Piertney, S. B. In Current Trends in Wildlife Research (eds Mateo, R. et al.) 201–223 (Springer International Publishing, 2016).
Jabin, G., Sahajpal, V., Chandra, K. & Thakur, M. In Forensic DNA Typing: Principles, Applications and Advancements (eds Shrivastava, P., et al.) 399–403 (Springer, Singapore, 2020).
Drechsler, A., Helling, T. & Steinfartz, S. Genetic fingerprinting proves cross-correlated automatic photo-identification of individuals as highly efficient in large capture–mark–recapture studies. Ecol. Evol. 5, 141–151. https://doi.org/10.1002/ece3.1340 (2015).
Google Scholar
Gupta, S. K. In DNA Fingerprinting: Advancements and Future Endeavors (eds Ranjan Dash, H., et al.) 77–87 (Springer, Singapore, 2018).
Dale, T. D. et al. Enhancement of wildlife disease surveillance using multiplex quantitative PCR: Development of qPCR assays for major pathogens in UK squirrel populations. Eur. J. Wildl. Res. 62, 589–599. https://doi.org/10.1007/s10344-016-1031-z (2016).
Google Scholar
Latch, E. K., Heffelfinger, J. R., Fike, J. A. & Rhodes, O. E. Jr. Species-wide phylogeography of North American mule deer (Odocoileus hemionus): Cryptic glacial refugia and postglacial recolonization. Mol. Ecol. 18, 1730–1745. https://doi.org/10.1111/j.1365-294X.2009.04153.x (2009).
Google Scholar
Moscarella, R. A., Aguilera, M. & Escalante, A. A. Phylogeography, population structure, and implications for conservation of white-tailed deer (Odocoileus virginianus) in Venezuela. J. Mammal. 84, 1300–1315. https://doi.org/10.1644/brb-028 (2003).
Google Scholar
Lang, K. R. & Blanchong, J. A. Population genetic structure of white-tailed deer: Understanding risk of chronic wasting disease spread. J. Wildl. Manag. 76, 832–840. https://doi.org/10.1002/jwmg.292 (2012).
Google Scholar
Locher, A., Scribner, K. T., Moore, J. A., Murphy, B. & Kanefsky, J. Influence of landscape features on spatial genetic structure of white-tailed deer in human-altered landscapes. J. Wildl. Manag. 79, 180–194 (2015).
Google Scholar
Green, M. L., Manjerovic, M. B., Mateus-Pinilla, N. & Novakofski, J. Genetic assignment tests reveal dispersal of white-tailed deer: Implications for chronic wasting disease. J. Mammal. 95, 646–654. https://doi.org/10.1644/13-MAMM-A-167 (2014).
Google Scholar
Zachos, F. E. et al. Population viability analysis and genetic diversity of the endangered red deer Cervus elaphus population from Mesola, Italy. Wildl. Biol. 15, 175–186 (2009).
Google Scholar
Villanova, V. L., Hughes, P. T. & Hoffman, E. A. Combining genetic structure and demographic analyses to estimate persistence in endangered key deer (Odocoileus virginianus clavium). Conserv. Genet. 18, 1061–1076. https://doi.org/10.1007/s10592-017-0958-2 (2017).
Google Scholar
Lorenzini, R. DNA forensics and the poaching of wildlife in Italy: A case study. Forensic Sci. Int. 153, 218–221. https://doi.org/10.1016/j.forsciint.2005.04.032 (2005).
Google Scholar
Vikas, K. Wildlife DNA evidence: Recognition, collection and preservation. Res. J. Forensic Sci. 3(7), 8–15 (2015).
Waits, L. P. & Paetkau, D. Noninvasive genetic sampling tools for wildlife biologists: A review of applications and recommendations for accurate data collection. J. Wildl. Manag. 69, 1419–1433 (2005).
Google Scholar
Oyler-McCance, S. J. & Leberg, P. L. In The Wildlife Techniques Manual: Research (ed 7th) 526–546 (John Hopkins University Press, 2012).
Begley-Miller, D. R., Hipp, A. L., Brown, B. H., Hahn, M. & Rooney, T. P. White-tailed deer are a biotic filter during community assembly, reducing species and phylogenetic diversity. AoB Plants https://doi.org/10.1093/aobpla/plu030 (2014).
Google Scholar
Saunders, S. E., Bartelt-Hunt, S. L. & Bartz, J. C. Occurrence, transmission, and zoonotic potential of chronic wasting disease. Emerg. Infect. Dis. 18, 369–376 (2012).
Google Scholar
Miller, W. L., Edson, J., Pietrandrea, P., Miller-Butterworth, C. & Walter, W. D. Identification and evaluation of a core microsatellite panel for use in white-tailed deer (Odocoileus virginianus). BMC Genet. 20, 49. https://doi.org/10.1186/s12863-019-0750-z (2019).
Google Scholar
Budd, K., Berkman, L. K., Anderson, M., Koppelman, J. & Eggert, L. S. Genetic structure and recovery of white-tailed deer in Missouri. J. Wildl. Manag. 82, 1598–1607. https://doi.org/10.1002/jwmg.21546 (2018).
Google Scholar
DeYoung, R. W., Demarais, S., Gonzales, R. A., Honeycutt, R. L. & Gee, K. L. Multiple paternity in white-tailed deer (Odocoileus Virginianus) revealed by DNA microsatellites. J. Mammal. 83, 884–892. https://doi.org/10.1644/1545-1542(2002)083%3c0884:mpiwtd%3e2.0.co;2 (2002).
Google Scholar
Poutanen, J., Pusenius, J., Wikström, M. & Brommer, J. E. Estimating population density of the white-tailed deer in Finland using non-invasive genetic sampling and spatial capture-recapture. Ann. Zool. Fenn. 56, 1–16 (2019).
Google Scholar
Brinkman, T. J. et al. Individual identification of Sitka black-tailed deer (Odocoileus hemionus sitkensis) using DNA from fecal pellets. Conserv. Genet. Resour. 2, 115–118. https://doi.org/10.1007/s12686-010-9176-7 (2010).
Google Scholar
de Vargas Wolfgramm, E. et al. Simplified buccal DNA extraction with FTA® Elute Cards. Forensic Sci. Int. Genet. 3, 125–127. https://doi.org/10.1016/j.fsigen.2008.11.008 (2009).
Google Scholar
Bunting, S., Burnett, E., Hunter, R. B., Field, R. & Hunter, K. L. Incorporating molecular genetics into remote expedition fieldwork. Trop. Conserv. Sci. 7, 260–271. https://doi.org/10.1177/194008291400700207 (2014).
Google Scholar
McClure, M. C., McKay, S. D., Schnabel, R. D. & Taylor, J. F. Assessment of DNA extracted from FTA cards for use on the Illumina iSelect BeadChip. BMC Res Notes 2, 107. https://doi.org/10.1186/1756-0500-2-107 (2009).
Google Scholar
Milne, E. et al. Buccal DNA collection: Comparison of buccal swabs with FTA cards. Cancer Epidemiol. Biomark. Prev. 15, 816–819. https://doi.org/10.1158/1055-9965.epi-05-0753 (2006).
Google Scholar
Smith, L. M. & Burgoyne, L. A. Collecting, archiving and processing DNA from wildlife samples using FTA databasing paper. BMC Ecol 4, 4–4. https://doi.org/10.1186/1472-6785-4-4 (2004).
Google Scholar
Fryxell, R. T. T. et al. Survey of Borreliae in ticks, canines, and white-tailed deer from Arkansas, U.S.A. Parasit. Vectors 5, 139. https://doi.org/10.1186/1756-3305-5-139 (2012).
Google Scholar
Picard-Meyer, E., Barrat, J. & Cliquet, F. Use of filter paper (FTA®) technology for sampling, recovery and molecular characterisation of rabies viruses. J. Virol. Methods 140, 174–182. https://doi.org/10.1016/j.jviromet.2006.11.011 (2007).
Google Scholar
Haley, N. J. et al. Antemortem detection of chronic wasting disease prions in nasal brush collections and rectal biopsy specimens from white-tailed deer by real-time quaking-induced conversion. J. Clin. Microbiol. 54, 1108–1116. https://doi.org/10.1128/jcm.02699-15 (2016).
Google Scholar
Mas, S., Crescenti, A., Gassó, P., Vidal-Taboada, J. M. & Lafuente, A. DNA cards: Determinants of DNA yield and quality in collecting genetic samples for pharmacogenetic studies. Basic Clin. Pharmacol. Toxicol. 101, 132–137. https://doi.org/10.1111/j.1742-7843.2007.00089.x (2007).
Google Scholar
Drew, R. E. et al. Conservation genetics of the fisher (Martes pennanti) based on mitochondrial DNA sequencing. Mol. Ecol. 12, 51–62. https://doi.org/10.1046/j.1365-294X.2003.01715.x (2003).
Google Scholar
Soulsbury, C. D., Iossa, G., Edwards, K. J., Baker, P. J. & Harris, S. Allelic dropout from a high-quality DNA source. Conserv. Genet. 8, 733–738. https://doi.org/10.1007/s10592-006-9194-x (2007).
Google Scholar
Soanes, K. et al. Evaluating the success of wildlife crossing structures using genetic approaches and an experimental design: Lessons from a gliding mammal. J. Appl. Ecol. 55, 129–138. https://doi.org/10.1111/1365-2664.12966 (2018).
Google Scholar
Cheng, E., Hodges, K. E., Sollmann, R. & Mills, L. S. Genetic sampling for estimating density of common species. Ecol. Evol. 7, 6210–6219. https://doi.org/10.1002/ece3.3137 (2017).
Google Scholar
DeYoung, R. W. et al. Evaluation of DNA microsatellite panel useful for genetic exclusion studies in white-tailed deer. Wildl. Soc. Bull. 31, 220–232 (2003).
Vedicherla, S. & Buckley, C. T. Rapid chondrocyte isolation for tissue engineering applications: The effect of enzyme concentration and temporal exposure on the matrix forming capacity of nasal derived chondrocytes. Biomed. Res. Int. 2395138, 12 (2017).
Maličev, E., Kregar-Velikonja, N., Barlič, A., Alibegović, A. & Drobnič, M. Comparison of articular and auricular cartilage as a cell source for the autologous chondrocyte implantation. J. Orthop. Res. 27, 943–948. https://doi.org/10.1002/jor.20833 (2009).
Google Scholar
Goel, M., Picciani, R. G., Lee, R. K. & Bhattacharya, S. K. Aqueous humor dynamics: A review. Open Ophthalmol J 4, 52–59. https://doi.org/10.2174/1874364101004010052 (2010).
Google Scholar
Park, S. J., Kim, J. Y., Yang, Y. G. & Lee, S. H. Direct STR amplification from whole blood and blood- or saliva-spotted FTA® without DNA purification*. J. Forensic Sci. 53, 335–341. https://doi.org/10.1111/j.1556-4029.2008.00666.x (2008).
Google Scholar
Forgacs, D., Wallen, R., Boedeker, A. & Derr, J. Evaluation of fecal samples as a valid source of DNA by comparing paired blood and fecal samples from American bison (Bison bison). BMC Genet https://doi.org/10.1186/s12863-019-0722-3 (2019).
Google Scholar
Pfeiler, S. S. et al. Costs and precision of fecal DNA mark–recapture versus traditional mark–resight. Wildl. Soc. Bull. 44, 531–542. https://doi.org/10.1002/wsb.1119 (2020).
Google Scholar
Henry, P., Henry, A. & Russello, M. A noninvasive hair sampling technique to obtain high quality DNA from elusive small mammals. J. Vis. Exp. JoVE. https://doi.org/10.3791/2791 (2011).
Google Scholar
Wirsing, A. J., Quinn, T. P., Adams, J. R. & Waits, L. P. Optimizing selection of brown bear hair for noninvasive genetic analysis. Wildl. Soc. Bull. 44, 94–100. https://doi.org/10.1002/wsb.1057 (2020).
Google Scholar
Source: Ecology - nature.com