in

Comparison of sample types from white-tailed deer (Odocoileus virginianus) for DNA extraction and analyses

  • 1.

    Piertney, S. B. In Current Trends in Wildlife Research (eds Mateo, R. et al.) 201–223 (Springer International Publishing, 2016).

  • 2.

    Jabin, G., Sahajpal, V., Chandra, K. & Thakur, M. In Forensic DNA Typing: Principles, Applications and Advancements (eds Shrivastava, P., et al.) 399–403 (Springer, Singapore, 2020).

  • 3.

    Drechsler, A., Helling, T. & Steinfartz, S. Genetic fingerprinting proves cross-correlated automatic photo-identification of individuals as highly efficient in large capture–mark–recapture studies. Ecol. Evol. 5, 141–151. https://doi.org/10.1002/ece3.1340 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 4.

    Gupta, S. K. In DNA Fingerprinting: Advancements and Future Endeavors (eds Ranjan Dash, H., et al.) 77–87 (Springer, Singapore, 2018).

  • 5.

    Dale, T. D. et al. Enhancement of wildlife disease surveillance using multiplex quantitative PCR: Development of qPCR assays for major pathogens in UK squirrel populations. Eur. J. Wildl. Res. 62, 589–599. https://doi.org/10.1007/s10344-016-1031-z (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Latch, E. K., Heffelfinger, J. R., Fike, J. A. & Rhodes, O. E. Jr. Species-wide phylogeography of North American mule deer (Odocoileus hemionus): Cryptic glacial refugia and postglacial recolonization. Mol. Ecol. 18, 1730–1745. https://doi.org/10.1111/j.1365-294X.2009.04153.x (2009).

    Article 
    PubMed 

    Google Scholar 

  • 7.

    Moscarella, R. A., Aguilera, M. & Escalante, A. A. Phylogeography, population structure, and implications for conservation of white-tailed deer (Odocoileus virginianus) in Venezuela. J. Mammal. 84, 1300–1315. https://doi.org/10.1644/brb-028 (2003).

    Article 

    Google Scholar 

  • 8.

    Lang, K. R. & Blanchong, J. A. Population genetic structure of white-tailed deer: Understanding risk of chronic wasting disease spread. J. Wildl. Manag. 76, 832–840. https://doi.org/10.1002/jwmg.292 (2012).

    Article 

    Google Scholar 

  • 9.

    Locher, A., Scribner, K. T., Moore, J. A., Murphy, B. & Kanefsky, J. Influence of landscape features on spatial genetic structure of white-tailed deer in human-altered landscapes. J. Wildl. Manag. 79, 180–194 (2015).

    Article 

    Google Scholar 

  • 10.

    Green, M. L., Manjerovic, M. B., Mateus-Pinilla, N. & Novakofski, J. Genetic assignment tests reveal dispersal of white-tailed deer: Implications for chronic wasting disease. J. Mammal. 95, 646–654. https://doi.org/10.1644/13-MAMM-A-167 (2014).

    Article 

    Google Scholar 

  • 11.

    Zachos, F. E. et al. Population viability analysis and genetic diversity of the endangered red deer Cervus elaphus population from Mesola, Italy. Wildl. Biol. 15, 175–186 (2009).

    Article 

    Google Scholar 

  • 12.

    Villanova, V. L., Hughes, P. T. & Hoffman, E. A. Combining genetic structure and demographic analyses to estimate persistence in endangered key deer (Odocoileus virginianus clavium). Conserv. Genet. 18, 1061–1076. https://doi.org/10.1007/s10592-017-0958-2 (2017).

    Article 

    Google Scholar 

  • 13.

    Lorenzini, R. DNA forensics and the poaching of wildlife in Italy: A case study. Forensic Sci. Int. 153, 218–221. https://doi.org/10.1016/j.forsciint.2005.04.032 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 14.

    Vikas, K. Wildlife DNA evidence: Recognition, collection and preservation. Res. J. Forensic Sci. 3(7), 8–15 (2015).

    Google Scholar 

  • 15.

    Waits, L. P. & Paetkau, D. Noninvasive genetic sampling tools for wildlife biologists: A review of applications and recommendations for accurate data collection. J. Wildl. Manag. 69, 1419–1433 (2005).

    Article 

    Google Scholar 

  • 16.

    Oyler-McCance, S. J. & Leberg, P. L. In The Wildlife Techniques Manual: Research (ed 7th) 526–546 (John Hopkins University Press, 2012).

  • 17.

    Begley-Miller, D. R., Hipp, A. L., Brown, B. H., Hahn, M. & Rooney, T. P. White-tailed deer are a biotic filter during community assembly, reducing species and phylogenetic diversity. AoB Plants https://doi.org/10.1093/aobpla/plu030 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Saunders, S. E., Bartelt-Hunt, S. L. & Bartz, J. C. Occurrence, transmission, and zoonotic potential of chronic wasting disease. Emerg. Infect. Dis. 18, 369–376 (2012).

    Article 

    Google Scholar 

  • 19.

    Miller, W. L., Edson, J., Pietrandrea, P., Miller-Butterworth, C. & Walter, W. D. Identification and evaluation of a core microsatellite panel for use in white-tailed deer (Odocoileus virginianus). BMC Genet. 20, 49. https://doi.org/10.1186/s12863-019-0750-z (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Budd, K., Berkman, L. K., Anderson, M., Koppelman, J. & Eggert, L. S. Genetic structure and recovery of white-tailed deer in Missouri. J. Wildl. Manag. 82, 1598–1607. https://doi.org/10.1002/jwmg.21546 (2018).

    Article 

    Google Scholar 

  • 21.

    DeYoung, R. W., Demarais, S., Gonzales, R. A., Honeycutt, R. L. & Gee, K. L. Multiple paternity in white-tailed deer (Odocoileus Virginianus) revealed by DNA microsatellites. J. Mammal. 83, 884–892. https://doi.org/10.1644/1545-1542(2002)083%3c0884:mpiwtd%3e2.0.co;2 (2002).

    Article 

    Google Scholar 

  • 22.

    Poutanen, J., Pusenius, J., Wikström, M. & Brommer, J. E. Estimating population density of the white-tailed deer in Finland using non-invasive genetic sampling and spatial capture-recapture. Ann. Zool. Fenn. 56, 1–16 (2019).

    Article 

    Google Scholar 

  • 23.

    Brinkman, T. J. et al. Individual identification of Sitka black-tailed deer (Odocoileus hemionus sitkensis) using DNA from fecal pellets. Conserv. Genet. Resour. 2, 115–118. https://doi.org/10.1007/s12686-010-9176-7 (2010).

    Article 

    Google Scholar 

  • 24.

    de Vargas Wolfgramm, E. et al. Simplified buccal DNA extraction with FTA® Elute Cards. Forensic Sci. Int. Genet. 3, 125–127. https://doi.org/10.1016/j.fsigen.2008.11.008 (2009).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Bunting, S., Burnett, E., Hunter, R. B., Field, R. & Hunter, K. L. Incorporating molecular genetics into remote expedition fieldwork. Trop. Conserv. Sci. 7, 260–271. https://doi.org/10.1177/194008291400700207 (2014).

    Article 

    Google Scholar 

  • 26.

    McClure, M. C., McKay, S. D., Schnabel, R. D. & Taylor, J. F. Assessment of DNA extracted from FTA cards for use on the Illumina iSelect BeadChip. BMC Res Notes 2, 107. https://doi.org/10.1186/1756-0500-2-107 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Milne, E. et al. Buccal DNA collection: Comparison of buccal swabs with FTA cards. Cancer Epidemiol. Biomark. Prev. 15, 816–819. https://doi.org/10.1158/1055-9965.epi-05-0753 (2006).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Smith, L. M. & Burgoyne, L. A. Collecting, archiving and processing DNA from wildlife samples using FTA databasing paper. BMC Ecol 4, 4–4. https://doi.org/10.1186/1472-6785-4-4 (2004).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Fryxell, R. T. T. et al. Survey of Borreliae in ticks, canines, and white-tailed deer from Arkansas, U.S.A. Parasit. Vectors 5, 139. https://doi.org/10.1186/1756-3305-5-139 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Picard-Meyer, E., Barrat, J. & Cliquet, F. Use of filter paper (FTA®) technology for sampling, recovery and molecular characterisation of rabies viruses. J. Virol. Methods 140, 174–182. https://doi.org/10.1016/j.jviromet.2006.11.011 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 31.

    Haley, N. J. et al. Antemortem detection of chronic wasting disease prions in nasal brush collections and rectal biopsy specimens from white-tailed deer by real-time quaking-induced conversion. J. Clin. Microbiol. 54, 1108–1116. https://doi.org/10.1128/jcm.02699-15 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Mas, S., Crescenti, A., Gassó, P., Vidal-Taboada, J. M. & Lafuente, A. DNA cards: Determinants of DNA yield and quality in collecting genetic samples for pharmacogenetic studies. Basic Clin. Pharmacol. Toxicol. 101, 132–137. https://doi.org/10.1111/j.1742-7843.2007.00089.x (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 33.

    Drew, R. E. et al. Conservation genetics of the fisher (Martes pennanti) based on mitochondrial DNA sequencing. Mol. Ecol. 12, 51–62. https://doi.org/10.1046/j.1365-294X.2003.01715.x (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 34.

    Soulsbury, C. D., Iossa, G., Edwards, K. J., Baker, P. J. & Harris, S. Allelic dropout from a high-quality DNA source. Conserv. Genet. 8, 733–738. https://doi.org/10.1007/s10592-006-9194-x (2007).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Soanes, K. et al. Evaluating the success of wildlife crossing structures using genetic approaches and an experimental design: Lessons from a gliding mammal. J. Appl. Ecol. 55, 129–138. https://doi.org/10.1111/1365-2664.12966 (2018).

    Article 

    Google Scholar 

  • 36.

    Cheng, E., Hodges, K. E., Sollmann, R. & Mills, L. S. Genetic sampling for estimating density of common species. Ecol. Evol. 7, 6210–6219. https://doi.org/10.1002/ece3.3137 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    DeYoung, R. W. et al. Evaluation of DNA microsatellite panel useful for genetic exclusion studies in white-tailed deer. Wildl. Soc. Bull. 31, 220–232 (2003).

    Google Scholar 

  • 38.

    Vedicherla, S. & Buckley, C. T. Rapid chondrocyte isolation for tissue engineering applications: The effect of enzyme concentration and temporal exposure on the matrix forming capacity of nasal derived chondrocytes. Biomed. Res. Int. 2395138, 12 (2017).

    Google Scholar 

  • 39.

    Maličev, E., Kregar-Velikonja, N., Barlič, A., Alibegović, A. & Drobnič, M. Comparison of articular and auricular cartilage as a cell source for the autologous chondrocyte implantation. J. Orthop. Res. 27, 943–948. https://doi.org/10.1002/jor.20833 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 40.

    Goel, M., Picciani, R. G., Lee, R. K. & Bhattacharya, S. K. Aqueous humor dynamics: A review. Open Ophthalmol J 4, 52–59. https://doi.org/10.2174/1874364101004010052 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Park, S. J., Kim, J. Y., Yang, Y. G. & Lee, S. H. Direct STR amplification from whole blood and blood- or saliva-spotted FTA® without DNA purification*. J. Forensic Sci. 53, 335–341. https://doi.org/10.1111/j.1556-4029.2008.00666.x (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 42.

    Forgacs, D., Wallen, R., Boedeker, A. & Derr, J. Evaluation of fecal samples as a valid source of DNA by comparing paired blood and fecal samples from American bison (Bison bison). BMC Genet https://doi.org/10.1186/s12863-019-0722-3 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Pfeiler, S. S. et al. Costs and precision of fecal DNA mark–recapture versus traditional mark–resight. Wildl. Soc. Bull. 44, 531–542. https://doi.org/10.1002/wsb.1119 (2020).

    Article 

    Google Scholar 

  • 44.

    Henry, P., Henry, A. & Russello, M. A noninvasive hair sampling technique to obtain high quality DNA from elusive small mammals. J. Vis. Exp. JoVE. https://doi.org/10.3791/2791 (2011).

    Article 
    PubMed 

    Google Scholar 

  • 45.

    Wirsing, A. J., Quinn, T. P., Adams, J. R. & Waits, L. P. Optimizing selection of brown bear hair for noninvasive genetic analysis. Wildl. Soc. Bull. 44, 94–100. https://doi.org/10.1002/wsb.1057 (2020).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Analytics platform for coastal desalination plants wins 2021 Water Innovation Prize

    Supplementation of Lactobacillus early in life alters attention bias to threat in piglets