Sweden and the Baltic region. Land 3, 300–321 (2014).

    Article 

    Google Scholar 

  • 23.

    Bråthen, K., Pugnaire. F. I. & Bardgett, R. D. The paradox of forbs in grasslands and their legacy of the Mammoth steppe. Front. Ecol. Environ. (in the press).

  • 24.

    Shava, S. & Masuku, S. Living currency: The multiple roles of livestock in livelihood sustenance and exchange in the context of rural indigenous communities in southern Africa. South. Afr. J. Environ. Educ. https://doi.org/10.4314/sajee.v35i1.16 (2019).

    Article 

    Google Scholar 

  • 25.

    FAO. Livestock Keepers – Guardians of Biodiversity (FAO, 2009).

  • 26.

    Bond, W. J. Ancient grasslands at risk. Science 351, 120–122 (2016).

    Article 

    Google Scholar 

  • 27.

    Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103 (2015).

    Article 

    Google Scholar 

  • 28.

    Arbieu, U., Grünewald, C., Martín-López, B., Schleuning, M. & Böhning-Gaese, K. Large mammal diversity matters for wildlife tourism in Southern African Protected Areas: Insights for management. Ecosyst. Serv. 31, 481–490 (2018).

    Article 

    Google Scholar 

  • 29.

    Lavorel, S. et al. Historical trajectories in land use pattern and grassland ecosystem services in two European alpine landscapes. Reg. Environ. Change 17, 2251–2264 (2017).

    Article 

    Google Scholar 

  • 30.

    Scurlock, J. M. O. & Hall, D. O. The global carbon sink: a grassland perspective. Glob. Change Biol. 4, 229–233 (1998).

    Article 

    Google Scholar 

  • 31.

    Chang, J. et al. Climate warming from managed grasslands cancels the cooling effect of carbon sinks in sparsely grazed and natural grasslands. Nat. Commun. 12, 118 (2021).

    Article 

    Google Scholar 

  • 32.

    Goldstein, A. Protecting irrecoverable carbon in Earth’s ecosystems. Nat. Clim. Change 10, 287–295 (2020).

    Article 

    Google Scholar 

  • 33.

    Conant, R. T., Cerri, C. E., Osborne, B. B. & Paustian, K. Grassland management impacts on soil carbon stocks: a new synthesis. Ecol. Appl. 27, 662–668 (2017).

    Article 

    Google Scholar 

  • 34.

    IPBES. The IPBES Assessment Report on Land Degradation and Restoration (IPBES, 2018).

  • 35.

    Cao, J. et al. Grassland degradation on the Qinghai-Tibetan Plateau: reevaluation of causative factors. Rangel. Ecol. Manag. 72, 988–995 (2019).

    Article 

    Google Scholar 

  • 36.

    Andrade, B. O. et al. Grassland degradation and restoration: a conceptual framework of stages and thresholds illustrated by southern Brazilian grasslands. Nat. Conserv. 13, 95–104 (2015).

    Article 

    Google Scholar 

  • 37.

    Okpara, U. T. et al. A social-ecological systems approach is necessary to achieve land degradation neutrality. Environ. Sci. Policy 89, 59–66 (2018).

    Article 

    Google Scholar 

  • 38.

    Castro, A. J. et al. Ecosystem service trade-offs from supply to social demand: A landscape-scale spatial analysis. Landsc. Urban Plan. 132, 102–110 (2014).

    Article 

    Google Scholar 

  • 39.

    Felipe-Lucia, M. R. et al. Ecosystem services flows: why stakeholders’ power relationships matter. PLoS One 10, e0132232 (2015).

    Article 

    Google Scholar 

  • 40.

    Manning, P. et al. Redefining ecosystem multifunctionality. Nat. Ecol. Evol. 2, 427–436 (2018).

    Article 

    Google Scholar 

  • 41.

    Wang, S. et al. Management and land use change effects on soil carbon in northern China’s grasslands: a synthesis. Agric. Ecosyst. Environ. 142, 329–340 (2011).

    Article 

    Google Scholar 

  • 42.

    Allan, E. et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18, 834–843 (2015).

    Article 

    Google Scholar 

  • 43.

    Bullock, J. M., Aronson, J., Newton, A. C., Pywell, R. F. & Rey-Benayas, J. M. Restoration of ecosystem services and biodiversity: conflicts and opportunities. Trends Ecol. Evol. 26, 541–549 (2011).

    Article 

    Google Scholar 

  • 44.

    Ridding, L. E., Watson, S. C. L., Newton, A. C., Rowland, C. S. & Bullock, J. M. Ongoing, but slowing, habitat loss in a rural landscape over 85 years. Landsc. Ecol. 35, 257–273 (2020).

    Article 

    Google Scholar 

  • 45.

    Hilker, T., Natsagdorj, E., Waring, R. H., Lyapustin, A. & Wang, Y. J. Satellite observed widespread decline in Mongolian grasslands largely due to overgrazing. Glob. Chang. Biol. 20, 418–428 (2014).

    Article 

    Google Scholar 

  • 46.

    Poschlod, P. & WallisDeVries, M. F. The historical and socioeconomic perspective of calcareous grasslands – lessons from the distant and recent past. Biol. Conserv. 104, 361–376 (2002).

    Article 

    Google Scholar 

  • 47.

    Stevens, C. J., Dise, N. B., Mountford, J. O. & Gowing, D. J. Impact of nitrogen deposition on the species richness of grasslands. Science 303, 1876–1879 (2004).

    Article 

    Google Scholar 

  • 48.

    Aune, S., Bryn, A. & Hovstad, K. A. Loss of semi-natural grassland in a boreal landscape: impacts of agricultural intensification and abandonment. J. Land Use Sci. 13, 375–390 (2018).

    Article 

    Google Scholar 

  • 49.

    Veldman, J. W. et al. Where tree planting and forest expansion are bad for biodiversity and ecosystem services. Bioscience 65, 1011–1018 (2015).

    Article 

    Google Scholar 

  • 50.

    Shukla, P. R. et al. (eds) Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (CGIAR, 2019).

  • 51.

    Burrell, A. L., Evans, J. P. & De Kauwe, M. G. Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification. Nat. Commun. 11, 3853 (2020).

    Article 

    Google Scholar 

  • 52.

    Archer, S. R. et al. in Rangeland Systems: Processes, Management and Challenges (ed. Briske, D. D.) 25–84 (Springer, 2017).

  • 53.

    Zhang, G. et al. Exacerbated grassland degradation and desertification in Central Asia during 2000–2014. Ecol. Appl. 28, 442–456 (2018).

    Article 

    Google Scholar 

  • 54.

    Dudley, N. et al. Grassland and Savannah Ecosystems: An Urgent Need for Conservation and Sustainable Management (WWF Deutschland, 2020).

  • 55.

    Henderson, K. A. et al. Landowner perceptions of the value of natural forest and natural grassland in a mosaic ecosystem in southern Brazil. Sustain. Sci. 11, 321–330 (2016).

    Article 

    Google Scholar 

  • 56.

    Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).

    Article 

    Google Scholar 

  • 57.

    Durigan, G., Pilon, N. A. P., Assis, G. B., Souza, F. M. & Baitello, J. B. Plantas Pequenas do Cerrado: Biodiversidade Negligenciada. (Instituto Florestal, Secretaria do Meio Ambiente, 2018).

  • 58.

    Assandri, G., Bogliani, G., Pedrini, P. & Brambilla, M. Toward the next Common Agricultural Policy reform: Determinants of avian communities in hay meadows reveal current policy’s inadequacy for biodiversity conservation in grassland ecosystems. J. Appl. Ecol. 56, 604–617 (2019).

    Article 

    Google Scholar 

  • 59.

    Liang, L., Chen, F., Shi, L. & Niu, S. NDVI-derived forest area change and its driving factors in China. PLoS One 13, e0205885 (2018).

    Article 

    Google Scholar 

  • 60.

    Cao, S. et al. Damage caused to the environment by reforestation policies in arid and semi-arid areas of China. Ambio 39, 279–283 (2010).

    Article 

    Google Scholar 

  • 61.

    Cao, S., Wang, G. & Chen, l Questionable value of planting thirsty trees in dry regions. Nature 465, 31 (2010).

    Article 

    Google Scholar 

  • 62.

    Zastrow, M. China’s tree-planting drive could falter in a warming world. Nature 573, 474–475 (2019).

    Article 

    Google Scholar 

  • 63.

    Landau, E., da Silva, G. A., Moura, L., Hirsch, A., & Guimaraes, D. Dinâmica da produção agropecuária e da paisagem natural no Brasil nas últimas décadas: sistemas agrícolas, paisagem natural e análise integrada do espaço rural (Embrapa Milho e Sorgo-Livro científico (ALICE), 2020).

  • 64.

    Wolff, S., Schrammeijer, E. A., Schulp, C. J. & Verburg, P. H. Meeting global land restoration and protection targets: What would the world look like in 2050? Glob. Environ. Change 52, 259–272 (2018).

    Article 

    Google Scholar 

  • 65.

    Bastin, J. F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    Article 

    Google Scholar 

  • 66.

    Veldman, J. W. et al. Comment on “The global tree restoration potential”. Science 366, eaay7976 (2019).

    Article 

    Google Scholar 

  • 67.

    Dass, P., Houlton, B. Z., Wang, Y. & Warlind, D. Grasslands may be more reliable carbon sinks than forests in California. Environ. Res. Lett. 13, 074027 (2018).

    Article 

    Google Scholar 

  • 68.

    Jackson, R. B., Banner, J. L., Jobbágy, E. G., Pockman, W. T. & Wall, D. H. Ecosystem carbon loss with woody plant invasion of grasslands. Nature 418, 623–626 (2002).

    Article 

    Google Scholar 

  • 69.

    Jackson, R. B. et al. The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annu. Rev. Ecol. Evol. Syst. 48, 419–445 (2017).

    Article 

    Google Scholar 

  • 70.

    Berthrong, S. T., Jobbágy, E. G. & Jackson, R. B. A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecol. Appl. 19, 2228–2241 (2009).

    Article 

    Google Scholar 

  • 71.

    Kirschbaum, M. U. F. et al. Implications of albedo changes following afforestation on the benefits of forests as carbon sinks. Biogeosciences 8, 3687–3696 (2011).

    Article 

    Google Scholar 

  • 72.

    Conant, R. T. Challenges and Opportunities for Carbon Sequestration in Grassland Systems. A Technical Report on Grassland Management and Climate Change Mitigation (FAO, 2010).

  • 73.

    Wu, G. L. et al. Trade-off between vegetation type, soil erosion control and surface water in global semi-arid regions: A meta-analysis. J. Appl. Ecol. 57, 875–885 (2020).

    Article 

    Google Scholar 

  • 74.

    Veldman, J. W. et al. Tyranny of trees in grassy biomes. Science 347, 484–485 (2015).

    Article 

    Google Scholar 

  • 75.

    Burrascano, S. et al. Current European policies are unlikely to jointly foster carbon sequestration and protect biodiversity. Biol. Conserv. 201, 370–376 (2016).

    Article 

    Google Scholar 

  • 76.

    Vanak, A. T., Hiremath, A. & Rai, N. Wastelands of the mind: Identity crisis of India’s tropical savannas. Curr. Conserv. 7, 16–23 (2014).

    Google Scholar 

  • 77.

    Ratnam, J., Tomlinson, K. W., Rasquinha, D. N. & Sankaran, M. Savannahs of Asia: antiquity, biogeography, and an uncertain future. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150305 (2016).

    Article 

    Google Scholar 

  • 78.

    Overbeck, G. E. et al. Conservation in Brazil needs to include non-forest ecosystems. Divers. Distrib. 21, 1455–1460 (2015).

    Article 

    Google Scholar 

  • 79.

    Kumar, D. et al. Misinterpretation of Asian savannas as degraded forest can mislead management and conservation policy under climate change. Biol. Conserv. 241, 108293 (2020).

    Article 

    Google Scholar 

  • 80.

    Kemp, D. R. et al. Innovative grassland management systems for environmental and livelihood benefits. Proc. Natl Acad. Sci. USA 110, 8369–8374 (2013).

    Article 

    Google Scholar 

  • 81.

    Scholes, R. et al. (eds) Summary for Policymakers of the Assessment Report on Land Degradation and Restoration of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2018).

  • 82.

    Lamarque, P. et al. Stakeholder perceptions of grassland ecosystem services in relation to knowledge on soil fertility and biodiversity. Reg. Environ. Change 11, 791–804 (2011).

    Article 

    Google Scholar 

  • 83.

    Hauck, J., Schmidt, J. & Werner, A. Using social network analysis to identify key stakeholders in agricultural biodiversity governance and related land-use decisions at regional and local level. Ecol. Soc. 21, 49 (2016).

    Article 

    Google Scholar 

  • 84.

    Reid, R. S., Fernández-Giménez, M. E. & Galvin, K. A. Dynamics and resilience of rangelands and pastoral peoples around the globe. Annu. Rev. Environ. Resour. 39, 217–242 (2014).

    Article 

    Google Scholar 

  • 85.

    Quétier, F., Rivoal, F., Marty, P., De Chazal, J. & Lavorel, S. Social representations of an alpine grassland landscape and socio-political discourses on rural development. Reg. Environ. Change 10, 119–130 (2010).

    Article 

    Google Scholar 

  • 86.

    Linders, T. E. W. et al. Stakeholder priorities determine the impact of an alien tree invasion on ecosystem multifunctionality. People Nat. 3, 658–672 (2021).

    Article 

    Google Scholar 

  • 87.

    Gos, P. & Lavorel, S. Stakeholders’ expectations on ecosystem services affect the assessment of ecosystem services hotspots and their congruence with biodiversity. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 8, 93–106 (2012).

    Article 

    Google Scholar 

  • 88.

    Fontana, V. et al. Comparing land-use alternatives: Using the ecosystem services concept to define a multi-criteria decision analysis. Ecol. Econ. 93, 128–136 (2013).

    Article 

    Google Scholar 

  • 89.

    Jellinek, S. et al. Integrating diverse social and ecological motivations to achieve landscape restoration. J. Appl. Ecol. 56, 246–252 (2019).

    Article 

    Google Scholar 

  • 90.

    Lavorel, S. & Grigulis, K. How fundamental plant functional trait relationships scale-up to trade-offs and synergies in ecosystem services. J. Ecol. 100, 128–140 (2012).

    Article 

    Google Scholar 

  • 91.

    Stürck, J. et al. Simulating and delineating future land change trajectories across Europe. Reg. Environ. Change 18, 733–749 (2018).

    Article 

    Google Scholar 

  • 92.

    Lavorel, S. in Grasslands and Climate Change (eds Gibson, D. J. & Newman, J. A.) 131–146) (Cambridge Univ. Press, 2018).

  • 93.

    Ayanu, Y. et al. Ecosystem engineer unleashed: Prosopis juliflora threatening ecosystem services? Reg. Environ. Change 15, 155–167 (2015).

    Article 

    Google Scholar 

  • 94.

    Mbaabu, P. R. et al. Restoration of degraded grasslands, but not invasion by Prosopis juliflora, avoids trade-offs between climate change mitigation and other ecosystem services. Sci. Rep. 10, 20391 (2020).

    Article 

    Google Scholar 

  • 95.

    Sayer, J. A. et al. Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. Proc. Natl Acad. Sci. USA 110, 8349–8356 (2013).

    Article 

    Google Scholar 

  • 96.

    Flintan, F. & Cullis, A. Introductory Guidelines to Participatory Rangeland Management in Pastoral Areas (Save the Children USA, 2010).

  • 97.

    Robinson, L. W. et al. Participatory Rangeland Management Toolkit for Kenya (ILRI, 2018).

  • 98.

    Roba, G. & David, J. Participatory Rangeland Management Planning: A Field Guide (IUCN, 2018).

  • 99.

    Langemeyer, J., Gómez-Baggethun, E., Haase, D., Scheuer, S. & Elmqvist, T. Bridging the gap between ecosystem service assessments and land-use planning through Multi-Criteria Decision Analysis (MCDA). Environ. Sci. Policy 62, 45–56 (2016).

    Article 

    Google Scholar 

  • 100.

    Adem Esmail, B. & Geneletti, D. Multi-criteria decision analysis for nature conservation: A review of 20 years of applications. Methods Ecol. Evol. 9, 42–53 (2018).

    Article 

    Google Scholar 

  • 101.

    Martin-Lopez, B. et al. A novel tele-coupling framework to assess social relations across spatial scales for ecosystem services research. J. Environ. Manage. 241, 251–263 (2019).

    Article 

    Google Scholar 

  • 102.

    Joseph, L. N., Maloney, R. F. & Possingham, H. P. Optimal allocation of resources among threatened species: a project prioritization protocol. Conserv. Biol. 23, 328–338 (2009).

    Article 

    Google Scholar 

  • 103.

    Wortley, L., Hero, J. M. & Howes, M. Evaluating ecological restoration success: a review of the literature. Restor. Ecol. 21, 537–543 (2013).

    Article 

    Google Scholar 

  • 104.

    Cameron, A. Restoration of ecosystems and ecosystem services, in Ecosystem Services and Poverty Alleviation: Trade-offs and Governance (eds Schreckenberg, K., Mace, G. & Poudyal. M.) (Routledge, 2018).

  • 105.

    Suding, K. N. Toward an era of restoration in ecology: successes, failures, and opportunities ahead. Annu. Rev. Ecol. Evol. Syst. 42, 465–487 (2011).

    Article 

    Google Scholar 

  • 106.

    Mekuria, W., Veldkamp, E., Corre, M. D. & Haile, M. Restoration of ecosystem carbon stocks following exclosure establishment in communal grazing lands in Tigray, Ethiopia. Soil Sci. Soc. Am. J. 75, 246–256 (2011).

    Article 

    Google Scholar 

  • 107.

    Mekuria, W. & Aynekulu, E. Exclosure land management for restoration of the soils in degraded communal grazing lands in northern Ethiopia. Land Degrad. Dev. 24, 528–538 (2011).

    Article 

    Google Scholar 

  • 108.

    Hu, Y. & Nacun, B. An analysis of land-use change and grassland degradation from a policy perspective in Inner Mongolia, China, 1990–2015. Sustainability 10, 4048 (2018).

    Article 

    Google Scholar 

  • 109.

    Nedessa, B., Ali, J. & Nyborg, I. Exploring Ecological and Socio-Economic Issues for the Improvement of Area Enclosure Management (Drylands Coordination Group, 2005).

  • 110.

    Schweiger, A. K. et al. Plant spectral diversity integrates functional and phylogenetic components of biodiversity and predicts ecosystem function. Nat. Ecol. Evol. 2, 976–982 (2018).

    Article 

    Google Scholar 

  • 111.

    Vågen, T. G. & Winowiecki, L. A. Mapping of soil organic carbon stocks for spatially explicit assessments of climate change mitigation potential. Environ. Res. Lett. 8, 015011 (2013).

    Article 

    Google Scholar 

  • 112.

    Xia, J. et al. Spatio-temporal patterns and climate variables controlling of biomass carbon stock of global grassland ecosystems from 1982 to 2006. Remote Sens. 6, 1783–1802 (2014).

    Article 

    Google Scholar 

  • 113.

    Spawn, S. A. et al. Harmonized global maps of above and belowground biomass carbon density in the year 2010. Sci. Data 7, 112 (2020).

    Article 

    Google Scholar 

  • 114.

    Bellocchi, G. & Chabbi, A. Grassland management for sustainable agroecosystems. Agronomy 10, 78 (2020).

    Article 

    Google Scholar 

  • 115.

    Plas, F. et al. Towards the development of general rules describing landscape heterogeneity – multifunctionality relationships. J. Appl. Ecol. 56, 168–179 (2019).

    Article 

    Google Scholar 

  • 116.

    Kimberley, A. et al. Functional rather than structural connectivity explains grassland plant diversity patterns following landscape scale habitat loss. Landsc. Ecol. 36, 265–280 (2021).

    Article 

    Google Scholar 

  • 117.

    Gilarranz, L. J., Rayfield, B., Liñán-Cembrano, G., Bascompte, J. & Gonzalez, A. Effects of network modularity on the spread of perturbation impact in experimental metapopulations. Science 357, 199–201 (2017).

    Article 

    Google Scholar 

  • 118.

    Smith, F. P., Prober, S. M., House, A. P. N. & McIntyre, S. Maximizing retention of native biodiversity in Australian agricultural landscapes — The 10:20:40:30 guidelines. Agric. Ecosyst. Environ. 166, 35–45 (2013).

    Article 

    Google Scholar 

  • 119.

    Auffret, A. G. et al. Plant functional connectivity — integrating landscape structure and effective dispersal. J. Ecol. 105, 1648–1656 (2017).

    Article 

    Google Scholar 

  • 120.

    Isaac, N. J. B. et al. Defining and delivering resilient ecological networks: Nature conservation in England. J. Appl. Ecol. 55, 2537–2543 (2018).

    Article 

    Google Scholar 

  • 121.

    Vörösmarty, C. J. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).

    Article 

    Google Scholar 

  • 122.

    Barbier, E. B. The economic linkages between rural poverty and land degradation: some evidence from Africa. Agric. Ecosyst. Environ. 82, 355–370 (2000).

    Article 

    Google Scholar 

  • 123.

    Kardol, P. & Wardle, D. A. How understanding aboveground–belowground linkages can assist restoration ecology. Trends Ecol. Evol. 25, 670–679 (2010).

    Article 

    Google Scholar 

  • 124.

    Bardgett, R. D. Plant trait-based approaches for interrogating belowground function. Biol. Environ. 117, 1–13 (2017).

    Google Scholar 

  • 125.

    Isbell, F. et al. Benefits of increasing plant diversity in sustainable agroecosystems. J. Ecol. 105, 871–879 (2017).

    Article 

    Google Scholar 

  • 126.

    Manning, P. et al. Transferring biodiversity-ecosystem function research to the management of ‘real-world’ ecosystems. Adv. Ecol. Res. 61, 323–356 (2019).

    Article 

    Google Scholar 

  • 127.

    Jochum, M. et al. The results of biodiversity–ecosystem functioning experiments are realistic. Nat. Ecol. Evol. 4, 1485–1494 (2020).

    Article 

    Google Scholar 

  • 128.

    Cole et al. Grassland biodiversity restoration increase resistance of carbon fluxes to drought. J. Appl. Ecol. 56, 1806–1816 (2019).

    Article 

    Google Scholar 

  • 129.

    Yang, Y., Tilman, D., Furey, G. & Lehman, C. Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nat. Commun. 10, 718 (2018).

    Article 

    Google Scholar 

  • 130.

    Fry, E. L. et al. Soil multifunctionality and drought resistance are determined by plant structural traits in restoring grassland. Ecology 99, 2260–2271 (2018).

    Article 

    Google Scholar 

  • 131.

    Gould, I. J., Quinton, J. N., Weigelt, A., De Deyn, G. B. & Bardgett, R. D. Plant diversity and root traits benefit physical properties key to soil function in grasslands. Ecol. Lett. 19, 1140–1149 (2016).

    Article 

    Google Scholar 

  • 132.

    Wubs, E. R., van der Putten, W. H., Bosch, M. & Bezemer, T. M. Soil inoculation steers restoration of terrestrial ecosystems. Nat. Plants 2, 16107 (2016).

    Article 

    Google Scholar 

  • 133.

    Pilon, N. A., Assis, G. B., Souza, F. M. & Durigan, G. Native remnants can be sources of plants and topsoil to restore dry and wet cerrado grasslands. Restor. Ecol. 27, 569–580 (2019).

    Article 

    Google Scholar 

  • 134.

    Wang, L. et al. Diversifying livestock promotes multidiversity and multifunctionality in managed grasslands. Proc. Natl Acad. Sci. USA 116, 201807354 (2019).

    Google Scholar 

  • 135.

    Wang, X. et al. High ecosystem multifunctionality under moderate grazing is associated with high plant but low bacterial diversity in a semi-arid steppe grassland. Plant Soil 448, 265–276 (2020).

    Article 

    Google Scholar 

  • 136.

    Pocock, M. J. O., Evans, D. M. & Memmott, J. The robustness and restoration of a network of ecological networks. Science 335, 973–977 (2012).

    Article 

    Google Scholar 

  • 137.

    Buisson, E. et al. Resilience and restoration of tropical and subtropical grasslands, savannas, and grassy woodlands. Biol. Rev. 94, 590–609 (2019).

    Article 

    Google Scholar 

  • 138.

    Lee, M., Manning, P., Rist, J., Power, S. A. & Marsh, C. A global comparison of grassland biomass responses to CO2 and nitrogen enrichment. Philos. Trans. R. Soc. B 365, 2047–2056 (2010).

    Article 

    Google Scholar 

  • 139.

    Craven, D. et al. Multiple facets of biodiversity drive the diversity–stability relationship. Nat. Ecol. Evol. 2, 1579–1587 (2018).

    Article 

    Google Scholar 

  • 140.

    Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol. Evol. 5, 65–73 (2014).

    Article 

    Google Scholar 

  • 141.

    Fraser, L. H. et al. Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science 349, 302–305 (2015).

    Article 

    Google Scholar 

  • 142.

    Spake, R. et al. An analytical framework for spatially targeted management of natural capital. Nat. Sustain. 2, 90–97 (2019).

    Article 

    Google Scholar 

  • 143.

    Dudley et al. Grasslands and savannahs in the UN Decade on Ecosystem Restoration. Restor. Ecol. 28, 1313–1317 (2020).

    Article 

    Google Scholar 

  • 144.

    Yengoh, G. T., Dent, D., Olsson, L., Tengberg, A. E. & Tucker, C. J. III. Use of the Normalized Difference Vegetation Index (NDVI) to Assess Land Degradation at Multiple Scales: Current Status, Future Trends, and Practical Considerations (Springer, 2015).

  • 145.

    Buchhorn, M. et al. Copernicus Global Land Service: Land Cover 100m, epoch 2015, Globe (Version V2.0.2) [data set]. Zenodo https://doi.org/10.5281/zenodo.3243509 (2019).

    Article 

    Google Scholar 

  • 146.

    Rossiter, J., Wondie Minale, M., Andarge, W. & Twomlow, S. A communities Eden–grazing Exclosure success in Ethiopia. Int. J. Agric. Sustain. 15, 514–526 (2017).

    Article 

    Google Scholar 

  • 147.

    Durigan, G. et al. Invasão por Pinus spp: Ecologia, Prevenção, Controle e Restauração (Instituto Florestal, 2020).

  • 148.

    Wang, Z. et al. Effect of manipulating animal stocking rate on the carbon storage capacity in a degraded desert steppe. Ecol. Res. 32, 1001–1009 (2017).

    Article 

    Google Scholar 

  • 149.

    Wang, Z. et al. Effects of stocking rate on the variability of peak standing crop in a desert steppe of Eurasia grassland. Environ. Manag. 53, 266–273 (2014).

    Article 

    Google Scholar 

  • 150.

    Zhang, R. et al. Grazing induced changes in plant diversity is a critical factor controlling grassland productivity in the Desert Steppe, Northern China. Agric. Ecosyst. Environ. 265, 73–83 (2018).

    Article 

    Google Scholar 

  • 151.

    Wang, Z. et al. Impact of stocking rate and rainfall on sheep performance in a desert steppe. Rangel. Ecol. Manag. 64, 249–256 (2011).

    Article 

    Google Scholar 

  • 152.

    Li, Z. et al. Identifying management strategies to improve sustainability and household income for herders on the desert steppe in Inner Mongolia, China. Agric. Syst. 132, 62–72 (2015).

    Article 

    Google Scholar 

  • 153.

    Shao, Q., Cao, W., Fan, J., Huang, L. & Xu, X. Effects of an ecological conservation and restoration project in the Three-River Source Region, China. J. Geogr. Sci. 27, 183–204 (2017).

    Article 

    Google Scholar 

  • 154.

    Li, X. L. et al. Restoration prospects for Heitutan degraded grassland in the Sanjiangyuan. J. Mt. Sci. 10, 687–698 (2013).

    Article 

    Google Scholar 

  • 155.

    Xu, Y. et al. Trade-offs and cost-benefit of ecosystem services of revegetated degraded alpine meadows over time on the Qinghai-Tibetan Plateau. Agric. Ecosyst. Environ. 279, 130–138 (2019).

    Article 

    Google Scholar 

  • 156.

    Dong, S. K. et al. Farmer and professional attitudes to the large-scale ban on livestock grazing of grasslands in China. Environ. Conserv. 34, 246–254 (2007).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Whole genome sequences reveal the Xanthomonas perforans population is shaped by the tomato production system

    Making catalytic surfaces more active to help decarbonize fuels and chemicals