Smith, C. E. G. The history of dengue in tropical asia and its probable relationship to the mosquito aedes aegypti. J. Trop. Med. Hyg. 59, 243–51 (1956).
Google Scholar
Reiter, P. Aedes albopictus and the world trade in used tires, 1988–1995: The shape of things to come?. J. Am. Mosquito Control Assoc. 14, 83–94 (1998).
Google Scholar
Lounibos, L. P. Invasions by insect vectors of human disease. Ann. Rev. Entomol. 47, 233–266. https://doi.org/10.1146/annurev.ento.47.091201.145206 (2002).
Google Scholar
Medley, K. A., Jenkins, D. G. & Hoffman, E. A. Human-aided and natural dispersal drive gene flow across the range of an invasive mosquito. Mol. Ecol. 24, 284–295. https://doi.org/10.1111/mec.12925 (2015).
Google Scholar
Sota, T. & Mogi, M. Survival time and resistance to desiccation of diapause and non-diapause eggs of temperate Aedes (Stegomyia) mosquitoes. Entomologia Experimentalis et Applicata 63, 155–161. https://doi.org/10.1111/j.1570-7458.1992.tb01570.x (1992).
Google Scholar
Poelchau, M. F., Reynolds, J. A., Denlinger, D. L., Elsik, C. G. & Armbruster, P. A. A de novo transcriptome of the Asian tiger mosquito, Aedes albopictus, to identify candidate transcripts for diapause preparation. BMC Genom. 12, 619. https://doi.org/10.1186/1471-2164-12-619 (2011).
Google Scholar
Bonizzoni, M., Gasperi, G., Chen, X. & James, A. A. The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol. 29, 460–468. https://doi.org/10.1016/j.pt.2013.07.003 (2013).
Google Scholar
Paupy, C., Delatte, H., Bagny, L., Corbel, V. & Fontenille, D. Aedes albopictus, an arbovirus vector: from the darkness to the light. Microbes Infect. 11, 1177–1185. https://doi.org/10.1016/j.micinf.2009.05.005 (2009).
Google Scholar
Wu, J.-Y., Lun, Z.-R., James, A. A. & Chen, X.-G. Dengue fever in Mainland China. Am. J. Trop. Med. Hyg. 83, 664–671. https://doi.org/10.4269/ajtmh.2010.09-0755 (2010).
Google Scholar
Gasperi, G. et al. A new threat looming over the mediterranean basin: emergence of viral diseases transmitted by aedes albopictus mosquitoes. PLOS Negl. Trop. Dis. 6, e1836. https://doi.org/10.1371/journal.pntd.0001836 (2012).
Google Scholar
Rezza, G. Aedes albopictus and the reemergence of Dengue. BMC Publ. Health 12, 72. https://doi.org/10.1186/1471-2458-12-72 (2012).
Google Scholar
Higgs, S. The 2005–2006 chikungunya epidemic in the Indian Ocean. Vector-Borne Zoo. Dis. 6, 115–116. https://doi.org/10.1089/vbz.2006.6.115 (2006).
Google Scholar
Ratsitorahina, M. et al. Outbreak of Dengue and Chikungunya Fevers, Toamasina, Madagascar, 2006. Emerg. Infect. Dis. 14, 1135–1137. https://doi.org/10.3201/eid1407.071521 (2008).
Google Scholar
Grard, G. et al. Zika virus in gabon (Central Africa): 2007—A new threat from aedes albopictus?. PLOS Negl. Trop. Dis. 8, e2681. https://doi.org/10.1371/journal.pntd.0002681 (2014).
Google Scholar
Vincent, M. et al. From the threat to the large outbreak: dengue on Reunion Island, 2015 to 2018. Eurosurveillhttps://doi.org/10.2807/1560-7917.ES.2019.24.47.1900346 (2019).
Google Scholar
Rezza, G. et al. Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet 370, 1840–1846. https://doi.org/10.1016/S0140-6736(07)61779-6 (2007).
Google Scholar
Lindh, E. et al. The Italian 2017 outbreak chikungunya virus belongs to an emerging aedes albopictus-adapted virus cluster introduced from the Indian subcontinent. Open Forum Infect. Dis.https://doi.org/10.1093/ofid/ofy321 (2018).
Google Scholar
Ruche, G. L. et al. First two autochthonous dengue virus infections in metropolitan France, September 2010. Eurosurveillance 15, 19676. https://doi.org/10.2807/ese.15.39.19676-en (2010).
Google Scholar
Gjenero-Margan, I. et al. Autochthonous dengue fever in Croatia, August–September 2010. Eurosurveillance 16, 19805. https://doi.org/10.2807/ese.16.09.19805-en (2011).
Google Scholar
Rovida, F. et al. Viremic Dengue virus infections in travellers: potential for local outbreak in Northern Italy. J. Clin. Virol. 50, 76–79. https://doi.org/10.1016/j.jcv.2010.09.015 (2011).
Google Scholar
WHO. Dengue vaccine: WHO position paper—September 2018. Weekly epidemiological record 457–476 (2018).
World Health Organization and others. Dengue and severe dengue. Tech. Rep., World Health Organization. Regional Office for the Eastern Mediterranean (2019).
Organization, W. H. Dengue : Guidelines for Diagnosis, Treatment, Prevention and Control (WHO, 2009). Google-Books-ID: dlc0YSIyGYwC.
Connelly, C., Florida, C. & Control, M. The State of the Mission as Defined by Mosquito Controllers, Regulators, and Environmental Managers 2009 2009 (University of Florida, Vero Beach, 2009).
Achee, N. L. et al. Alternative strategies for mosquito-borne arbovirus control. PLOS Negl. Trop. Dis. 13, e0006822. https://doi.org/10.1371/journal.pntd.0006822 (2019).
Google Scholar
Faraji, A. & Unlu, I. The eye of the tiger, the thrill of the fight: effective larval and adult control measures against the asian tiger mosquito, aedes albopictus (diptera: culicidae). North Am. J. Med. Entomol. 53, 1029–1047. https://doi.org/10.1093/jme/tjw096 (2016).
Google Scholar
Mackay, A. J., Amador, M. & Barrera, R. An improved autocidal gravid ovitrap for the control and surveillance of Aedes aegypti. Parasites & Vectors 6, 225. https://doi.org/10.1186/1756-3305-6-225 (2013).
Google Scholar
Barrera, R. et al. Impact of autocidal gravid ovitraps on chikungunya virus incidence in aedes aegypti (diptera: culicidae) in areas with and without traps. J. Med. Entomol. 54, 387–395. https://doi.org/10.1093/jme/tjw187 (2017).
Google Scholar
Barrera, R., Amador, M., Munoz, J. & Acevedo, V. Integrated vector control of Aedes aegypti mosquitoes around target houses. Parasites & Vectors 11, 88. https://doi.org/10.1186/s13071-017-2596-4 (2018).
Google Scholar
Jawara, M. et al. Optimizing odor-baited trap methods for collecting mosquitoes during the malaria season in the gambia. PLOS ONE 4, e8167. https://doi.org/10.1371/journal.pone.0008167 (2009).
Google Scholar
Englbrecht, C., Gordon, S., Venturelli, C., Rose, A. & Geier, M. Evaluation of BG-sentinel trap as a management tool to reduce aedes albopictus nuisance in an urban environment in Italy. Moco 31, 16–25. https://doi.org/10.2987/14-6444.1 (2015).
Google Scholar
Lacroix, R., Delatte, H., Hue, T., Dehecq, J. S. & Reiter, P. Adaptation of the BG-Sentinel trap to capture male and female Aedes albopictus mosquitoes. Med. Vet. Entomol. 23, 160–162. https://doi.org/10.1111/j.1365-2915.2009.00806.x (2009).
Google Scholar
Suman, D. S. et al. Point-source and area-wide field studies of pyriproxyfen autodissemination against urban container-inhabiting mosquitoes. Acta Trop. 135, 96–103. https://doi.org/10.1016/j.actatropica.2014.03.026 (2014).
Google Scholar
Devine, G. Auto-dissemination of pyriproxyfen for the control of container-inhabiting mosquitoes: a progress review. Outlooks Pest Manag. 27, 164–167 (2016).
Google Scholar
Devine, G. J. et al. Using adult mosquitoes to transfer insecticides to Aedes aegypti larval habitats., Using adult mosquitoes to transfer insecticides to Aedes aegypti larval habitats. Proc. Natl. Acad. Sci. USA 106, 11530–11534. https://doi.org/10.1073/pnas.0901369106 (2009).
Google Scholar
Caputo, B. et al. The auto-dissemination approach: a novel concept to fight aedes albopictus in urban areas. PLOS Negl. Trop. Dis. 6, e1793. https://doi.org/10.1371/journal.pntd.0001793 (2012).
Google Scholar
Gaugler, R., Suman, D. & Wang, Y. An autodissemination station for the transfer of an insect growth regulator to mosquito oviposition sites. Med. Vet. Entomol. 26, 37–45. https://doi.org/10.1111/j.1365-2915.2011.00970.x (2012).
Google Scholar
El-Sayed, A. M., Suckling, D. M., Wearing, C. H. & Byers, J. A. Potential of mass trapping for long-term pest management and eradication of invasive species. J. Econ. Entomol. 99, 1550–1564. https://doi.org/10.1093/jee/99.5.1550 (2006).
Google Scholar
Dunn, D. W. & Follett, P. A. The sterile insect technique (SIT): an introduction. Entomol. Exp. Appl. 164, 151–154. https://doi.org/10.1111/eea.12619 (2017).
Google Scholar
Flores, H. A. & O’Neill, S. L. Controlling vector-borne diseases by releasing modified mosquitoes. Nat. Rev. Microbiol.https://doi.org/10.1038/s41579-018-0025-0 (2018).
Google Scholar
Bellini, R., Medici, A., Puggioli, A., Balestrino, F. & Carrieri, M. Pilot field trials with Aedes albopictus irradiated sterile males in Italian urban areas. J. Med. Entomol. 50, 317–325 (2013).
Google Scholar
Zheng, X. et al. Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature 572, 56–61. https://doi.org/10.1038/s41586-019-1407-9 (2019).
Google Scholar
Bouyer, J. & Vreysen, M. Yes, irradiated sterile male mosquitoes can be sexually competitive!. Trends in Parasitology (2020) (in press).
Alphey, L. et al. Sterile-insect methods for control of mosquito-borne diseases: an analysis. Vector Borne Zoo. Dis. 10, 295–311. https://doi.org/10.1089/vbz.2009.0014 (2010).
Google Scholar
Baldacchino, F. C. et al. Pest management science: wiley online library. Pest Manag. Sci.https://doi.org/10.1002/ps.4044 (2015).
Lees, R., Gilles, J., Hendrichs, J., Vreysen, M. & Bourtzis, K. Back to the future: the sterile insect technique against mosquito disease vectors. Curr. Opin. Insect Sci. 10, 156–162. https://doi.org/10.1016/j.cois.2015.05.011 (2015).
Google Scholar
Pleydell, D. R. J. & Bouyer, J. Biopesticides improve efficiency of the sterile insect technique for controlling mosquito-driven dengue epidemics. Commun. Biol. 2, 201. https://doi.org/10.1038/s42003-019-0451-1 (2019).
Google Scholar
Bouyer, J. & Lefrançois, T. Boosting the sterile insect technique to control mosquitoes. Trends Parasitol. 30, 271–273. https://doi.org/10.1016/j.pt.2014.04.002 (2014).
Google Scholar
Bouyer, J., Chandre, F., Gilles, J. & Baldet, T. Alternative vector control methods to manage the Zika virus outbreak: more haste, less speed. Lancet Glob. Health 4, e364. https://doi.org/10.1016/S2214-109X(16)00082-6 (2016).
Google Scholar
Invest, J. & Lucas, J. Pyriproxyfen as a mosquito larvicide. Proceedings of the Sixth International Conference on Urban Pests 239–245, (2008).
Maoz, D. et al. Community effectiveness of pyriproxyfen as a dengue vector control method: a systematic review. PLOS Negl. Trop. Dis. 11, e0005651. https://doi.org/10.1371/journal.pntd.0005651 (2017).
Google Scholar
White, M. T. et al. Modelling the impact of vector control interventions on Anopheles gambiae population dynamics. Parasites Vectors 4, 153. https://doi.org/10.1186/1756-3305-4-153 (2011).
Google Scholar
Cailly, P. et al. Climate-driven abundance model to assess mosquito control strategies. Ecol. Model. ECOL MODEL 227, 7–17. https://doi.org/10.1016/j.ecolmodel.2011.10.027 (2012).
Google Scholar
Arifin, S. N., Madey, G. R. & Collins, F. H. Examining the impact of larval source management and insecticide-treated nets using a spatial agent-based model of Anopheles gambiae and a landscape generator tool. Malar J. 12, 290. https://doi.org/10.1186/1475-2875-12-290 (2013).
Google Scholar
Lee, S. S., Baker, R. E., Gaffney, E. A. & White, S. M. Optimal barrier zones for stopping the invasion of Aedes aegypti mosquitoes via transgenic or sterile insect techniques. Theor. Ecol. 6, 427–442. https://doi.org/10.1007/s12080-013-0178-4 (2013).
Google Scholar
Yakob, L. & Yan, G. Modeling the effects of integrating larval habitat source reduction and insecticide treated nets for malaria control. PLOS ONE 4, e6921. https://doi.org/10.1371/journal.pone.0006921 (2009).
Google Scholar
Almeida, L., Duprez, M., Privat, Y. & Vauchelet, N. Control strategies on mosquitos population for the fight against arboviruses. arXiv:1901.05688 [math] (2019).
North, A. R., Burt, A. & Godfray, H. C. J. Modelling the potential of genetic control of malaria mosquitoes at national scale. BMC Biol. 17, 26. https://doi.org/10.1186/s12915-019-0645-5 (2019).
Google Scholar
Strugarek, M., Bossin, H. & Dumont, Y. On the use of the sterile insect release technique to reduce or eliminate mosquito populations. Appl. Math. Model. 68, 443–470. https://doi.org/10.1016/j.apm.2018.11.026 (2019).
Google Scholar
Maiti, A., Patra, B. & Samanta, G. P. Sterile insect release method as a control measure of insect pests: a mathematical model. J. Appl. Math. Comput. 22, 71–86. https://doi.org/10.1007/BF02832038 (2006).
Google Scholar
White, S. M., Rohani, P. & Sait, S. M. Modelling pulsed releases for sterile insect techniques: fitness costs of sterile and transgenic males and the effects on mosquito dynamics. J. Appl. Ecol. 47, 1329–1339. https://doi.org/10.1111/j.1365-2664.2010.01880.x (2010) (WOS:000283983200020).
Google Scholar
Dufourd, C. & Dumont, Y. Impact of environmental factors on mosquito dispersal in the prospect of sterile insect technique control. Comput. Math. Appl. 66, 1695–1715. https://doi.org/10.1016/j.camwa.2013.03.024 (2013).
Google Scholar
Fister, K. R., McCarthy, M. L., Oppenheimer, S. F. & Collins, C. Optimal control of insects through sterile insect release and habitat modification. Math. Biosci. 244, 201–212. https://doi.org/10.1016/j.mbs.2013.05.008 (2013) (WOS:000322805400014).
Google Scholar
Cai, L., Ai, S. & Li, J. Dynamics of mosquitoes populations with different strategies for releasing sterile mosquitoes. SIAM J. Appl. Math. 74, 1786–1809. https://doi.org/10.1137/13094102X (2014) (WOS:000346845900004).
Google Scholar
Evans, T. P. & Bishop, S. R. A spatial model with pulsed releases to compare strategies for the sterile insect technique applied to the mosquito Aedes aegypti. Math. Biosci. 254, 6–27. https://doi.org/10.1016/j.mbs.2014.06.001 (2014).
Google Scholar
Li, J. & Yuan, Z. Modelling releases of sterile mosquitoes with different strategies. J. Biol. Dyn. 9, 1–14. https://doi.org/10.1080/17513758.2014.977971 (2015).
Google Scholar
Hendron, R.-W.S. & Bonsall, M. B. The interplay of vaccination and vector control on small dengue networks. J. Theor. Biol. 407, 349–361. https://doi.org/10.1016/j.jtbi.2016.07.034 (2016).
Google Scholar
Huang, M., Song, X. & Li, J. Modelling and analysis of impulsive releases of sterile mosquitoes. J. Biol. Dyn. 11, 147–171. https://doi.org/10.1080/17513758.2016.1254286 (2017) (WOS:000389042600004).
Google Scholar
Mishra, A., Ambrosio, B., Gakkhar, S. & Aziz-Alaoui, M. A. A network model for control of dengue epidemic using sterile insect technique. Math. Biosci. Eng. 15, 441–460. https://doi.org/10.3934/mbe.2018020 (2018) (WOS:000412001800006).
Google Scholar
Multerer, L., Smith, T. & Chitnis, N. Modeling the impact of sterile males on an Aedes aegypti population with optimal control. Math. Biosci. 311, 91–102. https://doi.org/10.1016/j.mbs.2019.03.003 (2019).
Google Scholar
Haramboure, M. et al. Modelling the control of Aedes albopictus mosquitoes based on sterile males release techniques in a tropical environment. Ecol. Model. 424, 109002. https://doi.org/10.1016/j.ecolmodel.2020.109002 (2020).
Google Scholar
ANSES. Portail de signalement du moustique tigre.
Delisle, E. et al. Chikungunya outbreak in Montpellier, France, September to October 2014. Eurosurveillance 20, 21108. https://doi.org/10.2807/1560-7917.ES2015.20.17.21108 (2015) (Publisher: European Centre for Disease Prevention and Control).
Google Scholar
Tran, A. et al. A rainfall- and temperature-driven abundance model for aedes albopictus populations. Int. J. Environ. Res. Publ. Health 10, 1698–1719. https://doi.org/10.3390/ijerph10051698 (2013).
Google Scholar
WHO & others. WHO position statement on integrated vector management. Weekly Epidemiological Record= Relevé épidémiologique hebdomadaire83, 177–181 (2008).
Johnson, B. J., Ritchie, S. A. & Fonseca, D. M. The state of the art of lethal oviposition trap-based mass interventions for arboviral control. Insects 8, 5. https://doi.org/10.3390/insects8010005 (2017).
Google Scholar
Delatte, H. et al. Aedes albopictus, vecteur des virus du chikungunya et de la dengue à la Réunion?: biologie et contrôle. Parasite 15, 3–13. https://doi.org/10.1051/parasite/2008151003 (2008).
Google Scholar
Dufourd, C. & Dumont, Y. Modeling and simulations of mosquito dispersal: the case of aedes albopictus. BIOMATH 1, 1209262. https://doi.org/10.11145/j.biomath.2012.09.262 (2012).
Google Scholar
Bouyer, J., Yamada, H., Pereira, R., Bourtzis, K. & Vreysen, M. J. B. Phased conditional approach for mosquito management using sterile insect technique. Trends Parasitol. 36, 325–336. https://doi.org/10.1016/j.pt.2020.01.004 (2020).
Google Scholar
McIntire, K. M. & Juliano, S. A. How can mortality increase population size? A test of two mechanistic hypotheses. Ecology 99, 1660–1670. https://doi.org/10.1002/ecy.2375 (2018).
Google Scholar
Neale, J. T. & Juliano, S. A. Finding the sweet spot: What levels of larval mortality lead to compensation or overcompensation in adult production?. Ecosphere 10, e02855. https://doi.org/10.1002/ecs2.2855 (2019).
Google Scholar
Seixas, G. et al. An evaluation of efficacy of the auto-dissemination technique as a tool for Aedes aegypti control in Madeira, Portugal. Parasites Vectors 12, 202. https://doi.org/10.1186/s13071-019-3454-3 (2019).
Google Scholar
Mains, J. W., Brelsfoard, C. L. & Dobson, S. L. Male mosquitoes as vehicles for insecticide. PLOS Negl. Trop. Dis. 9, e0003406. https://doi.org/10.1371/journal.pntd.0003406 (2015).
Google Scholar
Ritchie, S. A., Long, S., Hart, A., Webb, C. E. & Russell, R. C. An adulticidal sticky ovitrap for sampling container-breeding mosquitoes. J. Am. Mosq. Control Assoc. 19, 235–242 (2003).
Google Scholar
Lacroix, R., Delatte, H., Hue, T. & Reiter, P. Dispersal and Survival of Male and Female Aedes albopictus (Diptera: Culicidae) on Réunion Island. Ment 46, 1117–1124. https://doi.org/10.1603/033.046.0519 (2009).
Google Scholar
Marini, F., Caputo, B., Pombi, M., Tarsitani, G. & Torre, A. D. Study of Aedes albopictus dispersal in Rome, Italy, using sticky traps in mark-release-recapture experiments. Med. Vet. Entomol. 24, 361–368. https://doi.org/10.1111/j.1365-2915.2010.00898.x (2010).
Google Scholar
Garziera, L. et al. Effect of interruption of over-flooding releases of transgenic mosquitoes over wild population of Aedes aegypti: two case studies in Brazil. Entomol. Exp. Appl. 164, 327–339. https://doi.org/10.1111/eea.12618 (2017) (WOS:000413403700015).
Google Scholar
Tran, A. et al. Complementarity of empirical and process-based approaches to modelling mosquito population dynamics with Aedes albopictus as an example-Application to the development of an operational mapping tool of vector populations. PLOS ONE 15, e0227407. https://doi.org/10.1371/journal.pone.0227407 (2020).
Google Scholar
Baldacchino, F. et al. An integrated pest control strategy against the Asian tiger mosquito in northern Italy: a case study. Pest Manag. Sci. 73, 87–93. https://doi.org/10.1002/ps.4417 (2017).
Google Scholar
Gentile, J. E., Rund, S. S. C. & Madey, G. R. Modelling sterile insect technique to control the population of Anopheles gambiae. Malar. J. 14, 92. https://doi.org/10.1186/s12936-015-0587-5 (2015) (WOS:000350605300001).
Google Scholar
Perrin, A. et al. Mosquito densoviruses: the revival of a biological control agent against urban Aedes vectors of arboviruses. bioRxiv 2020.04.23.055830, https://doi.org/10.1101/2020.04.23.055830 (2020). Publisher: Cold Spring Harbor Laboratory Section: New Results.
Burattini, M. N. et al. Modelling the control strategies against dengue in Singapore. Epidemiol. Infect. 136, 309–319. https://doi.org/10.1017/S0950268807008667 (2008).
Google Scholar
Yang, H. M. & Ferreira, C. P. Assessing the effects of vector control on dengue transmission. Appl. Math. Comput. 198, 401–413. https://doi.org/10.1016/j.amc.2007.08.046 (2008).
Google Scholar
Dumont, Y. & Chiroleu, F. Vector control for the Chikungunya disease. Math. Biosci. Eng. 7, 313–345 (2010).
Google Scholar
Hladish, T. J. et al. Designing effective control of dengue with combined interventions. Proc. Natl. Acad. Sci. 117, 3319–3325 (2020).
Google Scholar
Tang, B. et al. The effectiveness of quarantine and isolation determine the trend of the COVID-19 epidemics in the final phase of the current outbreak in China. Int. J. Infect. Dis. 95, 288–293. https://doi.org/10.1016/j.ijid.2020.03.018 (2020).
Google Scholar
Jr, R. C. R. et al. Estimating the impact of city-wide Aedes aegypti population control: an observational study in Iquitos, Peru. PLOS Negl. Trop. Dis. 13, e0007255. https://doi.org/10.1371/journal.pntd.0007255 (2019).
Wahid, I. et al. Integrated vector management with additional pre-transmission season thermal fogging is associated with a reduction in dengue incidence in Makassar, Indonesia: Results of an 8-year observational study. PLOS Negl. Trop. Dis. 13, e0007606. https://doi.org/10.1371/journal.pntd.0007606 (2019).
Google Scholar
Castro, M. et al. A community empowerment strategy embedded in a routine dengue vector control programme: a cluster randomised controlled trial. Trans. R. Soc. Trop. Med. Hyg. 106, 315–321. https://doi.org/10.1016/j.trstmh.2012.01.013 (2012).
Google Scholar
Andersson, N. et al. Evidence based community mobilization for dengue prevention in Nicaragua and Mexico (Camino Verde, the Green Way): cluster randomized controlled trial. BMJ 351, h3267. https://doi.org/10.1136/bmj.h3267 (2015).
Google Scholar
Gubler, D. J. & Clark, G. G. Community involvement in the control of Aedes aegypti. Acta Trop. 61, 169–179. https://doi.org/10.1016/0001-706X(95)00103-L (1996).
Google Scholar
Baly, A. et al. Cost effectiveness of Aedes aegypti control programmes: participatory versus vertical. Trans. R. Soc. Trop. Med. Hyg. 101, 578–586. https://doi.org/10.1016/j.trstmh.2007.01.002 (2007).
Google Scholar
Alphey, N., Alphey, L. & Bonsall, M. B. A model framework to estimate impact and cost of genetics-based sterile insect methods for dengue vector control. PLoS One 6, e25384. https://doi.org/10.1371/journal.pone.0025384 (2011) (WOS:000295966900023).
Google Scholar
Fontenille, D. et al.La lutte antivectorielle en France. IRD Éditions (2009).
Oliva, C. F. et al. The sterile insect technique for controlling populations of aedes albopictus (diptera: culicidae) on reunion island: mating vigour of sterilized males. PLOS ONE 7, e49414. https://doi.org/10.1371/journal.pone.0049414 (2012).
Google Scholar
Madakacherry, O., Lees, R. S. & Gilles, J. R. L. Aedes albopictus (Skuse) males in laboratory and semi-field cages: release ratios and mating competitiveness. Acta Trop. 132(Suppl), S124-129. https://doi.org/10.1016/j.actatropica.2013.11.020 (2014).
Google Scholar
Abad-Franch, F., Zamora-Perea, E., Ferraz, G., Padilla-Torres, S. D. & Luz, S. L. B. Mosquito-disseminated pyriproxyfen yields high breeding-site coverage and boosts juvenile mosquito mortality at the neighborhood scale. PLoS Negl. Trop. Dis.https://doi.org/10.1371/journal.pntd.0003702 (2015).
Google Scholar
Unlu, I. et al. Large-scale operational pyriproxyfen autodissemination deployment to suppress the immature asian tiger mosquito (diptera: culicidae) populations. J. Med. Entomol.https://doi.org/10.1093/jme/tjaa011 (2020).
Google Scholar
Degener, C. M. et al. Mass trapping with MosquiTRAPs does not reduce Aedes aegypti abundance. Memórias do Instituto Oswaldo Cruz 110, 517–527. https://doi.org/10.1590/0074-02760140374 (2015).
Google Scholar
Boubidi, S. C. Surveillance et contrôle du moustique tigre, Aedes albopictus (Skuse, 1894) à Nice, sud de la France (2016).
Kröckel, U., Rose, A., Eiras, Á. E. & Geier, M. New tools for surveillance of adult yellow fever mosquitoes: comparison of trap catches with human landing rates in an urban environment. Moco 22, 229–238. https://doi.org/10.2987/8756-971X(2006)22[229:NTFSOA]2.0.CO;2 (2006).
Google Scholar
Source: Ecology - nature.com