in

Comparing detectability patterns of bird species using multi-method occupancy modelling

  • 1.

    MacKenzie, D. I. et al. Occupancy Estimation and Modeling: Inferring Patterns and Dynamycs of Species Occurence (Academic Press, Cambridge, 2006).

    Google Scholar 

  • 2.

    Kéry, M. & Royle, J. A. Applied Hierarchical Modeling in Ecology Vol. 1 (Academic Press, Cambridge, 2016).

    Google Scholar 

  • 3.

    Lindenmayer, D. B. et al. Improving biodiversity monitoring. Austral Ecol. 37, 285–294 (2012).

    Article  Google Scholar 

  • 4.

    Einoder, L. D. et al. Occupancy and detectability modelling of vertebrates in northern Australia using multiple sampling methods. PLoS ONE 13, e0206373. https://doi.org/10.1371/journal.pone.0206373 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 5.

    Boulinier, T., Nichols, J. D., Sauer, J. R., Hines, J. E. & Pollock, K. H. Estimating species richness: The importance of heterogeneity in species detectability. Ecology 79, 1018–1028 (1998).

    Article  Google Scholar 

  • 6.

    Tyre, A. J., Tenhumberg, B., Field, S. A., Niejalke, D. & Parris, K. Improving precision and reducing bias in biological surveys: Estimating false-negative error rates. Ecol. Appl. 13, 1790–1801 (2003).

    Article  Google Scholar 

  • 7.

    Kellner, K. F. & Swihart, R. K. Accounting for imperfect detection in ecology: A quantitative review. PLoS ONE 9, e111436. https://doi.org/10.1371/journal.pone.0111436 (2014).

    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

  • 8.

    Iknayan, K. J., Tingley, M. W., Furnas, B. J. & Beissinger, S. R. Detecting diversity: Emerging methods to estimate species diversity. Trends Ecol. Evol. 29, 97–106 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Kéry, M. & Schmidt, B. Imperfect detection and its consequences for monitoring for conservation. Community Ecol. 9, 207–216 (2008).

    Article  Google Scholar 

  • 10.

    Tingley, M. W. & Beissinger, S. R. Cryptic loss of montane avian richness and high community turnover over 100 years. Ecology 94, 598–609 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 11.

    Leu, M. et al. Effects of point-count duration on estimated detection probabilities and occupancy of breeding birds. J. F. Ornithol. 88, 80–93 (2017).

    Article  Google Scholar 

  • 12.

    Royle, J. A. & Dorazio, R. M. Hierarchical Modeling and Inference in Ecology. The Analysis of Data from Populations, Metapopulations and Communities (Elsevier, Amsterdam, 2008).

    Google Scholar 

  • 13.

    Guillera-Arroita, G. Modelling of species distributions, range dynamics and communities under imperfect detection: Advances, challenges and opportunities. Ecography 40, 281–295 (2017).

    Article  Google Scholar 

  • 14.

    Kéry, M., Royle, J. A., Plattner, M. & Dorazio, R. M. Species richness and occupancy estimation in communities subject to temporary emigration. Ecology 90, 1279–1290 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Sólymos, P., Matsuoka, S. M., Stralberg, D., Barker, N. K. S. & Bayne, E. M. Phylogeny and species traits predict bird detectability. Ecography 41, 1595–1603 (2018).

    Article  Google Scholar 

  • 16.

    Jarzyna, M. A. & Jetz, W. Detecting the multiple facets of biodiversity. Trends Ecol. Evol. 31, 527–538 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Kéry, M., Royle, J. A. & Schmid, H. Modeling avian abundance from replicated counts. Ecol. Appl. 15, 1450–1461 (2005).

    Article  Google Scholar 

  • 18.

    Mackenzie, D. I. & Royle, J. A. Designing occupancy studies: General advice and allocating survey effort. J. Appl. Ecol. 42, 1105–1114 (2005).

    Article  Google Scholar 

  • 19.

    Jiménez-Franco, M. V. et al. Use of classical bird census transects as spatial replicates for hierarchical modeling of an avian community. Ecol. Evol. 9, 825–835 (2018).

    Article  Google Scholar 

  • 20.

    Clement, M. J., Hines, J. E., Nichols, J. D., Pardieck, K. L. & Ziolkowski, D. J. Estimating indices of range shifts in birds using dynamic models when detection is imperfect. Glob. Change Biol. 22, 3273–3285 (2016).

    Article  ADS  Google Scholar 

  • 21.

    Sliwinski, M., Powell, L., Koper, N., Giovanni, M. & Schacht, W. Research design considerations to ensure detection of all species in an avian community. Methods Ecol. Evol. 7, 456–462 (2016).

    Article  Google Scholar 

  • 22.

    Rappole, J. H., Winker, K. & Powell, G. V. Migratory bird habitat use in Southern Mexico: Mist nets versus point counts. J. F. Ornithol. 69, 635–643 (2012).

    Google Scholar 

  • 23.

    Faaborg, J., Arendt, W. J. & Dugger, K. M. Bird population studies in Puerto Rico using mist nets: General patterns and comparisons with point counts. Stud. Avian Biol. 29, 144–150 (2004).

    Google Scholar 

  • 24.

    Dunn, E. H. & Ralph, C. J. Use of mist nets as a tool for bird population monitoring. Stud. Avian Biol. 29, 1–6 (2004).

    Google Scholar 

  • 25.

    Lynch, J. F. Distribution of overwintering Nearctic migrants in the Yucatan Peninsula, I: General patterns of occurrence. Condor 91, 515–544 (1989).

    Article  Google Scholar 

  • 26.

    Wunderle, J. M. & Waide, R. B. Distribution of overwintering Nearctic migrants in the Bahamas and Greater Antilles. Condor 95, 904–933 (1993).

    Article  Google Scholar 

  • 27.

    Gram, W. K. & Faaborg, J. The distribution of neotropical migrant birds wintering in the El Cielo Biosphere Reserve, Tamaulipas, Mexico. Condor 99, 658–670 (1997).

    Article  Google Scholar 

  • 28.

    Whitman, A. A., Hagan, J. M. & Brokaw, N. V. L. A comparison of two bird survey techniques used in a subtropical forest. Condor 99, 955–965 (1997).

    Article  Google Scholar 

  • 29.

    Arizaga, J., Deán, J. I., Vilches, A., Alonso, D. & Mendiburu, A. Monitoring communities of small birds: A comparison between mist-netting and counting. Bird Study 58(3), 37–41 (2011).

  • 30.

    Darras, K. et al. Autonomous sound recording outperforms human observation for sampling birds: A systematic map and user guide. Ecol. Appl. 29, e01954. https://doi.org/10.1002/eap.1954 (2019).

    Article  PubMed  Google Scholar 

  • 31.

    Smit, B., Woodborne, S., Wolf, B. O. & McKechnie, A. E. Differences in the use of surface water resources by desert birds are revealed using isotopic tracers. Auk 136, 1–13 (2019).

    Article  Google Scholar 

  • 32.

    Lynn, J. C., Rosenstock, S. S. & Chambers, C. L. Avian use of desert wildlife water developments as determined by remote videography. West. N. Am. Nat. 68, 107–112 (2008).

    Article  Google Scholar 

  • 33.

    Fisher, J. T. & Bradbury, S. A multi-method hierarchical modeling approach to quantifying bias in occupancy from noninvasive genetic tagging studies. J. Wildl. Manag. 78, 1087–1095 (2014).

    Article  Google Scholar 

  • 34.

    Fisher, J. T., Heim, N., Code, S. & Paczkowski, J. Grizzly bear noninvasive genetic tagging surveys: Estimating the magnitude of missed detections. PLoS ONE 11, 1–16 (2016).

    Google Scholar 

  • 35.

    Nichols, J. D. et al. Multi-scale occupancy estimation and modelling using multiple detection methods. J. Appl. Ecol. 45, 1321–1329 (2008).

    Article  Google Scholar 

  • 36.

    Calvo, J. F. et al. Catálogo de las aves de la Región de Murcia (España). An. Biol. 39, 7–33 (2017).

    Article  Google Scholar 

  • 37.

    Galbraith, J. A., Jones, D. N., Beggs, J. R., Stanley, M. C. & Parry, K. Urban bird feeders dominated by a few species and individuals. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2017.00081 (2017).

    Article  Google Scholar 

  • 38.

    McCarthy, M. A. et al. The influence of abundance on detectability. Oikos 122, 717–726 (2012).

    Article  Google Scholar 

  • 39.

    Lee, A. T. K., Wright, D. & Barnard, P. Hot bird drinking patterns: Drivers of water visitation in a fynbos bird community. Afr. J. Ecol. 55, 541–553 (2017).

    Article  Google Scholar 

  • 40.

    Gregory, R. D., Gibbons, D. W. & Donald, P. F. Bird census and survey techniques. In Bird Ecology and Conservation. A Handbook of Techniques (eds. Sutherland, W. J., Newton, I. & Green, R. E.) 17–55 (Oxford Scholarship, Oxford, 2004).

  • 41.

    Derlindati, E. J. & Caziani, S. M. Using canopy and understory mist nets and point counts to study bird assemblages in Chaco forests. Wilson Bull. 117, 92–99 (2005).

    Article  Google Scholar 

  • 42.

    Wang, Y. & Finch, D. M. Consistency of mist netting and point counts in assessing landbird species richness and relative abundance during migration. Condor 104, 59–72 (2002).

    Article  Google Scholar 

  • 43.

    Valera, F. et al. History and adaptation stories of the vertebrate fauna of southern Spain semiarid habitats. J. Arid Environ. 75, 1342–1351 (2011).

    Article  ADS  Google Scholar 

  • 44.

    Rappole, J. H. Migratory bird habitat use in Southern Mexico: Mist nets versus point counts. J. F. Ornithol. 69, 635–643 (2012).

    Google Scholar 

  • 45.

    Poulin, B., Lefebvre, G. & Pilard, P. Quantifying the breeding assemblage of reedbed passerines with mist-net and point-count surveys. J. F. Ornithol. 71, 443–454 (2000).

    Article  Google Scholar 

  • 46.

    Armas, C., Miranda, J. D., Padilla, F. M. & Pugnaire, F. I. Special issue: The Iberian Southeast. J. Arid Environ. 75, 1241–1243 (2011).

    Article  ADS  Google Scholar 

  • 47.

    Lisón, F. & Calvo, J. F. Bat activity over small ponds in dry Mediterranean forests: Implications for conservation. Acta Chiropterol. 16, 95–101 (2014).

    Article  ADS  Google Scholar 

  • 48.

    Sebastián-González, E., Sánchez-Zapata, J. A. & Botella, F. Agricultural ponds as alternative habitat for waterbirds: Spatial and temporal patterns of abundance and management strategies. Eur. J. Wildl. Res. 56, 11–20 (2010).

    Article  Google Scholar 

  • 49.

    Egea-Serrano, A., Oliva-Paterna, F. J. & Torralva, M. Breeding habitat selection of Salamandra salamandra (Linnaeus, 1758) in the most arid zone of its European distribution range: Application to conservation management. Hydrobiologia 560, 363–371 (2006).

    Article  Google Scholar 

  • 50.

    Egea-Serrano, A., Oliva-Paterna, F. J., Tejedo, M. & Torralva, M. Breeding habitat selection of an endangered species in an arid zone: The case of Alytes dickhilleni Arntzen & García-París, 1995. Acta Herpetol. 1, 81–94 (2006).

    Google Scholar 

  • 51.

    Davies, S. R., Sayer, C. D., Greaves, H., Siriwardena, G. M. & Axmacher, J. C. A new role for pond management in farmland bird conservation. Agric. Ecosyst. Environ. 233, 179–191 (2016).

    Article  Google Scholar 

  • 52.

    Oertli, B. Freshwater biodiversity conservation: The role of artificial ponds in the 21st century. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 264–269 (2018).

    Article  Google Scholar 

  • 53.

    MacKenzie, D. I. et al. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255 (2002).

    Article  Google Scholar 

  • 54.

    Rich, L. N., Miller, D. A. W., Robinson, H. S., McNutt, J. W. & Kelly, M. J. Using camera trapping and hierarchical occupancy modelling to evaluate the spatial ecology of an African mammal community. J. Appl. Ecol. 53, 1225–1235 (2016).

    Article  Google Scholar 

  • 55.

    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, New York, 2002).

    Google Scholar 

  • 56.

    Martínez-Martí, C., Jiménez-Franco, M. V., Royle, J. A., Palazón, J. A. & Calvo, J. F. Integrating occurrence and detectability patterns based on interview data: A case study for threatened mammals in Equatorial Guinea. Sci. Rep. 6, 33838. https://doi.org/10.1038/srep33838 (2016).

    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

  • 57.

    White, G. C. & Burnham, K. P. Program MARK: survival estimation from populations of marked animals. Bird Study 46, S120–S139 (1999).

    Article  Google Scholar 

  • 58.

    Laake, J. L. RMark: An R Interface for Analysis of Capture-Recapture Data with MARK. AFSC Processed Report 2013–01, 25p. Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv., 7600 Sand Point Way NE, Seattle WA 98115 (2013).

  • 59.

    Denis, T. et al. Biological traits, rather than environment, shape detection curves of large vertebrates in neotropical rainforests. Ecol. Appl. 27, 3218–3221 (2017).

    Article  Google Scholar 

  • 60.

    Frishkoff, L. O., De Valpine, P. & M’Gonigle, L. K. Phylogenetic occupancy models integrate imperfect detection and phylogenetic signal to analyze community structure. Ecology 98, 198–210 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 61.

    Pearman, P. B. et al. Phylogenetic patterns of climatic, habitat and trophic niches in a European avian assemblage. Glob. Ecol. Biogeogr. 23, 414–424 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 62.

    Powell, L. A. Approximating variance of demographic parameters using the delta method: A reference for avian biologists. Condor 109, 949–954 (2007).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Multiple maternal risk-management adaptations in the loggerhead sea turtle (Caretta caretta) mitigate clutch failure caused by catastrophic storms and predators

    Comparison of soil and corn residue cutting performance of different discs used for vertical tillage