in

Combining genotypic and phenotypic variation in a geospatial framework to identify sources of mussels in northern New Zealand

  • 1.

    Pineda, J., Hare, J. & Sponaugle, S. Larval transport and dispersal in the Coastal Ocean and consequences for population connectivity. Oceanography 20, 22–39 (2007).

    Article 

    Google Scholar 

  • 2.

    Siegel, D. A. et al. The stochastic nature of larval connectivity among nearshore marine populations. Proc. Natl. Acad. Sci. U. S. A. 105, 8974–8979 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Taylor, M. L. & Roterman, C. N. Invertebrate population genetics across Earth’s largest habitat: the deep-sea floor. Mol. Ecol. 26, 1–25 (2017).

    Article 

    Google Scholar 

  • 4.

    Apte, S., Star, B. & Gardner, J. P. A. A comparison of genetic diversity between cultured and wild populations, and a test of genetic introgression in the New Zealand greenshell mussel, Perna canaliculus (Gmelin 1791). Aquaculture 219, 193–220 (2003).

    Article 

    Google Scholar 

  • 5.

    Shanks, A. L., Grantham, B. A. & Carr, M. H. Propagule dispersal distance and the size and spacing of Marine Reserves. Ecol. Appl. 13, S159–S169 (2003).

    Article 

    Google Scholar 

  • 6.

    Hilário, A. et al. Estimating dispersal distance in the deep sea: challenges and applications to marine reserves. Front. Mar. Sci. 2, 1–14 (2015).

    Article 

    Google Scholar 

  • 7.

    van Gennip, S. J. et al. Going with the flow: the role of ocean circulation in global marine ecosystems under a changing climate. Glob. Change Biol. 23, 2602–2617 (2017).

    ADS 
    Article 

    Google Scholar 

  • 8.

    Silva, C. N. S., MacDonald, H. S., Hadfield, M., Cryer, M. & Gardner, J. P. A. Ocean currents predict fine-scale genetic structure and source-sink dynamics in a marine invertebrate coastal fishery. ICES J. Mar. Sci. 76, 1007–1018 (2019).

    Article 

    Google Scholar 

  • 9.

    Reiss, H., Hoarau, G., Dickey-Collas, M. & Wolff, W. J. Genetic population structure of marine fish: mismatch between biological and fisheries management units. Fish Fish. 10, 361–395 (2009).

    Article 

    Google Scholar 

  • 10.

    von der Heyden, S. et al. The application of genetics to marine management and conservation: examples from the Indo-Pacific. Bull. Mar. Sci. 90, 123–158 (2014).

    Article 

    Google Scholar 

  • 11.

    Johnson, M. S. & Black, R. Chaotic genetic patchiness in an intertidal Limpet, Siphonaria sp. Mar. Biol. 70, 157–164 (1982).

    Article 

    Google Scholar 

  • 12.

    Hedgecock, D. & Pudovkin, A. I. Sweepstakes reproductive success in highly fecund marine fish and shellfish: a review and commentary. Bull. Mar. Sci. 87, 971–1002 (2011).

    Article 

    Google Scholar 

  • 13.

    Reisser, C. M. O., Bell, J. J. & Gardner, J. P. A. Correlation between pelagic larval duration and realised dispersal: long-distance genetic connectivity between northern New Zealand and the Kermadec Islands archipelago. Mar. Biol. 161, 297–312 (2014).

    Article 

    Google Scholar 

  • 14.

    Gardner, J. P. A., Bell, J. J., Constable, H. B., Hannan, D. A., Ritchie, P. A. & Zuccarello, G. C. Multi-species coastal marine connectivity: a literature review with recommendations for further research. N. Z. Aquat. Environ. Biodivers. Rep. 58, 1–47. ISSN 1176-9440 (2010).

  • 15.

    White, C. et al. Ocean currents help explain population genetic structure. Proc. R. Soc. Lond. B 277, 1685–1694 (2010).

    Google Scholar 

  • 16.

    Hannan, D. A., Constable, H. B., Silva, C. N. S., Bell, J. J., Ritchie, P. A. & Gardner, J. P. A. Genetic population structure connectivity and barriers to gene flow amongst New Zealand’s open sandy shore and estuarine coastal taxa. N. Z. Aquat. Environ. Biodivers. Rep. 172, 1–97. ISSN 1179-6480 (2016).

  • 17.

    Thorrold, S. R. et al. Quantifying larval retention and connectivity in marine populations with artificial and natural markers. Bull. Mar. Sci. 70(Supplement 1), 291–308 (2002).

    Google Scholar 

  • 18.

    Elsdon, T. S. et al. Otolith chemistry to describe movements and life-history parameters of fishes: hypotheses, assumptions, limitations and inferences. Oceanogr. Mar. Biol. Annu. Rev. 46, 297–330 (2008).

    Google Scholar 

  • 19.

    Carson, H. S. et al. Temporal, spatial, and interspecific variation in geochemical signatures within fish otoliths, bivalve larval shells, and crustacean larvae. Mar. Ecol. Prog. Ser. 473, 133–148 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 20.

    Becker, B. J., Fodrie, F. J., McMillan, P. A. & Levin, L. A. Spatial and temporal variation in trace elemental fingerprints of mytilid mussel shells: a precursor to invertebrate larval tracking. Limnol. Oceanogr. 50, 48–61 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 21.

    Dunphy, B., Millet, M.-A. & Jeffs, A. Elemental signatures in the shells of early juvenile green-lipped mussels (Perna canaliculus) and their potential use for larval tracking. Aquaculture 311, 187–192 (2011).

    Article 

    Google Scholar 

  • 22.

    Norrie, C. R., Dunphy, B. J., Ragg, N. L. & Lundquist, C. J. Comparative influence of genetics, ontogeny and the environment on elemental fingerprints in the shell of Perna canaliculus. Sci. Rep. 9, 8533 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 23.

    van Deurs, M. et al. Marine ecosystem connectivity mediated by migrant-resident interactions and the concomitant cross-system flux of lipids. Ecol. Evol. 6, 4076–4087. https://doi.org/10.1002/ece3.2167 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Huxham, M., Kimani, E., Newton, J. & Augley, J. Stable isotope records from otoliths as tracers of fish migration in a mangrove system. J. Fish Biol. 70, 1554–1567. https://doi.org/10.1111/j.1095-8649.2007.01443.x (2007).

    Article 

    Google Scholar 

  • 25.

    Phillips, D. L., Newsome, S. D. & Gregg, J. W. Combining sources in stable isotope mixing models: alternative methods. Oecologia 144, 520–527 (2005).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Phillips, D. L. IsoSource: stable isotope mixing model for partitioning an excess number of sources. http://www.epa.gov/wed/pages/models/stableIsotopes/isosource/isosource.htm (2008).

  • 27.

    Madigan, D. J., Baumann, Z. & Fisher, N. S. Pacific bluefin tuna transport Fukushima-derived radionuclides from Japan to California. Proc. Natl. Acad. Sci. U. S. A. 109, 9483–9486 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    Aquaculture New Zealand. New Zealand aquaculture. A sector overview with key facts and statistics. https://www.aquaculture.org.nz/wp-content/uploads/2018/08/New-Zealand-Aquaculture-facts-2018.pdf (2018)

  • 29.

    Jeffs, A., Holland, R., Hooker, S. & Hayden, B. Overview and bibliography of research on the greenshell mussel, Perna canaliculus, from New Zealand waters. J. Shellfish Res. 18, 347–360 (1999).

    Google Scholar 

  • 30.

    Alfaro, A., Jeffs, A., Gardner, J. P. A., Breen, B. B. & Wilkin, J. Green-lipped mussels in GLM 9. N. Z. Fish. Assess. Rep. 48, 1–80 (2011).

    Google Scholar 

  • 31.

    Sutton, P. J. H. & Bowen, M. M. Currents off the west coast of Northland, New Zealand. N. Z. J. Mar. Freshwat. Res. 45, 609–624. https://doi.org/10.1080/00288330.2011.569729 (2011).

    Article 

    Google Scholar 

  • 32.

    Alfaro, A. C., McArdle, B. & Jeffs, A. G. Temporal patterns of arrival of beachcast green-lipped mussel (Perna canaliculus) spat harvested for aquaculture in New Zealand and its relationship with hydrodynamic and meteorological conditions. Aquaculture 302, 208–218 (2010).

    Article 

    Google Scholar 

  • 33.

    Dunphy, B. J., Silva, C. N. S. & Gardner, J. P. A. Testing techniques for tracing the provenance of green-lipped mussel spat washed up on Ninety Mile Beach, New Zealand. N. Z. Aquat. Environ. Biodivers. Rep. 164, 1–45. ISSN 1179-6480 (2015).

  • 34.

    Guillot, G., Renaud, S., Ledevin, R., Michaux, J. & Claude, J. A unifying model for the analysis of phenotypic, genetic and geographic data. Syst. Biol. 61, 897–911 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Forsman, A. Diversity promotes establishment. Proc. Natl. Acad. Sci. 111, 302–307. https://doi.org/10.1073/pnas.1317745111 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Castillo, J. M. et al. Low genetic diversity contrasts with high phenotypic variability in heptaploid Spartina densiflora populations invading the Pacific coast of North America. Ecol. Evol. 8, 4992–5007. https://doi.org/10.1002/ece3.4063 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Villellas, J., Berjano, R., Terrab, A. & García, M. B. Divergence between phenotypic and genetic variation within populations of a common herb across Europe. Ecosphere 5, 1–14 (2014).

    Article 

    Google Scholar 

  • 38.

    Tanner, S. E., Pérez, M., Presa, P., Thorrold, S. R. & Cabral, H. N. Integrating microsatellite DNA markers and otolith geochemistry to assess population structure of European hake (Merluccius merluccius). Estuar. Coast. Shelf Sci. 142, 68–75 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 39.

    Wei, K., Wood, A. R. & Gardner, J. P. A. Population genetic variation in the New Zealand greenshell mussel: locus-dependent conflicting signals of weak structure and high gene flow balanced against pronounced structure and high self-recruitment. Mar. Biol. 160, 931–949 (2013).

    Article 

    Google Scholar 

  • 40.

    Apte, S. & Gardner, J. P. A. Population genetic variation in the New Zealand greenshell mussel, Perna canaliculus: SSCP and RFLP analyses of mitochondrial DNA. Mol. Ecol. 11, 1617–1628 (2002).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Star, B., Apte, S. & Gardner, J. P. A. Genetic structuring among populations of the greenshell mussel Perna canaliculus (Gmelin 1791) revealed by analysis of Randomly Amplified Polymorphic DNA. Mar. Ecol. Prog. Ser. 249, 171–182 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 42.

    Norrie, C. R., Dunphy, B. J., Roughan, M., Weppe, S. & Lundquist, C. J. Spill-over from aquaculture may provide a larval subsidy for the restoration of mussel reefs. Aquac. Environ. Interact. 12, 231–249 (2020).

    Article 

    Google Scholar 

  • 43.

    Reis-Santos, P. et al. Reconciling differences in natural tags to infer demographic and genetic connectivity in marine fish populations. Sci. Rep. 8, 10343. https://doi.org/10.1038/s41598-018-28701-6 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Sorte, C. J. B., Etter, R. J., Spackman, R., Boyle, E. E. & Hannigan, R. E. Elemental fingerprinting of mussel shells to predict population sources and redistribution potential in the Gulf of Maine. PLoS ONE 8(11), e80868 (2013).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 45.

    Gillanders, B., Sanchez-Jerez, P., Bayle-Sempere, J. & Ramos-Espla, A. Trace elements in otoliths of the two-banded bream from a coastal region in the south-west Mediterranean: are there differences among locations?. J. Fish Biol. 59, 350–363 (2001).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Burton, J. D. Basic properties and processes in estuarine chemistry. In Estuarine Chemistry (eds Burton, J. D. & Liss, P. S.) 1–31 (Academic Press, 1976).

    Google Scholar 

  • 47.

    Gillespie, J. L. & Nelson, C. S. Distribution and control of mixed terrigenous-carbonate surficial sediment facies, Wanganui shelf, New Zealand. N. Z. J. Geol. Geophys. 39, 533–549 (1996).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Churchman, G., Hunt, J., Glasby, G., Renner, R. & Griffiths, G. Input of river-derived sediment to the New Zealand continental shelf: II mineralogy and composition. Estuar. Coast. Shelf Sci. 27, 397–411 (1988).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 49.

    Nelson, C. S., Keane, S. L. & Head, P. S. Non-tropical carbonate deposits on the modern New Zealand shelf. Sed. Geol. 60, 71–94 (1988).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Payne, D. S. Shelf-to-Slope Sedimentation on the North Kaipara Continental Margin, Northwestern North Island, New Zealand. MSc thesis held by the University of Waikato (2008).

  • 51.

    Ricardo, F., Pimentel, T., Génio, L. & Calado, R. Spatio-temporal variability of trace elements fingerprints in cockle (Cerastoderma edule) shells and its relevance for tracing geographic origin. Sci. Rep. 7, 3475 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 52.

    Cathey, A. M., Miller, N. R. & Kimmel, D. G. Spatiotemporal stability of trace and minor elemental signatures in early larval shell of the Northern quahog (Hard Clam) Mercenaria mercenaria. J. Shellfish Res. 33, 247–255 (2014).

    Article 

    Google Scholar 

  • 53.

    Bennion, M. et al. Trace element fingerprinting of blue mussel (Mytilus edulis) shells and soft tissues successfully reveals harvesting locations. Sci. Total Environ. 685, 50–58. https://doi.org/10.1016/j.scitotenv.2019.05.233 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Aquaculture New Zealand. New Zealand Greenshell Mussel Spat Strategy, pp. 1–23. www.aquaculture.org.nz (2020)

  • 55.

    SPATnz. Newspaper Story (accessed 5 November 2019); http://www.scoop.co.nz/stories/BU1910/S00425/spatnz-reveals-200m-results-of-mussel-breeding-programme.htm (2019).

  • 56.

    New Zealand Government Aquaculture Strategy. https://www.fisheries.govt.nz/dmsdocument/15895-The-Governments-Aquaculture-Strategy-to-2025 (2019).

  • 57.

    Gardner, J. P. A., Wenne, R., Westfall, K. R. & Zbawicka, M. Invasive mussels threaten regional scale genetic diversity in mainland and remote offshore locations: the need for baseline data and enhanced protection in the Southern Ocean. Glob. Change Biol. 22, 3182–3195 (2016).

    ADS 
    Article 

    Google Scholar 

  • 58.

    Larraín, M. A., Zbawicka, M., Araneda, C., Gardner, J. P. A. & Wenne, R. Native and invasive taxa on the Pacific coast of South America: impacts on aquaculture, traceability and biodiversity of blue mussels (Mytilus spp.). Evol. Appl. 11, 298–311 (2018).

    Article 
    CAS 

    Google Scholar 

  • 59.

    Nowland, S. J., Silva, C. N. S., Southgate, P. C. & Strugnell, J. M. Mitochondrial and nuclear genetic analyses of the tropical black-lip rock oyster (Saccostrea echinata) reveals population subdivision and informs sustainable aquaculture development. BMC Genom. 20, 71 (2019).

    Article 
    CAS 

    Google Scholar 

  • 60.

    Hickman, R. Allometry and growth of the green-lipped mussel Perna canaliculus in New Zealand. Mar. Biol. 51, 311–327 (1979).

    Article 

    Google Scholar 

  • 61.

    MacAvoy, E. S., Wood, A. R. & Gardner, J. P. A. Development and evaluation of microsatellite markers for identification of individual Greenshell mussels (Perna canaliculus) in a selective breeding programme. Aquaculture 274, 41–48 (2008).

    CAS 
    Article 

    Google Scholar 

  • 62.

    Guichoux, E. et al. Current trends in microsatellite genotyping. Mol. Ecol. Resour. 11, 591–611 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 63.

    Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. & Shipley, P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).

    Article 
    CAS 

    Google Scholar 

  • 64.

    Rousset, F. genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 65.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. B 57, 289–300 (1995).

    MathSciNet 
    MATH 

    Google Scholar 

  • 66.

    Clarke, K. R. & Gorley, R. N. PRIMER V6: User Manual/Tutorial (PRIMER-E Ltd, 2006).

    Google Scholar 

  • 67.

    Piry, S. et al. GENECLASS2: a software for genetic assignment and first-generation migrant detection. J. Hered. 95, 536–539 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 68.

    Paetkau, D., Slade, R., Burden, M. & Estoup, A. Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol. Ecol. 13, 55–65 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 69.

    Strasser, C. A., Mullineaux, L. S. & Walther, B. D. Growth rate and age effects on Mya arenaria shell chemistry: Implications for biogeochemical studies. J. Exp. Mar. Biol. Ecol. 355, 153–163 (2008).

    CAS 
    Article 

    Google Scholar 

  • 70.

    Bello, A. On the performance of rank transform discriminant method in error-rate estimation. J. Stat. Comput. Simul. 48, 153–165 (1993).

    Article 

    Google Scholar 

  • 71.

    JMP 13.0 Software. SAS Institute.

  • 72.

    Team RC. R: A Language and Environment for Statistical Computing (Team RC, 2014).

    Google Scholar 

  • 73.

    Silva, C. N. S. & Gardner, J. P. A. Emerging patterns of genetic variation in the New Zealand endemic scallop Pecten novaezelandiae. Mol. Ecol. 24, 5379–5393 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Negative emissions, positive economy

    Individual US diets show wide variation in water scarcity footprints