in

Comparing detectability patterns of bird species using multi-method occupancy modelling

  • 1.

    MacKenzie, D. I. et al. Occupancy Estimation and Modeling: Inferring Patterns and Dynamycs of Species Occurence (Academic Press, Cambridge, 2006).

    Google Scholar 

  • 2.

    Kéry, M. & Royle, J. A. Applied Hierarchical Modeling in Ecology Vol. 1 (Academic Press, Cambridge, 2016).

    Google Scholar 

  • 3.

    Lindenmayer, D. B. et al. Improving biodiversity monitoring. Austral Ecol. 37, 285–294 (2012).

    Article  Google Scholar 

  • 4.

    Einoder, L. D. et al. Occupancy and detectability modelling of vertebrates in northern Australia using multiple sampling methods. PLoS ONE 13, e0206373. https://doi.org/10.1371/journal.pone.0206373 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 5.

    Boulinier, T., Nichols, J. D., Sauer, J. R., Hines, J. E. & Pollock, K. H. Estimating species richness: The importance of heterogeneity in species detectability. Ecology 79, 1018–1028 (1998).

    Article  Google Scholar 

  • 6.

    Tyre, A. J., Tenhumberg, B., Field, S. A., Niejalke, D. & Parris, K. Improving precision and reducing bias in biological surveys: Estimating false-negative error rates. Ecol. Appl. 13, 1790–1801 (2003).

    Article  Google Scholar 

  • 7.

    Kellner, K. F. & Swihart, R. K. Accounting for imperfect detection in ecology: A quantitative review. PLoS ONE 9, e111436. https://doi.org/10.1371/journal.pone.0111436 (2014).

    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

  • 8.

    Iknayan, K. J., Tingley, M. W., Furnas, B. J. & Beissinger, S. R. Detecting diversity: Emerging methods to estimate species diversity. Trends Ecol. Evol. 29, 97–106 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Kéry, M. & Schmidt, B. Imperfect detection and its consequences for monitoring for conservation. Community Ecol. 9, 207–216 (2008).

    Article  Google Scholar 

  • 10.

    Tingley, M. W. & Beissinger, S. R. Cryptic loss of montane avian richness and high community turnover over 100 years. Ecology 94, 598–609 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 11.

    Leu, M. et al. Effects of point-count duration on estimated detection probabilities and occupancy of breeding birds. J. F. Ornithol. 88, 80–93 (2017).

    Article  Google Scholar 

  • 12.

    Royle, J. A. & Dorazio, R. M. Hierarchical Modeling and Inference in Ecology. The Analysis of Data from Populations, Metapopulations and Communities (Elsevier, Amsterdam, 2008).

    Google Scholar 

  • 13.

    Guillera-Arroita, G. Modelling of species distributions, range dynamics and communities under imperfect detection: Advances, challenges and opportunities. Ecography 40, 281–295 (2017).

    Article  Google Scholar 

  • 14.

    Kéry, M., Royle, J. A., Plattner, M. & Dorazio, R. M. Species richness and occupancy estimation in communities subject to temporary emigration. Ecology 90, 1279–1290 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Sólymos, P., Matsuoka, S. M., Stralberg, D., Barker, N. K. S. & Bayne, E. M. Phylogeny and species traits predict bird detectability. Ecography 41, 1595–1603 (2018).

    Article  Google Scholar 

  • 16.

    Jarzyna, M. A. & Jetz, W. Detecting the multiple facets of biodiversity. Trends Ecol. Evol. 31, 527–538 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Kéry, M., Royle, J. A. & Schmid, H. Modeling avian abundance from replicated counts. Ecol. Appl. 15, 1450–1461 (2005).

    Article  Google Scholar 

  • 18.

    Mackenzie, D. I. & Royle, J. A. Designing occupancy studies: General advice and allocating survey effort. J. Appl. Ecol. 42, 1105–1114 (2005).

    Article  Google Scholar 

  • 19.

    Jiménez-Franco, M. V. et al. Use of classical bird census transects as spatial replicates for hierarchical modeling of an avian community. Ecol. Evol. 9, 825–835 (2018).

    Article  Google Scholar 

  • 20.

    Clement, M. J., Hines, J. E., Nichols, J. D., Pardieck, K. L. & Ziolkowski, D. J. Estimating indices of range shifts in birds using dynamic models when detection is imperfect. Glob. Change Biol. 22, 3273–3285 (2016).

    Article  ADS  Google Scholar 

  • 21.

    Sliwinski, M., Powell, L., Koper, N., Giovanni, M. & Schacht, W. Research design considerations to ensure detection of all species in an avian community. Methods Ecol. Evol. 7, 456–462 (2016).

    Article  Google Scholar 

  • 22.

    Rappole, J. H., Winker, K. & Powell, G. V. Migratory bird habitat use in Southern Mexico: Mist nets versus point counts. J. F. Ornithol. 69, 635–643 (2012).

    Google Scholar 

  • 23.

    Faaborg, J., Arendt, W. J. & Dugger, K. M. Bird population studies in Puerto Rico using mist nets: General patterns and comparisons with point counts. Stud. Avian Biol. 29, 144–150 (2004).

    Google Scholar 

  • 24.

    Dunn, E. H. & Ralph, C. J. Use of mist nets as a tool for bird population monitoring. Stud. Avian Biol. 29, 1–6 (2004).

    Google Scholar 

  • 25.

    Lynch, J. F. Distribution of overwintering Nearctic migrants in the Yucatan Peninsula, I: General patterns of occurrence. Condor 91, 515–544 (1989).

    Article  Google Scholar 

  • 26.

    Wunderle, J. M. & Waide, R. B. Distribution of overwintering Nearctic migrants in the Bahamas and Greater Antilles. Condor 95, 904–933 (1993).

    Article  Google Scholar 

  • 27.

    Gram, W. K. & Faaborg, J. The distribution of neotropical migrant birds wintering in the El Cielo Biosphere Reserve, Tamaulipas, Mexico. Condor 99, 658–670 (1997).

    Article  Google Scholar 

  • 28.

    Whitman, A. A., Hagan, J. M. & Brokaw, N. V. L. A comparison of two bird survey techniques used in a subtropical forest. Condor 99, 955–965 (1997).

    Article  Google Scholar 

  • 29.

    Arizaga, J., Deán, J. I., Vilches, A., Alonso, D. & Mendiburu, A. Monitoring communities of small birds: A comparison between mist-netting and counting. Bird Study 58(3), 37–41 (2011).

  • 30.

    Darras, K. et al. Autonomous sound recording outperforms human observation for sampling birds: A systematic map and user guide. Ecol. Appl. 29, e01954. https://doi.org/10.1002/eap.1954 (2019).

    Article  PubMed  Google Scholar 

  • 31.

    Smit, B., Woodborne, S., Wolf, B. O. & McKechnie, A. E. Differences in the use of surface water resources by desert birds are revealed using isotopic tracers. Auk 136, 1–13 (2019).

    Article  Google Scholar 

  • 32.

    Lynn, J. C., Rosenstock, S. S. & Chambers, C. L. Avian use of desert wildlife water developments as determined by remote videography. West. N. Am. Nat. 68, 107–112 (2008).

    Article  Google Scholar 

  • 33.

    Fisher, J. T. & Bradbury, S. A multi-method hierarchical modeling approach to quantifying bias in occupancy from noninvasive genetic tagging studies. J. Wildl. Manag. 78, 1087–1095 (2014).

    Article  Google Scholar 

  • 34.

    Fisher, J. T., Heim, N., Code, S. & Paczkowski, J. Grizzly bear noninvasive genetic tagging surveys: Estimating the magnitude of missed detections. PLoS ONE 11, 1–16 (2016).

    Google Scholar 

  • 35.

    Nichols, J. D. et al. Multi-scale occupancy estimation and modelling using multiple detection methods. J. Appl. Ecol. 45, 1321–1329 (2008).

    Article  Google Scholar 

  • 36.

    Calvo, J. F. et al. Catálogo de las aves de la Región de Murcia (España). An. Biol. 39, 7–33 (2017).

    Article  Google Scholar 

  • 37.

    Galbraith, J. A., Jones, D. N., Beggs, J. R., Stanley, M. C. & Parry, K. Urban bird feeders dominated by a few species and individuals. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2017.00081 (2017).

    Article  Google Scholar 

  • 38.

    McCarthy, M. A. et al. The influence of abundance on detectability. Oikos 122, 717–726 (2012).

    Article  Google Scholar 

  • 39.

    Lee, A. T. K., Wright, D. & Barnard, P. Hot bird drinking patterns: Drivers of water visitation in a fynbos bird community. Afr. J. Ecol. 55, 541–553 (2017).

    Article  Google Scholar 

  • 40.

    Gregory, R. D., Gibbons, D. W. & Donald, P. F. Bird census and survey techniques. In Bird Ecology and Conservation. A Handbook of Techniques (eds. Sutherland, W. J., Newton, I. & Green, R. E.) 17–55 (Oxford Scholarship, Oxford, 2004).

  • 41.

    Derlindati, E. J. & Caziani, S. M. Using canopy and understory mist nets and point counts to study bird assemblages in Chaco forests. Wilson Bull. 117, 92–99 (2005).

    Article  Google Scholar 

  • 42.

    Wang, Y. & Finch, D. M. Consistency of mist netting and point counts in assessing landbird species richness and relative abundance during migration. Condor 104, 59–72 (2002).

    Article  Google Scholar 

  • 43.

    Valera, F. et al. History and adaptation stories of the vertebrate fauna of southern Spain semiarid habitats. J. Arid Environ. 75, 1342–1351 (2011).

    Article  ADS  Google Scholar 

  • 44.

    Rappole, J. H. Migratory bird habitat use in Southern Mexico: Mist nets versus point counts. J. F. Ornithol. 69, 635–643 (2012).

    Google Scholar 

  • 45.

    Poulin, B., Lefebvre, G. & Pilard, P. Quantifying the breeding assemblage of reedbed passerines with mist-net and point-count surveys. J. F. Ornithol. 71, 443–454 (2000).

    Article  Google Scholar 

  • 46.

    Armas, C., Miranda, J. D., Padilla, F. M. & Pugnaire, F. I. Special issue: The Iberian Southeast. J. Arid Environ. 75, 1241–1243 (2011).

    Article  ADS  Google Scholar 

  • 47.

    Lisón, F. & Calvo, J. F. Bat activity over small ponds in dry Mediterranean forests: Implications for conservation. Acta Chiropterol. 16, 95–101 (2014).

    Article  ADS  Google Scholar 

  • 48.

    Sebastián-González, E., Sánchez-Zapata, J. A. & Botella, F. Agricultural ponds as alternative habitat for waterbirds: Spatial and temporal patterns of abundance and management strategies. Eur. J. Wildl. Res. 56, 11–20 (2010).

    Article  Google Scholar 

  • 49.

    Egea-Serrano, A., Oliva-Paterna, F. J. & Torralva, M. Breeding habitat selection of Salamandra salamandra (Linnaeus, 1758) in the most arid zone of its European distribution range: Application to conservation management. Hydrobiologia 560, 363–371 (2006).

    Article  Google Scholar 

  • 50.

    Egea-Serrano, A., Oliva-Paterna, F. J., Tejedo, M. & Torralva, M. Breeding habitat selection of an endangered species in an arid zone: The case of Alytes dickhilleni Arntzen & García-París, 1995. Acta Herpetol. 1, 81–94 (2006).

    Google Scholar 

  • 51.

    Davies, S. R., Sayer, C. D., Greaves, H., Siriwardena, G. M. & Axmacher, J. C. A new role for pond management in farmland bird conservation. Agric. Ecosyst. Environ. 233, 179–191 (2016).

    Article  Google Scholar 

  • 52.

    Oertli, B. Freshwater biodiversity conservation: The role of artificial ponds in the 21st century. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 264–269 (2018).

    Article  Google Scholar 

  • 53.

    MacKenzie, D. I. et al. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255 (2002).

    Article  Google Scholar 

  • 54.

    Rich, L. N., Miller, D. A. W., Robinson, H. S., McNutt, J. W. & Kelly, M. J. Using camera trapping and hierarchical occupancy modelling to evaluate the spatial ecology of an African mammal community. J. Appl. Ecol. 53, 1225–1235 (2016).

    Article  Google Scholar 

  • 55.

    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, New York, 2002).

    Google Scholar 

  • 56.

    Martínez-Martí, C., Jiménez-Franco, M. V., Royle, J. A., Palazón, J. A. & Calvo, J. F. Integrating occurrence and detectability patterns based on interview data: A case study for threatened mammals in Equatorial Guinea. Sci. Rep. 6, 33838. https://doi.org/10.1038/srep33838 (2016).

    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

  • 57.

    White, G. C. & Burnham, K. P. Program MARK: survival estimation from populations of marked animals. Bird Study 46, S120–S139 (1999).

    Article  Google Scholar 

  • 58.

    Laake, J. L. RMark: An R Interface for Analysis of Capture-Recapture Data with MARK. AFSC Processed Report 2013–01, 25p. Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv., 7600 Sand Point Way NE, Seattle WA 98115 (2013).

  • 59.

    Denis, T. et al. Biological traits, rather than environment, shape detection curves of large vertebrates in neotropical rainforests. Ecol. Appl. 27, 3218–3221 (2017).

    Article  Google Scholar 

  • 60.

    Frishkoff, L. O., De Valpine, P. & M’Gonigle, L. K. Phylogenetic occupancy models integrate imperfect detection and phylogenetic signal to analyze community structure. Ecology 98, 198–210 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 61.

    Pearman, P. B. et al. Phylogenetic patterns of climatic, habitat and trophic niches in a European avian assemblage. Glob. Ecol. Biogeogr. 23, 414–424 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 62.

    Powell, L. A. Approximating variance of demographic parameters using the delta method: A reference for avian biologists. Condor 109, 949–954 (2007).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Mercury methylation by metabolically versatile and cosmopolitan marine bacteria

    3 Questions: Ernest Moniz on the future of climate and energy under the Biden-Harris administration